ON THE APPROXIMATION OF π BY SPECIAL ALGEBRAIC NUMBERS

by ERHARD BRAUNE

(Received 21 October, 1978)

1. Introduction and result. Suppose that m_0 is an integer, $m_0 \ge 3$, $\rho = \exp(2\pi i/m_0)$, $K = \mathbb{Q}(\rho, i)$, ν denotes the degree of K, $\xi \in K$ has degree N over \mathbb{Q} . The length $L(\xi) = \sum_{j=0}^{N} |a_j|$, where $P(z) = \sum_{j=0}^{N} a_j z^j$ is the (irreducible) minimal polynomial for ξ with relatively prime integer coefficients. Feldman [2, p. 49] proved that there is an absolute constant $c_0 > 0$ such that

$$|\pi - \xi| > \exp\{-c_o \nu^2 (1 + N^{-1} \log L)\}.$$
(1)

From [2, p. 49, Notes 1 and 2] we know that $\nu = \varphi(m_0)$ or $\nu = 2\varphi(m_0)$, and $\varphi(m_0) \ge c_1 m_0 (\log \log m_0)^{-1}$ ($c_1 > 0$ an absolute constant), where $\varphi(m_0)$ denotes Euler's function.

P. L. Cijsouw has developed some new refinements of the Gelfond-Baker method to derive an improved approximation measure for π [1]. In this note we use these refinements and two simple lemmas of [2] to prove the following result.

THEOREM. There exists a positive absolute constant c_2 such that

$$|\pi - \xi| > \exp\{-c_2 \nu^2 (1 + (N \log \nu)^{-1} \log L)\}$$
(2)

for all algebraic numbers $\xi \in K = \mathbb{Q}(\rho, i)$, where $\nu \ge 2$ denotes the degree of K, and N and L the degree and the length of ξ , respectively.

It is clear that (2) improves upon (1); the following proof is simpler than that in [2].

COROLLARY. If ξ has large degree, i.e. $N \gg v$, then

$$\log |\pi - \xi| \gg - \left(N^2 + \frac{N}{\log \nu} \log L \right).$$

2. Lemmas.

LEMMA 1 [2, p. 49, Lemma 1]. Let C be a natural number and let a_{ij} be real numbers, where

$$\sum_{j=1}^{\tilde{t}} |a_{ij}| \leq A, \quad i=1,\ldots,r \ r < \tilde{t}.$$

Then there exists a nontrivial collection of rational integers $x_1, \ldots, x_{\bar{t}}$ for which

$$|a_{i1}x_1 + \ldots + a_{i\tilde{i}}x_{\tilde{i}}| \le 2AC((C+1)^{\tilde{i}/r} - 2)^{-1}, \quad i = 1, \ldots, r,$$

 $|x_i| \le C, \quad j = 1, \ldots, \tilde{i}.$

Glasgow Math. J. 21 (1980) 51-56.

ERHARD BRAUNE

LEMMA 2 [2, p. 50, Lemma 3]. Let ρ be a root of unity, ν the degree of the field $K = \mathbb{Q}(\rho, i)$ and $n = n(\xi)$ the degree of ξ , where $\xi \in K$; further let T, L, M be non-negative integers. If the rational integers A_{ilm} satisfy the inequality

$$\sum_{t=0}^{T}\sum_{l=0}^{L}\sum_{m=0}^{M}|A_{tlm}|\leq B,$$

then either $\delta = 0$ or

$$|\delta| = \left| \sum_{t=0}^{T} \sum_{l=0}^{L} \sum_{m=0}^{M} A_{tlm} \xi^{t} i^{l} \rho^{m} \right| \ge B^{1-\nu} L(\xi)^{-\nu T/n}.$$

LEMMA 3 [1, p. 96, Lemma 3]. Let F be an entire function, let S and T be positive integers, and let R and \tilde{A} be real numbers such that $R \ge 2S$ and $\tilde{A} > 2$. Then

$$\max_{|z| \leq R} |F(z)| \leq 2(2/\tilde{A})^{TS} \max_{|z| \leq \tilde{A}R} |F(z)| + (9R/S)^{TS} \max_{s,t} |F^{(t)}(s)|/t!,$$

where the last maximum is taken over all integers s, t with $0 \le s \le S$, $0 \le t \le T$.

In the following, let T and M denote fixed positive integers and define the polynomials $g_m(z)$ (m = 0, 1, ..., M-1) as follows:

$$g_0(z) = 1, \quad g_m(z) = \left(\left[\frac{m}{T}\right]!\right)^{-T} \prod_{j=1}^m (z+j) \quad (m = 1, 2, \dots, M-1),$$

where T-1 is the highest order of the derivatives one has to use.

LEMMA 4 [1, p. 96, Lemma 4]. For t = 0, 1, ..., T-1,

 $|g_m^{(t)}(z)|/t! \le \exp(|z| + 2m + 3m \log T).$

There exists a positive integer d such that all the numbers $(d/t!)g_m^{(t)}(s)$ (m = 0, 1, ..., M-1, t = 0, 1, ..., T-1, s = 0, 1, 2, ...) are integers and

 $d \leq \exp(4M \log T)$.

LEMMA 5 [1, p. 96, Lemma 5]. Let a be a non-zero complex number. Let F be the exponential polynomial

$$F(z) = \sum_{k=0}^{K-1} \sum_{m=0}^{M-1} C_{km} g_m(z) e^{akz},$$

where the C_{km} are complex numbers and K, M positive integers. Put

$$\tilde{C} = \max_{k,m} |C_{km}|, \quad \Omega = \max(1, (K-1)|a|), \quad \omega = \min(1, |a|),$$

let S' be a positive integer and define E by

$$E = \max_{s,t} |F^{(t)}(s)|/t!,$$

where s, t are integers with $0 \le s \le S'$, $0 \le t \le T$. If

 $TS' \ge 2KM + 15\Omega S'$,

then

 $\tilde{C} \leq \frac{3}{2} (2e)^{M} (6/(\omega K))^{KM} 18^{TS'} E\{\max(6\Omega, 3KM/(4S'))\}^{KM}.$

3. Proof of the theorem. Put $Y = \log \nu + \frac{\log L}{N}$ and suppose that

ļ

$$\pi - \xi | \leq \exp\left(-x^{13} \frac{\nu^2}{\log \nu} Y\right); \tag{3}$$

we shall show that (3) leads to a contradiction if x (an integer) is large enough. Choose the following integers:

$$K = [x^{3}\nu], \qquad S = \left[x^{2}\frac{\nu}{\log\nu}Y\right], \qquad T = \left[x^{6}\frac{\nu}{\log\nu}\right],$$
$$M = \left[x^{6}\frac{\nu}{\log^{2}\nu}Y\right], \qquad S' = x^{2}S, \qquad C = \left[\exp\left\{x^{7}\frac{\nu}{\log\nu}Y\right\}\right]$$

Let

$$F(z) = \sum_{k=0}^{K-1} \sum_{m=0}^{M-1} \sum_{j=0}^{\varphi(m_0)-1} C_{kmj} \rho^j g_m(z) e^{2k\pi i z/m_0},$$

where the C_{kmj} are rational integers with $|C_{kmj}| \leq C$, specified later.

In the following adopt the convention: $\binom{a}{b} = 0$ if b > a. For all non-negative integers s, t we have

$$F^{(t)}(s) = \sum_{k} \sum_{m} \sum_{j} C_{kmj} \rho^{j} \sum_{\tau=0}^{m} {t \choose \tau} g^{(\tau)}_{m}(s) (2\pi i/m_{0})^{t-\tau} k^{t-\tau} \rho^{ks};$$

define

$$\phi_{ts} = \sum_{k} \sum_{m} \sum_{j} C_{kmj} \rho^{j} \sum_{\tau=0}^{m} {t \choose \tau} g_{m}^{(\tau)}(s) (2\xi i/m_{0})^{t-\tau} k^{t-\tau} \rho^{ks}.$$

There are six steps in the proof.

(a)
$$|\pi^{t-\tau} - \xi^{t-\tau}| \leq T(\pi+1)^T |\pi - \xi| \leq \exp\left(-\frac{1}{2}x^{13}\frac{\nu^2}{\log\nu}Y\right)$$

and for $0 \le t < T$, $0 \le s < S'$,

$$|F^{(t)}(s) - \phi_{ts}| \leq KM^2 \nu C (4\pi TK)^T \exp\left(S' + 5M \log T - \frac{1}{2} x^{13} \frac{\nu^2}{\log \nu} Y\right)$$

$$\leq \exp\left(-x^{12} \frac{\nu^2}{\log \nu} Y\right).$$
(4)

ERHARD BRAUNE

(b) Let d be the integer introduced in Lemma 4 and put $C_{km} = \sum_{j=0}^{\varphi(m_0)-1} C_{kmj} \rho^j$. Define

$$\tilde{\phi}_{ts} = dm_0^T \phi_{ts} = dm_0^T \sum_{k,m} C_{km} \sum_{\tau=0}^m {t \choose \tau} g_m^{(\tau)}(s) (2\xi i/m_0)^{t-\tau} k^{t-\tau} \rho^{ks}$$

for s = 0, 1, ..., S-1, t = 0, 1, ..., T-1. Then Re $\tilde{\phi}_{ts}$, Im $\tilde{\phi}_{ts}$ can be considered as a system of linear forms of the $\tilde{t} = \varphi(m_0)KM$ parameters C_{kmj} . By Lemma 1 with r = 2TS, there exist rational integers, not all zero, such that $|C_{kmj}| \leq C$ and

$$|\operatorname{Re} \tilde{\phi}_{ts}| + |\operatorname{Im} \tilde{\phi}_{ts}| \leq 4AC((C+1)^{\tilde{t}/r} - 2)^{-1}.$$

In our case we get

$$A \leq dm_0^T (M+1)(2T)^T (\exp(S+5M\log T))(2K)^T (1+\pi)^T$$
$$\leq \exp\left(x^6 (\log^2 x) \frac{\nu}{\log \nu} Y\right).$$

Hence

$$|\tilde{\phi}_{ts}| \leq \exp\left(2x^7 \frac{\nu}{\log \nu} Y - \frac{3}{8} x^8 \frac{\nu^2}{\log \nu} Y\right) \leq \exp\left(-x^7 (\log x) \frac{\nu^2}{\log \nu} Y\right), \tag{5}$$

since $\tilde{t}/r \ge \frac{3}{8}x\nu$.

 $\tilde{\phi}_{ts}$ is polynomial in ξ , *i*, ρ of degrees *T*, *T*, $(K-1)(S-1)+\phi(m_0)-1$, respectively, and with rational integer coefficients A_{kmj} satisfying

$$\sum_{k} \sum_{m} \sum_{j} |A_{kmj}| \leq \exp\left\{x^{6}(\log^{2} x) \frac{\nu}{\log \nu} Y + x^{7} \frac{\nu}{\log \nu} Y\right\} \leq \exp\left(2x^{7} \frac{\nu}{\log \nu} Y\right).$$

Define $B = \exp\left(2x^7 \frac{\nu}{\log \nu} Y\right)$. Then, applying Lemma 2, we obtain either $\tilde{\phi}_{ts} = 0$, or

$$|\tilde{\phi}_{ts}| \ge \exp\left\{-\left((1-\nu)\log B + \frac{\nu T}{N}\log L\right)\right\} > \exp\left\{-\left(3x^7 \frac{\nu^2}{\log \nu}Y\right)\right\},\$$

which contradicts (5) for x sufficiently large. Hence $\tilde{\phi}_{ts} = 0$, $\phi_{ts} = 0$ and by (4)

$$|F^{(t)}(s)| \leq \exp\left(-x^{12} \frac{\nu^2}{\log \nu} Y\right) \ (0 \leq t < T, 0 \leq s < S).$$
(6)

2

(c) Now we apply Lemma 3 to F(z) with R = S' and choose \tilde{A} comparatively large, namely $\tilde{A} = 6\nu$. It follows, because

$$\max_{|z| \leq 6\nu S'} |F(z)| \leq KM\nu C \exp(6\nu S' + 5M \log T + 24\pi S'K) \leq \exp\left(x^7 (\log x) \frac{\nu^2}{\log \nu} Y\right),$$

that, by (6),

$$\max_{|z| \le S'} |F(z)| \le 2(1/3\nu)^{TS} \max_{|z| \le 6\nu S'} |F(z)| + (9S'/S)^{TS} \max_{s,t} |F^{(t)}(s)|/t!$$

$$\le \exp\left\{-\frac{1}{2}x^8 \frac{\nu^2}{\log \nu} Y + 2x^7(\log x) \frac{\nu^2}{\log \nu} Y\right\}$$

$$+ \exp\left\{x^8(\log^2 x) \left(\frac{\nu}{\log \nu}\right)^2 Y - x^{12} \frac{\nu^2}{\log \nu} Y\right\} \le \exp\left(-\frac{1}{4}x^8 \frac{\nu^2}{\log \nu} Y\right).$$
(7)

Cauchy's theorem implies that, for $0 \le t < T$, $0 \le s < S'$,

$$|F^{(t)}(s)| \leq T^{T}S' \max_{|z| \leq S'} |F(z)| \leq \exp\left(-\frac{1}{5} x^{8} \frac{\nu^{2}}{\log \nu} Y\right).$$

Using (4) and $d \leq \exp(4M \log T)$ (with Lemma 3), we obtain

$$|\tilde{\phi}_{ts}| \leq \exp\left(-\frac{1}{6} x^8 \frac{\nu^2}{\log \nu} Y\right)$$
(8)

for $0 \le t < T$, $0 \le s < S'$.

(d) Applying Lemma 2 for $0 \le t < T$, $0 \le s < S'$, we see by similar considerations to those in (b) with S' replacing S that either $\tilde{\phi}_{is} = 0$ or

$$|\tilde{\phi}_{ts}| \ge \exp\left(-x^{\gamma}(\log x) \frac{\nu^2}{\log \nu} Y\right),$$

a contradiction to (8) for x large. Hence $\phi_{1s} = 0$ and by (4)

$$|F^{(t)}(s)| \leq \exp\left(-x^{12}\frac{\nu^2}{\log\nu}Y\right)$$
(9)

for $0 \le t < T$, $0 \le s < S'$.

(e) We can now apply Lemma 5 with $a = 2\pi i/m_0$. We have

$$\Omega = \max(1, (K-1)|a|) < 1 + (2\pi K/m_0) \le x^3 \log x.$$

Hence

$$TS' \ge 2KM + 15\Omega S'$$
.

Further from

$$\frac{m_0}{\log\log m_0} \leq c_3 \varphi(m_0) \leq c_4 \nu$$

with c_3 , c_4 absolute constants, we obtain $m_0 \leq x v^2$, Also

$$\omega = \min(1, |a|) = \min(1, 2\pi/m_0) \ge (x\nu^2)^{-1}$$

and so

$$\omega K \ge \frac{1}{2} x^3 \nu (x \nu^2)^{-1} \ge (2\nu)^{-1}.$$

Hence

$$(6/\omega K)^{KM} \leq (12\nu)^{KM} \leq \exp\left(x^9(\log x)\frac{\nu^2}{\log \nu}Y\right).$$

Therefore, by (9), it follows that

$$\tilde{C} \leq \exp\left\{x^{6}(\log x)\frac{\nu}{\log^{2}\nu}Y + x^{9}(\log x)\frac{\nu^{2}}{\log\nu}Y + x^{10}(\log x)\left(\frac{\nu}{\log\nu}\right)^{2}Y + x^{9}\left((\log^{2} x)\left(\frac{\nu}{\log\nu}\right)^{2}\log\nu\right)Y - x^{12}\frac{\nu^{2}}{\log\nu}Y\right\}$$

$$\leq \exp\left(-x^{11}\frac{\nu^{2}}{\log\nu}Y\right).$$
(10)

(f) Finally, the C_{km} are polynomials in ρ with rational integer coefficients; hence we have $C_{km} = 0$ or, by Lemma 2,

$$|C_{km}| \geq (\varphi(m_0)C)^{1-\nu} \geq \exp\left(-x^7(\log x)\frac{\nu^2}{\log \nu}Y\right),$$

which contradicts (10) for x sufficiently large. So

 $C_{km} = 0$ (k = 0, 1, ..., K-1, m = 0, 1, ..., M-1).

But ρ is an algebraic number of degree $\varphi(m_0)$; hence

$$C_{kmi} = 0$$
 $(0 \le k \le K, \ 0 \le m \le M, \ 0 \le j \le \varphi(m_0) - 1),$

which gives a contradiction to the choice of the integers C_{kmj} . Thus (3) is impossible for x large enough and the theorem is proved.

I am very grateful to the referee for helpful suggestions.

REFERENCES

1. P. L. Cijsouw, A transcendence measure for π , Transcendence theory: advances and applications, Proc. of a conference in Cambridge 1976 (Ed. A. Baker and D. W. Masser), (Academic Press, 1977).

2. N. I. Feldman, Approximation of number π by algebraic numbers from special fields, J. Number Theory 9 (1977), 48-60.

A-4020 Linz/D Lannergasse 16 Austria

56