ON THE APPROXIMATION OF π BY SPECIAL ALGEBRAIC NUMBERS

by ERHARD BRAUNE

(Received 21 October, 1978)

1. Introduction and result. Suppose that m_{0} is an integer, $m_{0} \geqslant 3, \rho=\exp \left(2 \pi i / m_{0}\right)$, $K=\mathbb{Q}(\rho, i), \nu$ denotes the degree of $K, \xi \in K$ has degree N over \mathbb{Q}. The length $L(\xi)=\sum_{j=0}^{N}\left|a_{j}\right|$, where $P(z)=\sum_{j=0}^{N} a_{j} z^{j}$ is the (irreducible) minimal polynomial for ξ with relatively prime integer coefficients. Feldman [2, p. 49] proved that there is an absolute constant $c_{0}>0$ such that

$$
\begin{equation*}
|\pi-\xi|>\exp \left\{-c_{o} \nu^{2}\left(1+N^{-1} \log L\right)\right\} . \tag{1}
\end{equation*}
$$

From [2, p. 49, Notes 1 and 2] we know that $\nu=\varphi\left(m_{0}\right)$ or $\nu=2 \varphi\left(m_{0}\right)$, and $\varphi\left(m_{0}\right) \geqslant$ $c_{1} m_{0}\left(\log \log m_{0}\right)^{-1}\left(c_{1}>0\right.$ an absolute constant), where $\varphi\left(m_{0}\right)$ denotes Euler's function.
P. L. Cijsouw has developed some new refinements of the Gelfond-Baker method to derive an improved approximation measure for $\pi[1]$. In this note we use these refinements and two simple lemmas of [2] to prove the following result.

Theorem. There exists a positive absolute constant c_{2} such that

$$
\begin{equation*}
|\pi-\xi|>\exp \left\{-c_{2} \nu^{2}\left(1+(N \log \nu)^{-1} \log L\right)\right\} \tag{2}
\end{equation*}
$$

for all algebraic numbers $\xi \in K=\mathbb{Q}(\rho, i)$, where $\nu \geqslant 2$ denotes the degree of K, and N and L the degree and the length of ξ, respectively.

It is clear that (2) improves upon (1); the following proof is simpler than that in [2].
Corollary. If ξ has large degree, i.e. $N \gg \nu$, then

$$
\log |\pi-\xi| \gg-\left(N^{2}+\frac{N}{\log \nu} \log L\right) .
$$

2. Lemmas.

Lemma 1 [2, p. 49, Lemma 1]. Let C be a natural number and let $a_{i j}$ be real numbers, where

$$
\sum_{j=1}^{i}\left|a_{i j}\right| \leqslant A, \quad i=1, \ldots, r r<\tilde{t} .
$$

Then there exists a nontrivial collection of rational integers x_{1}, \ldots, x_{i} for which

$$
\begin{gathered}
\left|a_{i 1} x_{1}+\ldots+a_{i i} x_{i}\right| \leqslant 2 A C\left((C+1)^{\bar{i} / r}-2\right)^{-1}, \quad i=1, \ldots, r, \\
\left|x_{j}\right| \leqslant C, \quad j=1, \ldots, \tilde{t} .
\end{gathered}
$$

Glasgow Math. J. 21 (1980) 51-56.

Lemma 2 [2, p. 50, Lemma 3]. Let ρ be a root of unity, ν the degree of the field $K=\mathbb{Q}(\rho, i)$ and $n=n(\xi)$ the degree of ξ, where $\xi \in K$; further let T, L, M be non-negative integers. If the rational integers $A_{t l m}$ satisfy the inequality

$$
\sum_{t=0}^{T} \sum_{l=0}^{L} \sum_{m=0}^{M}\left|A_{t l m}\right| \leqslant B
$$

then either $\delta=0$ or

$$
|\delta|=\left|\sum_{t=0}^{T} \sum_{l=0}^{L} \sum_{m=0}^{M} A_{t l m} \xi^{t} i^{l} \rho^{m}\right| \geqslant B^{1-\nu} L(\xi)^{-\nu T / n}
$$

Lemma 3 [1, p. 96, Lemma 3]. Let F be an entire function, let S and T be positive integers, and let R and \tilde{A} be real numbers such that $R \geqslant 2 S$ and $\tilde{A}>2$. Then

$$
\max _{|z| \leqslant R}|F(z)| \leqslant 2(2 / \tilde{A})^{T S} \max _{|z| \leqslant \bar{A} R}|F(z)|+(9 R / S)^{T S} \max _{s, t}\left|F^{(t)}(s)\right| / t!,
$$

where the last maximum is taken over all integers s, t with $0 \leqslant s<S, 0 \leqslant t<T$.
In the following, let T and M denote fixed positive integers and define the polynomials $g_{m}(z)(m=0,1, \ldots, M-1)$ as follows:

$$
g_{0}(z)=1, \quad g_{m}(z)=\left(\left[\frac{m}{T}\right]!\right)^{-T} \prod_{i=1}^{m}(z+j) \quad(m=1,2, \ldots, M-1)
$$

where $T-1$ is the highest order of the derivatives one has to use.
Lemma 4 [1, p. 96, Lemma 4]. For $t=0,1, \ldots, T-1$,

$$
\left|g_{m}^{(t)}(z)\right| / t!\leqslant \exp (|z|+2 m+3 m \log T)
$$

There exists a positive integer d such that all the numbers $(d / t!) g_{m}^{(t)}(s)$ ($m=0,1, \ldots, M-1, t=0,1, \ldots, T-1, s=0,1,2, \ldots$) are integers and

$$
d \leqslant \exp (4 M \log T)
$$

Lemma 5 [1, p. 96, Lemma 5]. Let a be a non-zero complex number. Let F be the exponential polynomial

$$
F(z)=\sum_{k=0}^{K-1} \sum_{m=0}^{M-1} C_{k m} g_{m}(z) e^{a k z},
$$

where the $C_{k m}$ are complex numbers and K, M positive integers. Put

$$
\tilde{C}=\max _{k, m}\left|C_{k m}\right|, \quad \Omega=\max (1,(K-1)|a|), \quad \omega=\min (1,|a|)
$$

let S^{\prime} be a positive integer and define E by

$$
E=\max _{s, t}\left|F^{(t)}(s)\right| / t!
$$

where s, t are integers with $0 \leqslant s<S^{\prime}, 0 \leqslant t<T$. If

$$
T S^{\prime} \geqslant 2 K M+15 \Omega S^{\prime}
$$

then

$$
\tilde{C} \leqslant \frac{3}{2}(2 e)^{M}(6 /(\omega K))^{K M} 18^{\mathrm{TS}} E\left\{\max \left(6 \Omega, 3 K M /\left(4 S^{\prime}\right)\right)\right\}^{K M}
$$

3. Proof of the theorem. Put $Y=\log \nu+\frac{\log L}{N}$ and suppose that

$$
\begin{equation*}
|\pi-\xi| \leqslant \exp \left(-x^{13} \frac{\nu^{2}}{\log \nu} Y\right) \tag{3}
\end{equation*}
$$

we shall show that (3) leads to a contradiction if x (an integer) is large enough. Choose the following integers:

$$
\begin{gathered}
K=\left[x^{3} \nu\right], \quad S=\left[x^{2} \frac{\nu}{\log \nu} Y\right], \quad T=\left[x^{6} \frac{\nu}{\log \nu}\right], \\
M=\left[x^{6} \frac{\nu}{\log ^{2} \nu} Y\right], \quad S^{\prime}=x^{2} S, \quad C=\left[\exp \left\{x^{7} \frac{\nu}{\log \nu} Y\right\}\right] .
\end{gathered}
$$

Let

$$
F(z)=\sum_{k=0}^{K-1} \sum_{m=0}^{M-1} \sum_{j=0}^{\left(m_{0}\right)-1} C_{k m j} \rho^{j} g_{m}(z) e^{2 k \pi i z / m_{0}},
$$

where the $C_{k m j}$ are rational integers with $\left|C_{k m j}\right| \leqslant C$, specified later.
In the following adopt the convention: $\binom{a}{b}=0$ if $b>a$. For all non-negative integers s, t we have

$$
F^{(t)}(s)=\sum_{k} \sum_{m} \sum_{j} C_{k m j} \rho^{j} \sum_{\tau=0}^{m}\binom{t}{\tau} g_{m}^{(\tau)}(s)\left(2 \pi i / m_{0}\right)^{t-\tau} k^{t-\tau} \rho^{k s}
$$

define

$$
\phi_{t s}=\sum_{k} \sum_{m} \sum_{j} C_{k m j} \rho^{j} \sum_{\tau=0}^{m}\binom{t}{\tau} g_{m}^{(\tau)}(s)\left(2 \xi i / m_{0}\right)^{t-\tau} k^{t-\tau} \rho^{k s}
$$

There are six steps in the proof.
(a) $\left|\pi^{t-\tau}-\xi^{t-\tau}\right| \leqslant T(\pi+1)^{T}|\pi-\xi| \leqslant \exp \left(-\frac{1}{2} x^{13} \frac{\nu^{2}}{\log \nu} Y\right)$,
and for $0 \leqslant t<T, 0 \leqslant s<S^{\prime}$,

$$
\begin{align*}
\left|F^{(t)}(s)-\phi_{t s}\right| & \leqslant K M^{2} \nu C(4 \pi T K)^{\mathrm{T}} \exp \left(S^{\prime}+5 M \log T-\frac{1}{2} x^{13} \frac{\nu^{2}}{\log \nu} Y\right) \\
& \leqslant \exp \left(-x^{12} \frac{\nu^{2}}{\log \nu} Y\right) \tag{4}
\end{align*}
$$

(b) Let d be the integer introduced in Lemma 4 and put $C_{k m}=\sum_{j=0}^{\varphi\left(m_{0}\right)-1} C_{k m j} \rho^{j}$. Define

$$
\tilde{\phi}_{t s}=d m_{0}^{T} \phi_{t s}=d m_{0}^{T} \sum_{k, m} C_{k m} \sum_{\tau=0}^{m}\binom{t}{\tau} g_{m}^{(\tau)}(s)\left(2 \xi i / m_{0}\right)^{t-\tau} k^{t-\tau} p^{k s}
$$

for $s=0,1, \ldots, S-1, t=0,1, \ldots, T-1$. Then $\operatorname{Re} \tilde{\phi}_{t s}, \operatorname{Im} \tilde{\phi}_{t s}$ can be considered as a system of linear forms of the $\tilde{t}=\varphi\left(m_{0}\right) K M$ parameters $C_{k m j}$. By Lemma 1 with $r=2 T S$, there exist rational integers, not all zero, such that $\left|C_{k m j}\right| \leqslant C$ and

$$
\left|\operatorname{Re} \tilde{\phi}_{t s}\right|+\left|\operatorname{Im} \tilde{\phi}_{t s}\right| \leqslant 4 A C\left((C+1)^{\tilde{i} / r}-2\right)^{-1}
$$

In our case we get

$$
\begin{aligned}
A & \leqslant d m_{0}^{T}(M+1)(2 T)^{T}(\exp (S+5 M \log T))(2 K)^{T}(1+\pi)^{T} \\
& \leqslant \exp \left(x^{6}\left(\log ^{2} x\right) \frac{\nu}{\log v} Y\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left|\tilde{\phi}_{t s}\right| \leqslant \exp \left(2 x^{7} \frac{\nu}{\log \nu} Y-\frac{3}{8} x^{8} \frac{\nu^{2}}{\log \nu} Y\right) \leqslant \exp \left(-x^{7}(\log x) \frac{\nu^{2}}{\log \nu} Y\right) \tag{5}
\end{equation*}
$$

since $\tilde{t} / r \geqslant \frac{3}{8} x \nu$.
$\tilde{\phi}_{t s}$ is polynomial in ξ, i, ρ of degrees $T, T,(K-1)(S-1)+\phi\left(m_{0}\right)-1$, respectively, and with rational integer coefficients $A_{k m j}$ satisfying

$$
\sum_{k} \sum_{m} \sum_{j}\left|A_{k m j}\right| \leqslant \exp \left\{x^{6}\left(\log ^{2} x\right) \frac{\nu}{\log \nu} Y+x^{7} \frac{\nu}{\log \nu} Y\right\} \leqslant \exp \left(2 x^{7} \frac{\nu}{\log \nu} Y\right)
$$

Define $B=\exp \left(2 x^{7} \frac{\nu}{\log \nu} Y\right)$. Then, applying Lemma 2 , we obtain either $\tilde{\phi}_{t s}=0$, or

$$
\left|\tilde{\phi}_{t s}\right| \geqslant \exp \left\{-\left((1-\nu) \log B+\frac{\nu T}{N} \log L\right)\right\}>\exp \left\{-\left(3 x^{7} \frac{\nu^{2}}{\log \nu} Y\right)\right\}
$$

which contradicts (5) for x sufficiently large. Hence $\tilde{\phi}_{t s}=0, \phi_{t s}=0$ and by (4)

$$
\begin{equation*}
\left|F^{(t)}(s)\right| \leqslant \exp \left(-x^{12} \frac{\nu^{2}}{\log \nu} Y\right)(0 \leqslant t<T, 0 \leqslant s<S) \tag{6}
\end{equation*}
$$

(c) Now we apply Lemma 3 to $F(z)$ with $R=S^{\prime}$ and choose \tilde{A} comparatively large, namely $\tilde{A}=6 \nu$. It follows, because

$$
\max _{|z| \leqslant 6 \nu S^{\prime}}|F(z)| \leqslant K M \nu C \exp \left(6 \nu S^{\prime}+5 M \log T+24 \pi S^{\prime} K\right) \leqslant \exp \left(x^{7}(\log x) \frac{\nu^{2}}{\log \nu} Y\right)
$$

that, by (6),

$$
\begin{align*}
\max _{|z| \leqslant S^{\prime}}|F(z)| \leqslant & 2(1 / 3 \nu)^{\mathrm{TS}} \max _{|z| \leqslant 6 \nu S^{\prime}}|F(z)|+\left(9 S^{\prime} / S\right)^{\mathrm{TS}} \max _{s, t}\left|F^{(t)}(s)\right| / t! \\
& \leqslant \exp \left\{-\frac{1}{2} x^{8} \frac{\nu^{2}}{\log \nu} Y+2 x^{7}(\log x) \frac{\nu^{2}}{\log \nu} Y\right\} \\
& +\exp \left\{x^{8}\left(\log ^{2} x\right)\left(\frac{\nu}{\log \nu}\right)^{2} Y-x^{12} \frac{\nu^{2}}{\log \nu} Y\right\} \leqslant \exp \left(-\frac{1}{4} x^{8} \frac{\nu^{2}}{\log \nu} Y\right) . \tag{7}
\end{align*}
$$

Cauchy's theorem implies that, for $0 \leqslant t<T, 0 \leqslant s<S^{\prime}$,

$$
\left|F^{(t)}(s)\right| \leqslant T^{T} S^{\prime} \max _{|z| \leqslant S^{\prime}}|F(z)| \leqslant \exp \left(-\frac{1}{5} x^{8} \frac{\nu^{2}}{\log \nu} Y\right)
$$

Using (4) and $d \leqslant \exp (4 M \log T)$ (with Lemma 3), we obtain

$$
\begin{equation*}
\left|\tilde{\phi}_{t s}\right| \leqslant \exp \left(-\frac{1}{6} x^{8} \frac{\nu^{2}}{\log \nu} Y\right) \tag{8}
\end{equation*}
$$

for $0 \leqslant t<T, 0 \leqslant s<S^{\prime}$.
(d) Applying Lemma 2 for $0 \leqslant t<T, 0 \leqslant s<S^{\prime}$, we see by similar considerations to those in (b) with S^{\prime} replacing S that either $\tilde{\phi}_{t s}=0$ or

$$
\left|\tilde{\phi}_{t s}\right| \geqslant \exp \left(-x^{7}(\log x) \frac{\nu^{2}}{\log \nu} Y\right)
$$

a contradiction to (8) for x large. Hence $\phi_{t s}=0$ and by (4)

$$
\begin{equation*}
\left|F^{(t)}(s)\right| \leqslant \exp \left(-x^{12} \frac{\nu^{2}}{\log \nu} Y\right) \tag{9}
\end{equation*}
$$

for $0 \leqslant t<T, 0 \leqslant s<S^{\prime}$.
(e) We can now apply Lemma 5 with $a=2 \pi i / m_{0}$. We have

$$
\Omega=\max (1,(K-1)|a|)<1+\left(2 \pi K / m_{0}\right) \leqslant x^{3} \log x .
$$

Hence

$$
T S^{\prime} \geqslant 2 K M+15 \Omega S^{\prime}
$$

Further from

$$
\frac{m_{0}}{\log \log m_{0}} \leqslant c_{3} \varphi\left(m_{0}\right) \leqslant c_{4} \nu
$$

with c_{3}, c_{4} absolute constants, we obtain $m_{0} \leqslant x \nu^{2}$, Also

$$
\omega=\min (1,|a|)=\min \left(1,2 \pi / m_{0}\right) \geqslant\left(x \nu^{2}\right)^{-1}
$$

and so

$$
\omega K \geqslant \frac{1}{2} x^{3} \nu\left(x \nu^{2}\right)^{-1} \geqslant(2 \nu)^{-1}
$$

Hence

$$
(6 / \omega K)^{K M} \leqslant(12 \nu)^{K M} \leqslant \exp \left(x^{9}(\log x) \frac{\nu^{2}}{\log \nu} Y\right)
$$

Therefore, by (9), it follows that

$$
\begin{align*}
\tilde{C} \leqslant & \exp \left\{x^{6}(\log x) \frac{\nu}{\log ^{2} \nu} Y+x^{9}(\log x) \frac{\nu^{2}}{\log \nu} Y+x^{10}(\log x)\left(\frac{\nu}{\log \nu}\right)^{2} Y\right. \\
& \left.+x^{9}\left(\left(\log ^{2} x\right)\left(\frac{\nu}{\log \nu}\right)^{2} \log \nu\right) Y-x^{12} \frac{\nu^{2}}{\log \nu} Y\right\} \\
\leqslant & \exp \left(-x^{11} \frac{\nu^{2}}{\log \nu} Y\right) \tag{10}
\end{align*}
$$

(f) Finally, the $C_{k m}$ are polynomials in ρ with rational integer coefficients; hence we have $C_{k m}=0$ or, by Lemma 2,

$$
\left|C_{k m}\right| \geqslant\left(\varphi\left(m_{0}\right) C\right)^{1-\nu} \geqslant \exp \left(-x^{7}(\log x) \frac{\nu^{2}}{\log \nu} Y\right)
$$

which contradicts (10) for x sufficiently large. So

$$
C_{k m}=0 \quad(k=0,1, \ldots, K-1, m=0,1, \ldots, M-1) .
$$

But ρ is an algebraic number of degree $\varphi\left(m_{0}\right)$; hence

$$
C_{k m j}=0 \quad\left(0 \leqslant k<K, 0 \leqslant m<M, 0 \leqslant j \leqslant \varphi\left(m_{0}\right)-1\right),
$$

which gives a contradiction to the choice of the integers $C_{k m j}$. Thus (3) is impossible for x large enough and the theorem is proved.

I am very grateful to the referee for helpful suggestions.

REFERENCES

1. P. L. Cijsouw, A transcendence measure for π, Transcendence theory: advances and applications, Proc. of a conference in Cambridge 1976 (Ed. A. Baker and D. W. Masser), (Academic Press, 1977).
2. N. I. Feldman, Approximation of number π by algebraic numbers from special fields, J. Number Theory 9 (1977), 48-60.

A-4020 Linz/D
Lannergasse 16

Austria

