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1. Introduction and result. Suppose that m0 is an integer, m o ^ 3 , p = exp(2iri/m0),
= Q(p, i), " denotes the degree of K, £eK has degree N over Q. The length

, , where P(z)= £ a,-zJ' is the (irreducible) minimal polynomial for £ with
;=o ,--o

relatively prime integer coefficients. Feldman [2, p. 49] proved that there is an absolute
constant co>0 such that

i T T - ^ e x p i - c ^ l + N-MogL)}. (1)

From [2, p. 49, Notes 1 and 2] we know that v = <p(m0) or v = 2<p(m0), and <p(m0)^
qrrtoOoglog mo)"1 (c1>0 an absolute constant), where <p(m0) denotes Euler's function.

P. L. Cijsouw has developed some new refinements of the Gelfond-Baker method to
derive an improved approximation measure for ir [1]. In this note we use these
refinements and two simple lemmas of [2] to prove the following result.

THEOREM. There exists a positive absolute constant cz such that

|7r-||>exp{-c2l'
2(l + (Nlogy)-1logL)} (2)

for all algebraic numbers %€.K = Q(p, i), where v^2 denotes the degree of K, and N and L
the degree and the length of £, respectively.

It is clear that (2) improves upon (1); the following proof is simpler than that in [2].

COROLLARY. If £ has large degree, i.e. N»v, then

log |TT- I I» - ( N 2 + - ^ - log L).
\ log v I

2. Lemmas.

LEMMA 1 [2, p. 49, Lemma 1]. Let C be a natural number and let atj be real numbers,
where

i

Z K I « A i = l, . . . , r r<f.

Then there exists a nontrivial collection of rational integers xu ..., x,- for which

\ailXl + .. . + aax<\^2AC((C+iy'r-2)-\ i = 1 , . . . , r,
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LEMMA 2 [2, p. 50, Lemma 3]. Let p be a root of unity, v the degree of the field
K = Q(p, i) and n = n(£) the degree of g, where $eK; further let T, L, M be non-negative
integers. If the rational integers Adm satisfy the inequality

T L M

Z Z Z IA.J«B,
t = O 1 = 0 m=0

then either 8 = 0 or
T L M

Z Z Z Almt'i'P
( = 0 ( = 0 m=0

LEMMA 3 [1, p. 96, Lemma 3]. Let F be an entire function, let S and T be positive
integers, and let R and A be real numbers such that Rs*2S and A > 2. Then

max|F(z)|^2(2/A)TS max \F(z)\ + (9R/S)TS max ^'Xs^/tl,
|z|sR |z|«AR s,[

where the last maximum is taken over all integers s, t with Os£s<S, 0=£f<T.

In the following, let T and M denote fixed positive integers and define the polyno-
mials gm(z) (m = 0 , 1 , . . . , M-1) as follows:

where T—1 is the highest order of the derivatives one has to use.

LEMMA 4 [1, p. 96, Lemma 4]. For t = 0,1,..., T— 1,

g£(z)|/f!=sexp(|z| + 2m + 3m log T).

There exists a positive integer d such that all the numbers
(m = 0 , 1 , . . . , M— 1, t = 0 , 1 , . . . , T - 1 , s = 0, 1, 2,.. .) are integers and

d=Sexp(4MlogT).

LEMMA 5 [1, p. 96, Lemma 5]. Let a be a non-zero complex number. Let F be the
exponential polynomial

K - l M - l

F(z)= Z Z Ckmgm(z)eak\
k = 0 m=0

where the Ckm are complex numbers and K, M positive integers. Put

C = max|Qm|, fl = max(l, ( K - l ) \a\), a> = min(l,|a|),
k,m

let S' be a positive integer and define E by

E = max\Fw(s)\/tl,
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where s, t are integers with 0 =£ s < S', 0 =£ t < T. If

TS'>2KM+15ftS',
then

C^i(2e)M(6/(wK))KM18TS'E{max(6a,3KMI(4S'))}KM-

3. Proof of the theorem. Put Y = log v + and suppose that

we shall show that (3) leads to a contradiction if x (an integer) is large enough. Choose the
following integers:

Let
K—1 M - l

F(z)= I I
k=0 m=0 j=0

where the Ckmj are rational integers with |Qmj|=sC, specified later.

In the following adopt the convention: ( I = 0 if b > a. For all non-negative integers

s,t we have
m / +\

l g«(
T = 0 \ T '

define

There are six steps in the proof,

and for 0=£f<T, 0=£s<S',

< 0 ( s ) - 4>,s| *£KM2vC{4TrTK)T expfs ' + 5Mlog T - | x13 p — Y^

- x 1 2 - ^ — Y . (4)
log v
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<p(m o )- l

(b) Let d be the integer introduced in Lemma 4 and put Ckm = £ Ckmjp'. Define
,=o

m / f\

$a = dmZ<l>tM = dmZZ Ckm £ )gS;)(s)(2gi/«o)l"T*l"TPfa

fc,m T = 0 ^T'

for s = 0, 1 , . . . , S - 1 , f = 0 , 1 , . . . , T - l . Then Re $,s, Im <£(s can be considered as a
system of linear forms of the f=<p(mo)KM parameters Ckmj. By Lemma 1 with r = 2TS,
there exist rational integers, not all zero, such that |Q m j |=sC and

In our case we get

A « dml{M+ l)(2T)T(exp(S + 5Mlog T))(2K)T(1 + TT)T

Hence

since t/r^ixv.
<£ts is polynomial in £, i, p of degrees T, T, ( X - 1 ) (S - l)+</>(m0)-1, respectively, and

with rational integer coefficients Akmj satisfying

y y v | A I
k m j

Define B = exp(2x7 Y). Then, applying Lemma 2, we obtain either <£,, = 0, or
\ log v I

which contradicts (5) for x sufficiently large. Hence <j>ts=0, </>ts = 0 and by (4)

x12—V— Y) (0^t<T, 0^s<S). (6)
log v I

(c) Now we apply Lemma 3 to F(z) with R = S' and choose A comparatively large,
namely A = 6v. It follows, because

|z|«6vS' \ lOg V /
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that, by (6),

max |F(z)|*£ 2(1/3v)TS max \F(z)\ + (9S'/S)TS max ^
|z|«*S' |z|^6vS' s,t

x y+2x(logx)
2 logv logv

+ exP{x8(log2x)(-^-)2 Y - x 1 2 - ^ y U e x p ( - ^ x 8 - ^ Y). (7)
I Mog v/ log v J \ 4 log v /

Cauchy's theorem implies that, for 0*£f <T, 0=ss<S',

(s)!^ TTS'max |
I lxi«s-' r \ 5 log

Using (4) and d «s exp(4M log T) (with Lemma 3), we obtain

for 0 « ( < T , 0 « s < S ' .
(d) Applying Lemma 2 for 0 =£ t < T, 0 =s s < S', we see by similar considerations to

those in (b) with S' replacing S that either <£(s = 0 or

a contradiction to (8) for x large. Hence <j>,s = 0 and by (4)

(9)

for 0^t<T, 0 « s < S ' .
(e) We can now apply Lemma 5 with a = 2vi/m0. We have

Hence

TS'

Further from

Win
0 «c4v

log log m0

with c3, c4 absolute constants, we obtain m0 ̂  xv2, Also

a) = min(l, \a\) = min(l, 2ir/m0) ̂  (xv2)"1
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and so

Hence

(6/coK)KM =s (12i>)KM *s exp( x9(log x) -^—
\ log v

Therefore, by (9), it follows that

Y). (10)
log v I

(f) Finally, the Ckm are polynomials in p with rational integer coefficients; hence we
have Ckm = 0 or, by Lemma 2,

\Ckm\ 5* (<p(mo)C)1-' >ex P ( -x 7 ( log x) ^

which contradicts (10) for x sufficiently large. So

Ckm = 0 (k = 0 , l , . . . , K - l , m = 0 , l , . . .

But p is an algebraic number of degree <p(m0); hence

which gives a contradiction to the choice of the integers Ckmj. Thus (3) is impossible for x
large enough and the theorem is proved.

I am very grateful to the referee for helpful suggestions.
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