
ON A CLASS OF NON-SELF-ADJOINT 
DIFFERENTIAL OPERATORS 

R. R. D. K E M P 

T h e problem of spectral analysis of non-self-adjoint (and non-normal) 
operators has received considerable a t tent ion recently. Livsic (5), and more 
recently Brodskii and Livsic (1) have considered operators on Hilbert space 
with completely continuous imaginary par ts . Dunford (3) has generalized 
the notion of spectral measure and defined a class of spectral operators on 
Hilbert and Banach space. Schwartz (8) and Rota (7) have investigated 
conditions under which a differential operator will be spectral. The work of 
Naimark (6) and the author (4) on non-self-adjoint differential operators 
leads to an expansion theorem which implicitly defines a type of spectral 
measure. However the projections involved in this will not in general be 
bounded, much less uniformly bounded. 

The present paper is a generalization of (4) to nth order differential operators. 
If p(n) = jin + aiAtw_1 + a2M

w_2 + • • • + cin is a polynomial with complex 
coefficients, the differential expression p( — iD), where D = d/dx, can be 
used to define a closed operator on Lp(— œ, oo) for 1 < p < œ. On 
L2(— œ, oo) it is a normal operator, and its spectrum {X|X = p(t) for real t} 
is the same in all these spaces. We shall consider operators L arising from this 
operator L0 by the addit ion of a linear differential operator of order n — 2 
with coefficients which are suitably small a t d= °o. The previous paper (4) 
dealt with the simplest case n = 2, a± = a2 = 0. 

We shall analyse the spectrum of L and show tha t it is determined by p(n) 
except for a bounded set of characteristic values which are the zeros of certain 
analyt ic functions. We shall also obtain an expansion of the Green's function, 
and from this an expansion in characteristic functions for a suitably restricted 
class of functions. 

1. S o l u t i o n s of Ly = \y. Now L = L0 + Lx where L\ = Y,j=2n bj(x) 
( — iD)n~j. We assume t h a t (x2 + l)r bj(x) G L1 (— œ, oo) for a suitable r. 
This r is the multiplicity of the root of pr (n) = 0 which has highest 
multiplicity. 

The equation Ly — Xy = f is equivalent to a system of n first order 
equations 

(1.1) Y' = [A + B]Y + F, 
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where Y and F are n X 1 matrices with entries 3/1, 3/2, . . . , 3^ and 0, 0, . . . , 
0, inf respectively, and A and B are n X n matrices with entries 

ajk = djk-i — ôjni
n-k+1an-k+i + ôjn ôkii

n X and bjk = - ôjni
n-k+1bn„k+1(x) 

respectively, with the convention that bi(x) = 0. 
In order to obtain the Green's function for Ly — \y = / we first construct 

certain solutions of (1.1) for F = 0, and use them to construct the Green's 
matrix for (1.1). We note that if X is such that p{y) = X has n distinct solutions 
/xi, /X2, . . . , Mn» then Z' = AZ has a fundamental matrix ATexp[i0x] where 
6 = [i/x;- ô̂ fc] and AT = [(iju./)*-1]- Using this we obtain an integral equation 
equivalent to (1.1) with F = 0 in the form 

(1.2) F(x) = Mexp[idx]cQ + Jx Mexp[id(x - {)] M-lB{£) Y(£)d f, 

where 0̂ is a constant w X l matrix and the lower limits on the integrals 
(each element in the column matrix) are arbitrary. 

We shall obtain solutions of (1.2) which are asymptotic to solutions of 
Z' = AZ, but before stating this result we must make some additional remarks. 
If Xi is such that p(n) — \\ has n distinct solutions then the same is true for 
X sufficiently close to Xi, and the n solutions /xi(X), M2(X), . . . , nn(\) of p(n) — X 
are analytic functions of X in this neighbourhood of Xi. These functions have 
branch points at X/ = pivj0) j = 1, 2, . . . , n — 1 where /x/ j = 1, 2, . . . , 
n — 1 are the n — 1 solutions of jb'(ju) = 0. In any simply connected region 
containing no X/ the functions /xA (X) are analytic. In solving (1.2) the curves 
yjk defined by the equations Im [x3 = Im \xk will be important. We shall first 
solve (1.2) in regions D which are simply connected, bounded away from 
branch points, and contain none of the curves y]k in their interiors. 

THEOREM 1.1. There are solutions <£i, </>2, . . . , 4>n and </>i, <£2, . . • , 4>n of (1.2) 
which exist for all bounded X in D. The matrices $ = [</>i </>2 . . . #w] and l> = 
[0i, 02 • . . 0W] # ^ analytic in X(X G £>) /or j^xei x, aŵ Z have the following 
asymptotic behaviour: 

(1.3) $(x, X) = ikfexp[^x] (/ + o(l)) x -> 00, 

(1.4) $(x,\) = Mexp[idx] (I + o(l)) x-> - œ, 

where I = [ôjk] is the identity matrix. 

This theorem is a modification of Theorem 8.1 in Coddington and Levinson 
(2; p. 92), and its proof will be omitted. We shall need to know the relation 
that <I>i(x, X) and l>i(x, X) in D\ bear to the corresponding matrices in D2 

where Di O D2 is a portion of one (or more) of the curves yjk. By an examina
tion of the particular cases of (1.2) used in proving Theorem 1.1 one can 
see that 0pi(x, X) = 0P2(x, X) on yjk unless p = j or p = k, and that 0 ;i(x, X) = 
j2(0x, X) + ck<t>k2(x} X) + a linear combination of terms 0P2(x, X) which are of 
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lower order of growth a t œ than <^ or <\>k. A similar relation holds for <j>k and 
completely analogous results are t rue for the $p's. The generalization to the 
case where several of the curves yjk coincide is immediate. 

We shall also be interested in the asymptot ic behaviour of $ and l> as 
|X| —> oo. We see very easily t ha t for large |X| the /x/s can be renumbered so 
t h a t fxj = a ,X 1 / w ( l + 0(|X|-1/TO)) where 0 < arg \1/n < (2ir)/n and 
aj = exp(2TJi/n). Since we are bounded away from the branch points it is 
easy to show by direct calculation t h a t each ent ry in M~l B(x)M is less than 
or equal to K\\\~1/n 2^=2 n | ^ (# ) | . From this we obtain 

(1.5) $ (* , X) = Mexp[i6x](I + 0(|X|-1/W)) as |X| -> « , 

and 

(1.6) ê ( x , X) = Mexp[idx](I + 0(|X|"1/W)) as |X| —> oo , 

provided |X| —> œ while X £ D. I t is not hard to see from the asymptot ic 
behaviour of the /x/s t h a t such regions D do exist. 

If D is included in another such region D\, which extends closer to the 
branch points, the solutions making up $ and l> are changed, bu t $>i = $ C 
and l>i = <|C" where C and C are constant matrices. I t is easy to use (1.3) 
and (1.4) to conclude t ha t C has units along the main diagonal and zeros 
below and t h a t C is the transpose of such a matrix, provided t h a t the /x/s 
are numbered so t h a t Im \x\ > Im /x2 > . . . > Im /xn. 

Finally we shall also need solutions of (1.1) when X is a branch point of 
the functions /x^(X). At such a point the /x/s coincide in groups and the solutions 
of P(IJL) = X will be denoted by /xi, /x2, . . . , /xr with multiplicities mi, ra2, . . . , 
mT (J^j=irmj = n). A fundamental matrix of Zr = AZ will then have the 
more complicated form M\D exp [iB\x] where 6i is a diagonal matrix with 
mi /x/s, then m2 M2's, etc. down the diagonal. The matrix D can be part i t ioned 
so t h a t it has zero matrices off the diagonal and blocks Du D2 , . . . , Dr down 
the diagonal. Dk is mk X mk, has zeros below the main diagonal, and (Dk)PQ = 
xq~p/(q — p)\ for q > p. T h u s D~l{x) = D( — x) and D commutes with 
exp [idix]. T h e columns of Mi are determined in r groups of Wi, . . . , mr 

columns. T h e first column in the feth group is a n X 1 matr ix satisfying the 
equation {A — i^k)zi{k) = 0, and the j t h column in this group is a solution 
of the equation {A — in^z^ = Zj-i(k) (j = 2, . . . , mk). In particular, a 
suitable choice of constants leads to the following formula for the / th ent ry 
i n Zi(k): 

(I - 1)! 
(*Mt)' ' ^ > J 

0" - ! ) ! ( / - J ) ! 

0 / < j . 

T h u s the equation corresponding to (1.2) is 

(1.7) Y{x) = MiD{x) exp [i0ix]co + / ^ ^ ( x - ?) exp [id^x - | ) ] 

Afr'B(i)F(f» 
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e^x(z[s)+oO)) as 

THEOREM 1.2. There exist solutions <j)k
(j)(x) and 4>k^

j)(x) of (1.7) for 
j = 1, . . . , r ; & = 1, . . . , nij such that 

77&e solution <j>k
(j)(x) has the same asymptotic behaviour as x —» — °°. 

The proof of this theorem is a modification of that of Theorem 1.1, and will 
be omitted. The appropriate modification is described in Problem 35 of 
Coddington and Levinson (2, p. 106). We might note that it is at this point 
that the full strength of the assumptions on bj(x) are used (in Theorem 1.1 
it is only necessary to assume bj(x) £ L1). 

2. Construction of the Green's function. We shall now discuss the 
solution of (1.1) for F ^ 0 when the equation P(/JL) = X has no real solutions. 
For any matrix or vector function we shall use the following notations: 

\A{x)\v = E | ^ ( x ) | * , w i t h \A(x)\ = | / l (x) r 

jA(x)\'dxj . 

As p(id) = X has no real solutions we can number the solutions /xi, yu2, 
so that Im JJII > Im /x2 > • • • > Im \xm > 0 > Im /xm+i > Im /xm+2 > 
Im nn. Thus 0i, 02, . . . , 4>m are exponentially small at oo and </>m+i, <i>m+2, . . . , 
0„ are exponentially small at — °o . We shall partition our matrices as follows: 

, MM 

. > 

$ $11 

L$21 
$12 

$22J 
$ 

$11 

-$21 

$12 

$22J ' 

where $n and l>n are m X m and the rest coherent with this. We now define 

* = It11 

L$21 and provided that ^ 1 exists 

* (* ,£ , A) = 

$n(x) 0 
L$2i(x) o. 

$12 

$22J ' 

* - 1 (?) 

£ < x 

x < £. 
0 $i 2 (x) 

.0 $22(x)_ 

THEOREM 2.1. 7/ ^ is non-singular for a particular value of X then K(x, £, X) 
is the Green s matrix for the solution of (1.1). 

Proof. By this we mean that if F is a vector function with II/7!!,, < °° 
(that is, F Ç LP) then the vector function 
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(2.1) 5>(x) r K(x,£,\)F(S)dÇ 

is the unique solution of (1.1) which belongs to Lv. 
If two such solutions exist then there is a solution of (1.1) with F = 0 

which belongs to UP. As this cannot be exponentially large at either + œ or 
— co it is a linear combination of <£i, </>2, . . . , <t>m', and also a linear combination 
of $m+i, 0m+2, . . . , 4>n> A non-zero solution cannot have this property if ^ is 
non-singular, so an LP solution of (1.2) must be unique if it exists. 

An examination of the definition of K(x, £, X) yields the fact that if the 
integral in (2.1) exists it must be differentiate and satisfy (1.1). Thus the 
burden of proof is in showing that y defined by (2.1) exists and belongs to LP. 

Since $ and <ï> are both fundamental matrices <ï> = |>C where C is a constant 
matrix. We partition C, C~l, <£-1, i>-1 in the same way as <i> and |>, and use 
the notations $-i = [$ij], é"1 = [èij], C = [Ctj], and C"1 = [Cij]. We also 
note that if X is not a branch point <i> and l> behave asymptotically like 
M exp [idx] so their inverses behave asymptotically like exp [ — idx]M~l. 
Although such a precise statement cannot be made if X is a branch point, 
bounds on the elements in <î>_1 and |>-1 can be obtained. 

For x and £ non-negative we write K(x, £, X) in the form 

-A 
0_ 

o A' 
.0 U 

K(x, £, \) = 

- * ( * ) [ C
C 

$_1(a £<*, 

3>_1(a x < f, 

where A = C12(C22)-1. A careful examination of this yields the fact that, 
whether X is a branch point or not, each element is bounded by K exp[ — d\x — £|] 
where 5 and K are positive constants and 8 < min[|Im^m|, |Im/xw+i|]. This 
latter condition allows for bounds on the terms which are of order xkeifimT 

for some k. 
If x < 0 < £ we rewrite K(x, £, X) in the form 

K(x,S,\) = - Hx) 
0 0 
0 C22 *_1tt), 

and again find that each element is bounded by K exp[ — 8\x — £|]. 
On performing similar analyses for x, £ non-positive and for x > 0 > £ we 

obtain 
(2.2) \K(x, £, X)| < 2£ exp[-5|x - £|], 

where 5 and i£ are as before although K may have been increased. 
Thus, from (2.1) 

/»oo /»oo 

| y ( x ) | < i ? t 
«J-co 

-pSlx-fl/2 
I {£ -c«k-?l/2 di 

i /« 
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by Holder's inequality. Thus, using a change of variables and the Fubini 
theorem we obtain 

Xco /*oo /»co 

\y(x)\vdx <Kv{A/<ih)m e-pi{m\F{x - Ç)\'d£dx 
-oo ^ —oo ^ - c o 

< K^i/qoY" f* e^'^if" \F(x)\'dxj dÇ 

<Ki\\F\\l 

Thus y(x) exists and belongs to LP for all p > 1. 

COROLLARY 2.1. The Green s function for the differential operator L is 
G(x, £, X) = inKln(x, £, X) where Kin(x, £, X) is the element in the first row and 
nth column of K{x, £, X), provided that K{x, £, X) exists. 

We might note that K(x, £, X), and thus G(x, £, X) may very well exist 
even if £(/x) = X has real solutions, although they have not been proved to 
be Green's functions in this case. 

Since the theorem depends upon ^ being non-singular we must examine this 
question in detail. Note that for real / the equation X = p(t) defines a curve 
in the complex plane, which will in general split the complex plane up into 
several regions Dj(j = 1 , 2 , . . . , / ? ) . Suppose X0 is in one of these regions and 
does not lie on any yjk. Then in a neighbourhood of X0 no Im fij changes sign. 
Thus in this neighbourhood m is fixed and K(x, £, X) is analytic in X. In crossing 
a yjk while remaining within Dj the </>/s and <^/s may change, but from the 
considerations of §1 we see that if on one side I m / x i > I m / x 2 > . . . > Ini ixn 

then on yjk the $ matrix from that side, $i, will have the asymptotic form. 

$i = M exp [idx] A i [I + 0(1)] as x —> œ 

where A x has units along the main diagonal and zeros below it. From the other 
side the only difference will be that the order of the/z/s has been altered. Thus 

$2 = M exp [idx] QA2 [I + o(l)] as x -» œ 

where A 2 is of the same form as A i and Q rearranges the columns of M exp[idx] 
appropriately. Hence $i = $2 A2~~l Q~l A\, Similarly |>x = |>2 B2~

l Q~l B\ 
where B± and B2 have units along the main diagonal and zeros above. Note 
that A2~

l and B2~
l have the same form as A2 and B2 respectively and that it 

is impossible to have a yjk here where j < m < k or k < m < j . This implies 
that in Q = [Qij], partitioned as before, we have Qi2 = Q2i = 0. Using this 
and the definition of ^ we see that 

(2.3) ¥x = * 2 
p 

LO P22J' 

where Pu and P22 have determinant ± 1 (as Ajt Bh and Q have this property). 
It should be noted that a particular set of solutions </>; or <j>j exist in a set 

which is bounded away from the branch points. Thus as well as noting the 
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behaviour of ^ and finally of K(x, £, X) across the curves y jjc, we must consider 
how they are affected by a replacement of the 0 /s and <£/s by a different set 
which exist in a larger region extending closer to the branch points. An 
examination of the changes required in the particular cases of (1.2) to obtain 
such a new set of solutions shows that in their common domain the two SF's 
will again be related by an equation of the form of (2.3) with P n having units 
on the main diagonal and zeros below, and P22 being the transpose of such a 
matrix. 

These remarks may be summarized in the following theorem. 

THEOREM 2.2. If the branch points are removed from the regions Dj the 
matrix K(x, £, X) is analytic in the remaining portion except at points where *$? 
is singular. If we define a function Wj(X) = ± (det ty) exp(iaix], by fixing 
the sign at some point and then choosing coherent signs on the two sides of each 
yjk we obtain a function locally analytic in Dj except at branch points, which may 
be double-valued. [Note that Wj(X) is independent of x]. 

Proof. The first statement is obvious from (2.3). If Dj contains no branch 
points the functions /xi(X), fJL2(X), . . . , ju»(X) are everywhere distinct and 
analytic throughout. Thus Wj(X) is also analytic throughout, but if Dj contains 
a branch point continuation of MI(X), . . . , M»(X) around a curve surrounding it 
it will result in returning to /x7r(i)(X), . . . , /z*-(w)(X) where ir is a permutation of 
the integers 1, 2, . . . , n which is not the identity. This may result in a change 
of the sign of Wj(X), in which case Wj(X) is double-valued in Dj. 

Thus the points where •SI' is singular in any such Dj are determined by the 
zeros of a (perhaps double-valued) function locally analytic except at branch 
points. Thus unless this function is identically zero the points where ^ is 
singular form a countable set in Dj with limit points (if any) at the branch 
points and on the boundary. We will attempt to characterize this set somewhat 
more completely, and to characterize the regions Dj where Wj(X) can be 
identically zero. Such D/s will be called exceptional. 

On investigating the region of validity of the original definition of Wj(X) 
by a determinant we see that it is valid across an arc of X = p(t) which does 
not coincide with a yki( = y a) with k < m < I. It is easily seen that such a 
yki would have to be ym m+i so that this portion of X = p(t) is traversed twice. 
Thus the original definition of Wj(X) is valid across an arc of X = p{t) which 
bounds Dj and contains no double points. Hence if Wj(X) ^ 0 the limit 
points of its zeros can only lie at branch points in Dj, boundary points of Dj 
which are multiple points of the curve X = p(f), or outside of Dj. One notes 
that the original definition of Wj(X) is valid outside of Dj up to ykt with 
k < m < I (using (2.3) to cross other ypq) and if this results in it being valid 
in a neighbourhood of some arc extending to <» we may use (1.5) and (1.6) 
to conclude that in this neighbourhood 

Wj(X) = ± e ^ d e t {Mexp [idx] (I + 0(\X\~1/n))} 

= =b (de tM)( l + 0(\X\~1/n)) as |X| -» œ. 
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For large |X| we again use the asymptotic behaviour of the appropriately 
numbered /x/s to find that 

det (M) = ± n (-X)**-* 2*<tt-1><w-2> [1 + 0(|X|-1/W)] as |X| -> œ. 

Thus Wj(\), which can be so continued, cannot be identically zero. This 
proves the following theorem. 

THEOREM 2.3. In order to be exceptional, Dj must be bounded from oo by 
curves ykt with k < m < I. In any non-exceptional Dj {or an exceptional Dj 
where Wj(\) is not identically zero), the points where ^ is singular make up a 
discrete bounded set with limit points at the branch points, or at points X0 on the 
boundary where p(fj) = Xo has more than one real root. 

We might note that there is always at least one unbounded Dj} which must 
therefore be non-exceptional, and that exceptional D/s can exist, for example, 
if 

Pfa) = ? M V - D 2 - I f M V - D 2 + ^ - ^ ( M 2 - D - 1 _ 

it is found that X = u + iv = pit) is the curve u = (r2 — l)2 , v = T(T2 — 1), 
and that the loop in it between r = — 1 and r = + 1 is traced three times 
(so encloses an exceptional region). 

It is perhaps also worthwhile to remark that this classification of the regions 
Dj, and the characterization of the possible limit points of the zeros of Wj(\) 
depends only upon L0 = p( — iD), and not on the perturbing operator L\. 

3. The spectrum of the operators L and L*. We have seen above that 
there are values of X for which the differential equation Ly — Xy = f possesses 
a Green's function G(x, £, X) which generates a bounded operator on 
Lp(— oo, oo) for 1 < p < co. Fix such a value X0. 

THEOREM 3.1. The operator L = L0 + Li with domain DLv = {y G Lp P\ 
£«-i|/y(rc-i) is aosolutely continuous and Ly G Lv], is a closed operator on 

Proof. Let yn G DL>P, yn -» y§ and Lyn —>/. Now 

yn(x) = G(x, %, X0)(L - \o)yn(£;)d£, 
• / -oo 

and the boundedness of the operator generated by G implies that 

:vo(x) = p G ^ f , x0)[/tt) - x0yo(€)]df. 

From this equation it follows immediately that 3>o € DLP and LyQ = / . 
We shall now introduce the adjoint operator L on Lq(— oo t œ). Here 

(l/p + 1/q = 1). If p = \, a = œ and if p = oo we shall introduce an 
adjoint on Ll{— oo , oo ) although this is not the dual space. Let Lk = i DLk-i + 
at + bk(x) where Lo = 1 and k = 0, 1, . . . , n, and define the operator L with 
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domain DitV = [y G Lp\Lk y is absolutely continuous k = 0, 1, . . . , n — 1 
and Lny G LP) by Ly = Lny. 

THEOREM 3.2. For 1 < p < oo L on Lq is the Banach space adjoint of 
L on Lv; while for p = œ we define L' as an adjoint to L on L1 by D(L') = 
{2 G L1! //^re is z Ç L1 w ^ J ^ z Z / y d x = }_mz'ydx for all y G DL} and 
L'z = z'forz G D(Lf), and again find L = Z/. 

Proof. In either case we must show that iî z £ LQ such that there is z1 G Z,s 

/ oo /»oo ^, 

_œzLydx = J_oos /^x for all 3> G Z)^^ then z G i^L.ç and Lz = z'. 
If / = (L — Xo)̂  then we may rewrite the above equation in the form 

J /(*)[*(*) ~ f~G(t,x, X0){s'(f) - Xos(É)}#Jd* = 0. 

This holds for a l l / in the range of L — X0, which is all of Lp so 

z{x) = [*G&x,\*){z'{£) - Xos(f)}^. 
« J - c o 

If F is the column vector with z' — Xo£ in its first position and zeros elsewhere 
it is easy to see that z is the n\h entry in the column vector Z(x) = in)__ 
i£(£, x, \o)TF(£)d£. Using the définition of K(x, §, X0) we see that Z' = — 
(AT + BT)Z + inF, and an examination of this set of equations yields the 
fact that z G Di,q and Lz = zf. 

Conversely, if y G DL>P and z G Dl,q it follows easily that JzLydx = jyLzdx. 

COROLLARY 3.1. For 1 < p < 00 L on LP is the Banach space adjoint of 
L on Lq. For p = 1 L! — L where L! is defined as in the statement of the Theorem. 

Proof. Except for the case p = °° this follows from Lemma 1.4 of Rota (7). 
For p = 00 the graph of the Banach space adjoint of L' is the closure of the 
graph of L in the L1 0 L1 topology on L°° © U°. It is easy to see from the 
existence of a Green's function that the graph of L is closed in this topology, 
so the result follows. 

Thus the Banach space adjoint operator is closely related to the Lagrange 
adjoint differential operator (which does not exist in the normal sense unless 
bj(x) G Cn~j). For p = 2 the usual Hilbert space adjoint of L is given by 
L*y = Ly for y G L>L^. In order to avoid making separate statements we 
shall define L* on Lv by this equation for y G L>iv = DL*<V. 

Since the solution of (L* — X) y = f will be given by the nth component 
of a solution to Y' = - (A* + 5*) Y + (~i)n F where ^ * and 5* are the 
conjugate transposes of A and B respectively and F is a column vector with 
/ in the first position and zero elsewhere, the work of §§1 and 2 carries over 
almost completely. The polynomial p(fi) is replaced by p* (JJL) = p(fl). The 
quantities associated with the adjoint by this and subsequent work will be 
denoted by an asterisk superscript and to avoid confusion the conjugate 
transpose of a matrix C will be denoted by C(*}. 
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Many results about the spectra of L and L* are implicit above, but we shall 
gather them together here. We shall denote the resolvent set, spectrum, point 
spectrum, residual spectrum, and continuous spectrum of L by p(L), <J(L), 

P<T(L), Ra(L)y and Ca(L) respectively. 

THEOREM 3.3. / / p(ii) = X has no real solutions X 6 p(L) or X Ç P<r(L) 
and if X is not a branch point then X £ P<r(L) if and only if Wj(\) = 0. The 
curve \ = p{t) is contained in <r(L), contains Ca(L) and Ra(L), and the points 
of Pa (L) and Ra (L) lying on it form a nowhere dense set on any arc which does 
not lie between two Dfs in which the Wj(\)'s are identically zero. Each portion of 
a(L) is independent of p except for the case p = °o, where <r{L) is all Pa 
(L) except perhaps for branch points lying on X = p(t). 

Proof. If p(fx) = X has no real solutions Theorem 2.1 shows that either 
X 6 p(L) or 0i, 02, . . . , 0m, <fOT+i, 0w+2, . . . , 4>n are linearly dependent. In 
this case there are constants cjy not all zero such that 

m n 

j= 1 j=m+1 

If x is the first component of \p it is clear that % G Lp for any p ^ 1 and 
(L - X)x = 0, so X e Pa(L). 

On an arc of X = p(t) we have Wj(\) from one side and Wk(\) from the other 
side. If both are identically zero then the points of the arc are all in the closure 
of Pcr(L), and thus in cr(L). If Wj(\) is not identically zero, then at any point 
on X = p(t) where it is not zero the only solution of Ly — \y = f where 
f(x) = 0 for |x| > a, which is in Lp, is the first component of y_a K(x, £, X) 
P(^)d^, where F(£) is the column vector with inf(£) as the last entry, and all 
others zero. If (L — \)y = 0 has a solution in LP Wj(\) must be zero as we 
shall see below so this is the only possibility. Now either 4>m{x) ^ ceitx as 
x —> oo or <j>m+i(x) ^ ceitx as x —> — œ. Thus in order to have this solution 
belong to LP (P ^ » ) we must have the wth or the (m + 1) st entry in 

equal to zero. It is easy to choose F so that this is not true, so (L — X)-1 

cannot everywhere be defined at such a point and X G <r(L). As all other 
points on X = p(t) are in the closure of the points already mentioned we see 
that X = p(t) is contained in a(L). 

In order to have X0 = p(k) belong to Pcr(L) for p 9^ °° we must have a 
linear relation among the solutions which are exponentially small at + oo 
and those which are exponentially small at — °o. This implies that Wj(\) 
and Wk(\) (coming from the two sides) must both be zero and thus such 
points cannot be dense on an arc of X = p{t) unless Wj(X) and Wk(\) are 
identically zero. The points of Ra(L) cannot be dense on an arc unless those 
of Pa(L*) are dense on the corresponding arc of X = p*(t), which means 
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t h a t W*j(\) and W*k(\) are identically zero. Thus the points off this arc of 
^ = Pit) a r e a l l conjugates of points in PŒ(L*), and so belong to a(L). By 
the above reasoning they belong to Pa(L) and Wj(X) and Wk(\) must be 
identically zero. So Ra(L) cannot be dense on an arc of X = p(t) which does 
not lie between two D/s in which the Wy(X)'s are identically zero. 

For p = oo we note t ha t unless X is a branch point on X = p(t) there are m 
solutions of (L — \)y = 0 which are bounded a t oo and a t least n — m + 1 
which are bounded a t — oo. As there must be a linear relation among n + 1 
solutions, we see t h a t X G P<?iL) for this case, and as the branch points on 
X = pit) lie in the closure of these points they also lie in cr(L). 

In a consideration of L* we see t ha t its properties can be developed from 
the system adjoint to (1.1). T h u s as in Theorem 3.3 we see t ha t if p*in) = X 
has no real solutions then X G piL*) or X 6 Pcr(L*). If X G piL*) then 
X G p(L) and if X £ Pa(L*) then X G a(L). In the la t ter case as p*(/z) = X 
has no real solutions neither has p(p) = X so X G cr(L) impies t ha t X G P<r{L). 
Conversely we see t ha t if p{p) = X has no real solutions and X G P&iL) 
then X e Pa- (Z,*). Again from the proof of Theorem 3.3 applied to L* and the 
adjoint system we find t ha t the curve X = p*it) splits up into Pa(L*)y Ra 
(L*), and C<r(L*) as described there, and is contained in a(L*). This proves 

COROLLARY 3.2. If X does not lie on X = £*(£) then X G PaiL*) or p(L*) 
according as X G P<?iL) or p(L). 77ze am/e X = £*(/) 5^/i/5 w/? wfo Pa(L*), 
Pcr(L*), a « ^ Ca(L*) as described in Theorem 3.3, awd w contained in <r(L*). 

4. T h e spectra l r e s o l u t i o n of L a n d L*. For certain special cases we 
shall obtain a type of spectral resolution. We first obtain an expansion of the 
Green's function in terms of a sum of eigenfanctions and an integral involving 
improper eigenfunetions. From this we can develop an expansion for a sui tably 
restricted class of functions, prove an analogue of the Parseval equality, and 
define for each bounded Borel set M a closed, densely defined operator E(M) 
which commutes with L and has the properties: E(M)E(N) = E(M C\ N) 
and E(M) + E(N) = E(M U N) if M C\ N = <t>. In special cases these 
projections may all be bounded, or even uniformly bounded, in which case L 
is an unbounded spectral operator. We shall now proceed to develop the 
expansion of the Green's function for the special cases under consideration. 

We shall assume tha t P<r(L) and Pcr(L*) are finite and do not intersect 
X = pit) and X = p*it) respectively. We shall also assume t h a t on X = p{t) 
and X = p*it) the functions Wj(\) and W*j(\) which are defined, are not zero. 

This results in considerable simplification, and it is quite possible t ha t the 
method may be generalized to deal with the less special case where the only 
addit ional assumption is t ha t PaiL) and Pa(L*) are finite. Wi thou t this 
assumption, however, the convergence difficulties seem to be quite formidable. 

We shall consider the contour integral 

(4.1) ±-i GisJ.A 
Z-Kl J C&tB jJL — X 
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where Ct)R is a compound contour which we shall now describe. Let Hsf 

consist of all points X which are within a distance 5 of X = p(t). This set has 
a boundary consisting of piecewise differentiable curves. Let HS,R = {X||X| 
< R, X (£ H/}, and let CstB be the boundary of H5yR, traversed in the positive 
sense. We assume 5 is so small and R so large that Pcr(L) C H8jR and so that 
for each Dj, Dj P\ HS,R is non-empty. 

The evaluation of J(ô, R) will be performed in two ways: by residues, and 
by direct integration for the case 5 —> 0, R —» °°. We shall first proceed with 
the residue technique. The singularities of the integrand occur at /x = X, 
and at /x = Xi, X2, . . . , Xp where Xi, X2, . . . , Xp constitute Pcr(L). We note that 
CB,R consists of loops, one in each D;, and each of the singularities is enclosed 
in one of these loops. Thus, by residues, 7(<5, R) is simply the sum of the 
residues of G(x, £, /X)/(M — A) at each of these singularities. 

LEMMA 4.1. The residue at /x = X is G(x, £, X) and that at \j is minus the 
singular portion of the Laurent expansion of G(x, £, X) about \j. 

Proof. The first statement is obvious, and the second is almost so. Since 
the singularity of G(x, £, X) at X; arises from a zero of the appropriate WkÇ\), 
it must be a pole. Suppose that this pole is of order r;- and that the singular 
part of the Laurent expansion is 

f; Gi'Wxx-x,)-. 
a=--l 

Then in the neighbourhood of X., the integrand of 7(<5, R) is equal to 

1 rj rj—m 

VA ~~ A i J m=l a = 0 

+ terms in higher powers of (/* — X;). 

Thus the residue is obviously 

- Ë 1 (X - X , ) — 1 ^ * , I) = - É (X - X)-°G<j)(x, *)• 
a=0 a = l 

In order to resolve the Ga
{j) (x, £)'s in terms of the characteristic and 

associated functions we shall need to know some of their properties. 

LEMMA 4.2. There is a positive number Uj such that 

(4.2) \G(f(x, Z)\<K e^i]x-i], « = 1 , 2 , . . . r}. 

For fixed £ Ga
(j) (x, £) belongs to the domain of L and 

(4.3) (L - X,)G^(x, | ) = \°u)
 <X = \ i

9 r i 
l,Cra+i(x, £J a = 1, z, . . . , r3 — 1. 
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For fixed x, Ga
U) (x, £) = G*a

(;) (£, x) belongs to the domain of L* and 

(4.4) (L* - X^GFfeiy = feyw-Tr ° = ?9 r 7 

lCra+i(tf, f) a = 1, 2, . . . , r, — 1. 
Proof. If we note that for each X;- there is a circle Cj surrounding it and 

no other characteristic values, which lies completely in HS,R; we see that 

Gij\x, {) = ^ - . S (X - X;-)
a_1G(x, f, X)dX. 

Zwt J CJ 

We have noted that for points such as X on Cj 

\G(x, f,X)| < i£exp [ - u\x - f|] 

where w is less than the minimum absolute value of the imaginary parts of 
the solutions of p(ii) — X. As these must have a positive minimum on Cj 
we take Uj equal to one-half of that and \G(x, £, X)| < K exp \ — u3\x — £|] 
for all X on C;. Thus if the radius of Cj is r ; we have 

1 f27r 
| ^ ° ( x , J) | < ô rT'Kexpl-Ujlx - t\]r d$ 

= i£r"exp[ —%|x — £|], 

which proves (4.2). 
If r0(x, £, X) is defined to be the entry in the upper right-hand corner of 

the matrix 

r (*, *, x) = | ( _ .)n M /te_D M_l x > * 

then r 0 has the same discontinuity at x = £ as £(x, f, X), and is analytic in 
a neighbourhood of X̂- which includes Cj. Thus G(x, £, X) — r0(x, £, X) belongs 
to Cw and so must 

G(J\x, £) = - ^ <f (X - X,)a_1[G(x, £, X) - r0(x, g, X)]dX. 

From this we easily obtain (4.3), and (4.4) follows in a similar manner. 
In order to obtain an expression for Ga

U) (x, £) we consider the L2 case 
separately. It is known that in the neighbourhood of an isolated pole X; of 
the resolvent R\ = (L — X/)_1 can be expanded in the form 

R = _ or ' _ or2 _ _ Qs _ p} , 
^x (x - x ,r (x - x,)"-1 • ' • (x - x,)2 x - x, "•" • • • 

where (L - X,)Py = P,(L - X,) = Q,, Pf = P» P',Q, = QJPJ = Qj and 
Qjri = 0. Let PJO be the orthogonal projection on the orthogonal complement 
of (/ - Pj)§ (where £ = L2). Now if P i 0s = z and P,z = 0 then z Ç 
(/ — Py)§ and so zÇ ( / - Pjo)fQ, which implies that z = 0. Since 
(/ — Py) (/ — Pjo)z = (I — Pjo)z for any z £ § we have 
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Z = PjoZ + (I - PjQ)z 
= PjiPjoz) + (I - PJ)[PJOZ + (I - Pjo)z] 
= PjZ + (I - Pj)z 

for any 2 G § . These two latter expressions both give z as the sum of a vector 
in PJ!Q plus one in (/ — Pj)&> and as this is unique PJ(PJOZ) = PjZ. Similarly 
Pjo(PjZ) = PjoZ for all z 6 § and so Pj maps PJO& one to one onto P &, 
and its inverse is P ; 0- If {ek\ is an orthonormal basis of P ; o § then for any 
z e § 

PjZ = PjPjQz = Pj XI (2, e*K = Z) («» ek)Pjek, 
k k 

from which it follows that 

p*z = Z) (*» -P^K 
k 

and (Pea, ei) = ôki. Thus P ; o § = P * ; § can be identified with the dual space 
of Pj&. Since every vector z G P ; § which satisfies QjZ = 0 is a characteristic 
function of L corresponding to the characteristic value \ ; , the dimension of 
the null-space of Qj restricted to P ; § must be finite ( < n/2). Using this and 
the fact that Qp = 0, a simple induction shows that dim P& is less than 
or equal to {rj — l)*n. Thus we may now choose a basis of P& consisting of 

%jii \£j%jii ' • ' 1 \£j Xjii 

Xj2, QjXj2, • • • , QjJ Xj2', 

Xjpji \cJ^JPjy • ' ' ' \L3 3%3Pji 

where 
Tj 1 = Sji J> Sj2 ^ . . . ^ SjV,. 

It is easy to see that the dual basis for P * ; § may be written in the form 

7 1 ' XL. 3 1' 1 ' * * * 1 %L 3 Î' 1 ' 

/~\ S^\ S i 2 

%j2) \£j%j2i • • • » \sjf Xj2\ 

x* 0*x* 0*sjpJ'x* ' 

where (Q/a^*, (?*/**^ro) = S ^ , ^ . ^ . Thus 

v:j^ = \I3-L 3^ V:J / ^ / y V̂ > v:j %3a)>£3%3<* 
a=l /3=0 

py s y a— Z 

= / y / v V#> V J %ja)\ij Xja-
a=l 0=0 

Now each of these basis elements is a function, and we see that P} and 
Qjl(l = 1, 2, . . . , rj• — 1) are all integral operators, with kernels — G\U) 

(x, £) and — Gz+i(^ (x, £) respectively. This yields expressions for Ga
(J) (#, £) 
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for which we shall make some changes in notation. Let xu{j) (x) be the function 
represented by Qfw~lxjk and x*kia) (x) be the function represented by 
Q*j*jk-lx*jk. Then we may summarize the preceding results in the following 
theorem. 

THEOREM 4.1. Using residue methods we obtain 

(4.5) I,,B = G(x, £, X) - £ J2 GlJ\x, |)(X - X,)~a. 
j=l a=l 

For each j(j = 1, 2, . . . , p) there are numbers q} and 

$jQj ^ $ jqj—i . . • s ji r j i , 

and functions Xkia) (x), x*ki(i) (x) (k = 1, . . . , qjf I = 0, 1, 2, . . . , sJk) such 
that xuiU) (x) e DL>P, x\i

U) (x) G DL*,vfor all p, 

|xJî\*)| < * a"*''1*1, \x^J\x)\<Ke-u^; 

(T x U ^ - i ° / = 0 

(L - \j)Xki ~ ) O) 7 - 1 9 c 
\Xkl-l t — I, Z, . . . , Sjk} 

* _ N *(7.) j o / = 0 
*<*> 7 - 1 9 

XfcJ-i £ — i , z, . . . , s^ , 

(£ - Mx* i 0 ) = 1 _.*(» 

XkJi{x)Xk'{v\x)dx = ôjj>ôkk>ôi+.Vt8jk. 

A Iso 

a=l 0=0 3 

where a sum from zero to a negative integer is zero. 

Proof. Relation (4.5) follows from Lemma 4.1. The estimates of the 
X(i)Js and x*(J)'s follow from (4.2) and their linear independence, while the 
other formulae follow from the construction of the xU) 's and x*(,;)'s, and from 
well-known properties of characteristic and associated functions. 

We must now proceed to the evaluation of IS,R directly. From Theorem 4.1 
Ist R is independent of 5 and R, and we wish the limit of the direct evaluation 
in terms of line integrals as 8 —> 0 and R —> °o. We shall denote the portion 
of IB.R which arises from the integral over arcs of the circle |X| = R by 

X |X|=i2 

LEMMA 4.3. 

lim J --A--i_^z ^ = o, 
R^ro «/|X R^œ t / | X | = J 2 fX ~ \ 

uniformly in 8 for 8 > 0, provided x ^ £. 
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\ l/rc i 

I** = X exp (1 + 0(\-i,n)) 

Proof. As 

L n J 

for large |X| we see that the function u(\) in \G(x, £, X)| < K exp [— u(\) 
\xA — £|] approaches zero as Reie approaches Rei6° = p(t0) in the same manner 
as 

T>i/n • Q — Oo R sin 

Thus we may divide one of these arcs of |X| = R (from 0X to 02 say) by 0/ 
and 02' such that 

\G(x,^Rei6)\ < 

X exp [ - c£ 1 / B s i n [ ^ — J \x - £| J 0i 

X e x p [ - d r w | x - £|] 

|* - £| | 0X < 61 < 0j 

0'i < 0 < 02 

i£ exp I -d?1Msin| ~ ^ \ \x - £| J 02 < 0 < 02. 

As there are two of these arcs we have 

I Ji; r |X|=f l jJL — \ 
• djji 

< 2i£ 

+ 2i£ 

2X 

j 
Je,1 

•nl/n • 0 — 01 

0X' exp — cit sin -«] 
i? - xl 

.Rd0 

expt-cR1 '"!* - g|] 
i ? - | X | 

Rdd 

„e2' exp — ci?i/wsin : 

Jo,/ 

\x — £| 

# - XI 
Rdd 

J,7T/2 

exp[-ci?1/wsin <t> \x - ï\]d<t> 
o 

< i£ J exp r- \x — %\\ d<f> 

(R > 2|X| 

< 
Ki 

2cRl7n\x - £| ' 

where K has been increased as necessary. 
Thus in the limit we need only consider the integrals along the boundary 

of HtR as R —> oo and 8 —» 0. The arcs have the form 

x - ^ ( 0 ± | / . 7 ( 0 i 
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and so may be written in the limit as 8 —> 0 

Ç G(x, g, )Lt+) - G(x, f, /Z-) ^ 
I dfx, 

where G(x, £, /* + ) is the limit of the Green's function from one side, and 
G(x, £, /x — ) is the limit from the other side. Our assumption that W (X) has 
no zeros in X = p(t) implies that these limits exist and are continuous, so 
the limit of the integral exists as long as R is finite. We must now evaluate 
G(x, £, M + ) — G(x, £, M — ) to show that it exists when R = œ as well. 
First note that they are uniformly bounded in x, £ and //, and have the same 
discontinuity in the (n — l)st derivative at x = £. This implies that as 
functions of x they belong to Cn and satisfy (L — n)y = 0. It is easy to see 
that this equation has precisely as many linearly independent uniformly 
bounded solutions as p(t) = \i has real solutions (unless \x is an eigenvalue, 
which we have excluded). Let this number be <r(/x), where \x = p(t), and 
denote the linearly independent bounded solutions by xi(x> /*)» X^{x, n), . . . , 
X<r(v)(x, n). Then it is obvious that 

<r00 

G(x, £,/* + ) - G(x, £, M") = 2?ri X) X;(^M)X*(S»M). 

J M 1 

We see also that (L* — Ai)x*y(#> At) = 0 and that x*^(x, AO is bounded. In 
fact, if we investigate the asymptotic behaviour of G(x, £, /JL + ) — G(xy %, n — ) 
for large values of /x we find that it behaves like 

O-(M) • ivjix— £) 

where <T(AO is 1 or 2 and *>i (and *>2) are the real solutions of p{y) = JJL. Thus 
the integral over the portion of X = p(t) which extends to infinity will be 
less than or equal to 

dt 
K F 

•J to 

,i/>o-xr 
which clearly exists for n > 2. 

THEOREM 4.2. 

(4.6) G(x, f, X) = £ £ G^(*, f)(X - X,)"c 

j = l a = l 

i f y Xj(x,fJL)Xj(e,P) ^ 
Ju=v(t) 7=1 M ~~ A 

Proof. This follows immediately from the evaluation of Jg^ as 8 —» 0 
and i<! —» °° above, and from the previous evaluation by residues in (4.5). 

We may immediately obtain a corresponding expansion of G*(x, £, X), 
and also the following expansion of a certain class of functions. 

THEOREM 4.3. Iff G DLA, g £ DL*A then 

https://doi.org/10.4153/CJM-1960-058-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-058-5


658 R. R. D. KEMP 

fj(X) = f(x)x*(xj\)dx and g*(X) = I g(x)x,-(x, X)dr 
* / - 0 0 « / - o o 

exis£ and are integrable along X = p(f) and X = p*(t) respectively. Also 

(4.7) /(*) = L l f xtf (*)(/, x*(4-.) 
j = l a = l /3=0 

J *(A) 

Z x*{x,\)M\)d\, 
\=p(t) j=l 

V Qj Sj<* 

«(*)= E E Z x^tofo A.-*) 
j = l a = l /S=0 

• /X=p*( i ) j = l 

TTzere w a/50 an analogue of the Parseval equality: 

(4.8) ( / ,g)=E £ E (/, x*(
s
J,U)(xc3,g) 

j = l 0 = l 0 = 0 
<T(X) /» <T(A; 

+ E f,Wgfo)d\, 
J\=p(t) i = i 

a ^ ewe wa^ obtain a slightly different expression by interchanging f and g, 
taking conjugates, and changing the variable in the integral to X = p*(t). 

Proof. The existence of /*(A) and g*;(X) is obvious, and the expansions 
(4.7) follow from the identities 

/ = (L - X) P G(x, É, X)/($)#, g = (i* - X) f G*(*. *, \)g{i)di 

exactly as in (4). Relation (4.8) follows when we note t h a t / £ DL,I implies 
/ Ç L2 as well. 

Formally we define the spectral resolution E(M) in terms of the kernel 
r* O-(M) 

£(*,*; M) = - E G^(x,£) + £ x>(*./OX?(*,M) <*/*• 

It is easy to see that this exists for any bounded Borel set M, and that for any 
/ G DLrP E(M)f = jZmE(x, f ; M)f(ë)d£ exists. Thus for any bounded Borel 
set E(M) is a closed, densely defined operator. Also, for any such 
/ , E(M)f 6 DLtP, and if E(M)Lf exists it is equal to LE(M)f, so L and £(Af) 
commute in a certain sense. It is also clear that if M C\ N = </>, then E (M U -V) 
= £ (M) + £(iV). It is not quite so clear that E(M)E(N) = £ ( M Pi JV), 
but if we note that for X = p(t), Xmipc, X) Ç £>z,f00,

 w e s e e that Xm(̂ > X) = 
/ •OO /»OC> 

(X — X0)J_oo6
:(x, £, X0)xm(£, X)df. It is easy to see that J_ooG

(-/)(x, flx^ 
(£, X)d£ = 0 so that 

X»(*, X) = (X - Xo) P f °° Z ^ ^ f ( ^ Xw(ff X)^£, 
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and for g Ç DL*tï 

/»oo /» <r(n) •. -v 

il (X) = E - — r &w *»&x) x*(«, M ) « 

J'» \ \ <KM) /»#2 

r i I*(M) XW(S,X)X?(£,M)<^. 

Thus we see that the distribution jœ
œXm(£, À)x*^(J, #)d£ is zero unless j = m 

in which case it is 5(/x — X). Thus the kernel JL^EOc, 2; M)E(z, £, N)dz 
of E(M)E(N) is easily shown to be equal to E(x, £; ikf rW)> and we have 
E(M)E(N) = E(M riN). 

In some cases this resolution will consist of bounded projections, and may 
even be uniformly bounded. In this case it will be a spectral measure in the 
sense of Dunford (3) if it is also countably additive. However, this will not 
be true in general, for if the perturbing operator L\ is absent E(M) is a simple 
function of the operator with kernel |JMf]R exp[i<r(x — è)]da. This gives a 
self-adjoint spectral measure on L2, but Rota (7) has pointed out that it is 
unbounded on any other LP space. 
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