SYMMETRIC FORMS

BY
K. V. MENON

1. Let R_{m} denote a m dimensional Euclidean space. When $\mathbf{x} \in R_{m}$ we will write $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$. Let $R_{m}^{+}=\left\{\mathbf{x}: \mathbf{x} \in R_{m}, x_{i}>0\right.$ for all $\left.i\right\}$ and $R_{m}^{-}=\left\{\mathbf{x}: \mathbf{x} \in R_{m}\right.$, $x_{i}<0$ for all $\left.i\right\}$. In this paper we consider a class of functions which consists of mappings, $E_{r}(\mathbf{K})$ and $H_{r}(\mathbf{K})$ of R_{m} into R which are indexed by $\mathbf{K} \in R_{m}^{+}$and $\mathbf{K} \in R_{m}^{-}$ respectively, and defined at any point $\alpha \in R_{m}$ by

$$
\begin{equation*}
E_{r}(\mathbf{K})=\sum_{i_{1}+i_{2}+\ldots+i_{m}=r} \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{m}} \alpha_{1}^{i_{1} 1 \alpha_{2}^{i}} \ldots \alpha_{m}^{i_{m}^{m}} \tag{1.1}
\end{equation*}
$$

where $\lambda_{i_{t}}=\binom{K_{t}}{i_{t}}\left(\mathbf{K} \in R_{m}^{+}\right)$and

$$
\begin{equation*}
H_{r}(\mathbf{K})=\sum_{i_{1}+i_{2}+\ldots+i_{m}=r} \delta_{i_{1}} \delta_{i_{2}} \ldots \delta_{i_{m}} \alpha_{1}^{i_{1} \alpha_{2}^{i}} \ldots \alpha_{m}^{i_{m}^{m}} \tag{1.2}
\end{equation*}
$$

where $\delta_{i_{t}}=(-1)^{i_{t}}\binom{K_{t}}{i_{t}}\left(\mathbf{K} \in R_{m}^{-}\right)$.
Let $\mathbf{1} \in R_{m}$ denote the vector each of whose coordinates is 1 . Then $E_{r}(\mathbf{1})$ and $H_{r}(-\mathbf{1})$ are, respectively, the elementary and complete symmetric functions of the r th order. On setting $K=K(\mathbf{1})(K>0)$ in (1.1) and $K=K \mathbf{1}(K<0)$ in (1.2) we obtain the class of symmetric functions introduced by Whiteley [4]. Clearly $E_{r}(\mathbf{K})$ and $H_{r}(\mathbf{K})$ are generalisations of the symmetric functions given by Whiteley [4].

It is shown in [1] that

$$
E_{a-\lambda}(\mathbf{1}) E_{b+\lambda}(\mathbf{1}) \geq E_{a-\lambda-1}(\mathbf{1}) E_{b+\lambda+1}(\mathbf{1}),
$$

provided $0 \leq \lambda<a$, and $b \geq A$. In [2] the same inequality with E replaced by H was obtained for the same range of a, b, λ. In this paper we prove that this inequality continues to hold for $E(H)$ on its domain of definition and for the same range of a, b, and λ when $\mathbf{1}(-\mathbf{1})$ is replaced by \mathbf{K}. The proofs of these results rely on the classical method of maxima and minima as in [3] and [4] and use the generating series for E and H which are, respectively

$$
\begin{equation*}
1+\sum E_{r}(\mathbf{K}) x^{r}=\prod_{i=1}^{m}\left(1+\alpha_{i} x\right)^{K_{4}} . \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\sum H_{r}(\mathbf{K}) x^{r}=\prod_{i=1}^{m}\left(1-\alpha_{i} x\right)^{K_{i}} \tag{1.4}
\end{equation*}
$$

2. Lemma 1. If $r=1$, then for all m,

$$
\begin{equation*}
\left[H_{r}(\mathbf{K})\right]^{2} \geq H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K}) \quad\left(K_{i} \leq-1, \text { for all } i\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[E_{r}(\mathbf{K})\right]^{2} \geq E_{r-1}(\mathbf{K}) E_{r+1}(\mathbf{K}) \quad\left(K_{i}>0 \text { for all } i\right) . \tag{2.2}
\end{equation*}
$$

For (2.2) $r<K$ when $K=\min _{i} K_{i}$ is not an integer.
Proof. We prove (2.1) by induction. If $m=1$, then $H_{1}(\mathbf{K})=\binom{\left|K_{1}\right|}{1} \alpha_{1}$ and $H_{2}(\mathbf{K})$ $=\binom{\left|K_{1}\right|+1}{2} \alpha_{1}^{2}$. Hence $\left[H_{1}(\mathbf{K})\right]^{2} \geq H_{2}(\mathbf{K}) H_{0}(\mathbf{K})$ where $H_{0}(\mathbf{K})=1$. Assume the induction hypothesis holds and consider the ($m+1$)-dimensional case. Observe that

$$
1+\sum H_{r}(\mathbf{K}) x^{r}=\left(1-\alpha_{m+1} x\right)^{K_{m+1}}\left(1+\sum H_{r}\left(\mathbf{K}^{*}\right) x^{r}\right)
$$

where \mathbf{K}^{*} is obtained from \mathbf{K} by deleting K_{m+1}. Thus

$$
H_{r}(\mathbf{K})=\sum_{j=0}^{r}\binom{\left|K_{m+1}\right|+j-1}{j} H_{r-j}\left(\mathbf{K}^{*}\right) \alpha_{m+1}^{j}
$$

and consequently, using the induction hypothesis, we have $\left[H_{1}(\mathbf{K})\right]^{2} \geq H_{2}(\mathbf{K}) H_{0}(\mathbf{K})$. Inequality (2.1) is thereby proved and (2.2) is obtained in a similar fashion.
3. Lemma 2. If $m=1$, then for all r,

$$
\begin{equation*}
\left[H_{r}(\mathbf{K})\right]^{2} \geq H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K}) \quad\left(K_{i} \leq-1\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[E_{r}(\mathbf{K})\right]^{2} \geq E_{r-1}(\mathbf{K}) E_{r+1}(\mathbf{K}) \quad\left(K_{i}>0\right) \tag{3.2}
\end{equation*}
$$

For (3.2) $r<K$, when $K=\min _{i} K_{i}$ is not an integer.
Proof. $H_{r}=\binom{\left|K_{1}\right|+r-1}{r} \alpha_{1}^{r}$. Hence

$$
\left[H_{r}(\mathbf{K})\right]^{2}-H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K})=\frac{\binom{\left|K_{1}\right|+r-1}{r} \alpha_{1}^{2 r}\left(\left|K_{1}\right|-1\right)}{(r+1)\left(\left|K_{1}\right|+r-1\right)}
$$

Therefor we have (3.1). For the proof of (3.2), observe that the restriction on r makes all the terms positive and hence (3.2) can be proved in a similar fashion.
4. Lemma 3.

$$
\begin{equation*}
\sum_{i=1}^{m} \frac{\partial}{\partial \alpha_{i}} H_{r}(\mathbf{K})=\left(-\mathbf{K} 1^{\prime}+r-1\right) H_{r-1}(\mathbf{K}) \quad\left(K_{i}<0 \text { for all } i\right) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{m} \frac{\partial}{\partial \alpha_{i}} E_{r}(\mathbf{K})=\left(\mathbf{K} 1^{\prime}-r+1\right) E_{r-1}(\mathbf{K}) \quad\left(K_{i}>0 \text { for all } i\right) \tag{4.2}
\end{equation*}
$$

where 1^{\prime} denotes the transpose of 1 .

Proof. From (1.4) we have

$$
\sum_{i=1}^{m} \frac{\partial}{\partial \alpha_{i}} H_{r}(\mathbf{K}) x^{r}=\frac{-K_{i} x}{\left(1-\alpha_{i} x\right)} \sum_{i=1}^{m}\left(1-\alpha_{i} x\right)^{K_{i}}
$$

Hence

$$
\frac{\partial}{\partial \alpha_{i}} H_{r}(\mathbf{K})-\alpha_{i} \frac{\partial}{\partial \alpha_{i}} H_{r-1}(\mathbf{K})=\left(-K_{i}\right) H_{r-1}(\mathbf{K})
$$

or

$$
\begin{equation*}
\sum_{i=1}^{m} \frac{\partial}{\partial \alpha_{i}} H_{r}(\mathbf{K})-\sum_{i=1}^{m} \alpha_{i} \frac{\partial}{\partial \alpha_{i}} H_{r-1}(\mathbf{K})=\left(-\mathbf{K} 1^{\prime}\right) H_{r-1}(\mathbf{K}) . \tag{4.3}
\end{equation*}
$$

But by Euler's theorem on homogeneous functions

$$
\begin{equation*}
\sum_{i=m}^{m} \frac{\partial}{\partial \alpha_{i}} H_{r-1}(\mathbf{K})=(r-1) H_{r-1}(\mathbf{K}) \tag{4.4}
\end{equation*}
$$

From (4.4) and (4.3) we get (4.1). Similary (4.2) can be proved by using (1.3).
5. Theorem 1. If $\alpha_{i} \geq 0$ and $K_{i} \leq-1$, for every i, then

$$
\begin{equation*}
H_{a-\lambda}(\mathbf{K}) H_{b+\lambda}(\mathbf{K}) \geq H_{a-\lambda-1}(\mathbf{K}) H_{b+\lambda+1}(\mathbf{K}), \tag{5.1}
\end{equation*}
$$

where $(0 \leq \lambda<a),(b \geq a)$. The inequality is strict unless all but one of the variables are zeros and $K_{1}=K_{2}=\cdots=K_{m}=-1$. Also strict inequality fails to hold if all the α_{i} are zero, whatever be $K_{i}, i=1,2, \ldots, m$.

Proof. The proof is by induction on m and r. We shall prove that the theorem is true for all pairs $m, r(m>2, r>2)$ provided it is true for all pairs m, r with $m_{1}<m$, and all pairs n, r, with $r_{1}<r$. Also Lemma 1 shows that the theorem is true for all m, if $r=1$, and Lemma 2 shows that the theorem is true for all r if $m=1$. Let

$$
\begin{equation*}
C=\left\{\boldsymbol{\alpha}: \boldsymbol{\alpha} \in R_{m}, H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K})=1, \alpha_{i} \geq 0 \text { for all } i\right\} . \tag{5.2}
\end{equation*}
$$

Then clearly C is a compact subset of R_{m}. Let us denote by M, the minimum value of $\left[H_{r}(\mathbf{K})\right]^{2}$ subject to the conditions given in (5.2). If we can prove that $M \geq 1$, then we have

$$
\begin{equation*}
\left[H_{r}(\mathbf{K})\right]^{2} \geq H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K}) \tag{5.3}
\end{equation*}
$$

From (5.3) we have

$$
\frac{H_{r}(\mathbf{K})}{H_{r+1}(\mathbf{K})} \geq \frac{H_{r-1}(\mathbf{K})}{H_{r}(\mathbf{K})} \geq \cdots \geq \frac{H_{0}(\mathbf{K})}{H_{1}(\mathbf{K})}
$$

Hence our theorem is proved if we can prove (5.3).
Suppose that the minimum value M is attained at a point $\alpha \in R_{m}$ such that
$\alpha_{i}>0$ (for all i). This point cannot be a singular point since by Euler's theorem on homogeneous functions

$$
\sum_{i=1}^{m} \alpha_{i} \frac{\partial}{\partial \alpha_{i}} H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K})=2 r H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K})=2 r
$$

Hence the first partial derivatives cannot vanish simultaneously. Applying Lagrange's conditions we have

$$
\begin{equation*}
\frac{\partial}{\partial \alpha_{i}}\left[H_{r}(\mathbf{K})\right]^{2}-\lambda^{*} \frac{\partial}{\partial \alpha_{i}} H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K})=0 \quad \text { for all } i \tag{5.4}
\end{equation*}
$$

or

$$
\begin{align*}
2 H_{r}(\mathbf{K}) \frac{\partial}{\partial \alpha_{i}} H_{r}(\mathbf{K})-\lambda^{*}\left\{H_{r+1}(\mathbf{K}) \frac{\partial}{\partial \alpha_{i}} H_{r-1}(\mathbf{K})\right. & \tag{5.5}\\
& \left.+H_{r-1}(\mathbf{K}) \frac{\partial}{\partial \alpha_{i}} H_{r+1}(\mathbf{K})\right\}=0 .
\end{align*}
$$

Multiplying (5.5) successively by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ and adding the results we have

$$
\begin{align*}
& 2 \sum_{i=m}^{m} \alpha_{i} H_{r}(\mathbf{K}) \frac{\partial}{\partial \alpha_{i}} H_{r}(\mathbf{K})-\lambda^{*}\left\{\sum_{i=1}^{m} \alpha_{i} H_{r+1}(\mathbf{K}) \frac{\partial}{\partial \alpha_{i}} H_{r-1}(\mathbf{K})\right. \tag{5.6}\\
&\left.+\sum_{i=1}^{m} \alpha_{i} H_{r-1}(\mathbf{K}) \frac{\partial}{\partial \alpha_{i}} H_{r+1}(\mathbf{K})\right\}=0 .
\end{align*}
$$

Using Euler's theorem on homogeneous functions we have from (5.4)

$$
\begin{equation*}
2 r\left[H_{r}(\mathbf{K})\right]^{2}=\lambda * 2 r H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K}) \tag{5.7}
\end{equation*}
$$

From (5.7) and (5.2) we have $\lambda^{*}=M$. Hence our theorem is proved if we can show that $\lambda^{*} \geq 1$. From (5.6) and (4.1) we have

$$
\begin{aligned}
& 2\left(-\mathbf{K} \mathbf{1}^{\prime}+r-1\right) H_{r}(\mathbf{K}) H_{r-1}(\mathbf{K}) \\
& \quad=\lambda^{*}\left\{\left(-\mathbf{K} \mathbf{1}^{\prime}+r-2\right) H_{r+1}(\mathbf{K}) H_{r-2}(\mathbf{K})+\left(-\mathbf{K} \mathbf{1}^{\prime}+r\right) H_{r-1}(\mathbf{K}) H_{r}(\mathbf{K})\right\}
\end{aligned}
$$

or

$$
\begin{equation*}
2\left(-\mathbf{K} \mathbf{1}^{\prime}+r-1\right)-\lambda^{*}\left(-\mathbf{K} 1^{\prime}+r\right)=\frac{\lambda^{*}\left(-\mathbf{K} \mathbf{1}^{\prime}+r-2\right) H_{r+1}(\mathbf{K}) H_{r-2}(\mathbf{K})}{H_{r}(\mathbf{K}) H_{r-1}(\mathbf{K})} . \tag{5.8}
\end{equation*}
$$

Now from (5.7) and (5.8) we get

$$
\begin{equation*}
2\left(-\mathbf{K} 1^{\prime}+r-1\right)-\lambda^{*}\left(-\mathbf{K} 1^{\prime}+r\right)=\frac{\left(-\mathbf{K} \mathbf{1}^{\prime}+r-2\right) H_{r-2}(\mathbf{K}) H_{r}(\mathbf{K})}{\left[H_{r-1}(\mathbf{K})\right]^{2}} \tag{5.9}
\end{equation*}
$$

But by induction hypothesis

$$
\begin{equation*}
\left[H_{r-1}(\mathbf{K})\right]^{2} \geq H_{r}(\mathbf{K}) H_{r-2}(\mathbf{K}) \tag{5.10}
\end{equation*}
$$

Hence from (5.9) and (5.10)

$$
\begin{equation*}
2\left(-\mathbf{K} \mathbf{1}^{\prime}+r-1\right)-\lambda^{*}\left(-\mathbf{K} \mathbf{1}^{\prime}+r\right) \leq\left(-\mathbf{K} \mathbf{1}^{\prime}+r-2\right) \tag{5.11}
\end{equation*}
$$

Hence $\lambda^{*} \geq 1$.

In the next place we suppose that the minimum is attained at a point at which one or more of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are zeros. Suppose that $\alpha_{1} \neq 0, \alpha_{2} \neq 0, \ldots, \alpha_{S} \neq 0 \quad(S<m)$, and from induction on m we have from (5.7)

$$
\lambda^{*}=\frac{\left[H_{r}(\mathbf{K})\right]^{2}}{H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K})}
$$

and $\lambda^{*} \geq 1$. Hence the theorem follows from (5.11).
6. Theorem 2. If $\alpha_{i} \geq 0$ and $K_{i}>0$ for all i, then

$$
E_{a-\lambda}(\mathbf{K}) E_{b+\lambda}(\mathbf{K}) \geq E_{a-\lambda-1}(\mathbf{K}) E_{b+\lambda+1}(\mathbf{K})
$$

provided $(0 \leq \lambda<a),(b \geq a)$ and $b+\lambda<K$ when $K=\min _{i} K_{i}$ is not an integer.
The inequality is strict unless all but one of the variables are zeros and $K_{1}=K_{2}=\cdots$ $=K_{m}=1$. Also the strict inequality fails to hold if all the α_{i} are zero whatever be $K_{i}, i=1,2, \ldots, m$.

Proof. The restriction on $b+\lambda$ makes all the terms positive in our considerations. Hence we can apply the method of Theorem 1.

7. Theorem 3.

$$
\begin{align*}
& {\left[H_{r}(\mathbf{K})\right]^{1 / r} \geq\left[H_{r+1}(\mathbf{K})\right]^{1 /(r+1)}} \tag{7.1}\\
& {\left[E_{r}(\mathbf{K})\right]^{1 / r} \geq\left[E_{r+1}(\mathbf{K})\right]^{1 /(r+1)}} \tag{7.2}
\end{align*}
$$

The inequality is strict unless all but one of the variables are zeros and

$$
K_{1}=K_{2}=\cdots=K_{m}=-1 \quad \text { for }(7.1)
$$

and

$$
K_{1}=K_{2}=\cdots=K_{m}=1 \quad \text { for }(7.2)
$$

Also the strict inequality fails to hold if all the α_{i} are zero whatever be $K_{i}, i=1,2$, \ldots, m. For (7.2), $r<K$ when $K=\min _{i} K_{i}$ is not an integer.

Proof. Same as in [1].
Acknowledgement. I wish to record my sincere thanks to the referee for suggestions which led to a better presentation.

References

1. G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press (1952), p. 52.
2. K. V. Menon, Inequalities for symmetric functions, Duke Math. J. 35 (1968), 37-46.
3. J. N. Whiteley, A generalisation of a theorem of Newton, Proc. Amer. Math. Soc. 13 (1962), 144-151.
4. J. N. Whiteley, Some inequalities concerning symmetric forms, Mathematica 5 (1958), 49-56.

Dalhousie University,
Halifax, Nova Scotia

