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Abstract

We consider a nonlinear singular perturbation problem on a semi-infinite
interval, that is a generalization of the well-known Lagerstrom model
equation intended to model low Reynolds number flow. By applying a
Green's function method and the contraction mapping principle, we are able
to obtain existence, uniqueness and asymptoticity results for this problem.

1. Introduction

In this article, we consider the solutions y(x, e) of the nonlinear two-point
boundary-value problem Pe, denned by the differential equation

and the boundary conditions

*!,«) = «, 0.2)

X°O,£)=1, (1.3)

where e is a small real positive parameter, with e e (0, e0], k is a positive integer,
and a is a constant, independent of e, with a > 0.

The problem Pe is of interest because of the weak nonlinearity involved, and
also because, for certain choices of k, / and a, it is a singular perturbation problem,
in the sense that there is no asymptotic expansion in e of Poincare type that
approximates y(x, s) uniformly on the interval [1, co). In fact, attempts to construct
such an expansion lead to insoluble boundary-value problems. This is most striking
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[2] Singular perturbation problem 227

in the case k=l, where the reduced problem Po, obtained by setting s = 0 in Pe,
has no solution that satisfies both the boundary conditions (1.2) and (1.3), for
arbitrary values of a.

For arbitrary k and/O>, JC) = y, a = 0, the problem Pe becomes the well-known
Lagerstrom model problem (Lagerstrom [5]), which is intended to model the
phenomenon of low Reynolds number flow in the region exterior to a finite body,
the boundary of this body being represented by x = 1. Here, the parameter e plays
the role of the Reynolds number, and the boundary condition (1.3) corresponds to
the condition of uniform streaming at infinity. This model problem is well
represented in the literature (Bush [2], Cole [3], Hsiao [4], Lagerstrom and
Casten [6]), where it is used to illustrate the so-called method of matched asymptotic
expansions. It seems a reasonable assumption that, under suitable regularity
hypotheses about f(y,x), the more general problem Pe might be used in a similar
way. However, it is not our aim in this paper to apply such methods to P6, although
we will be concerned with the construction of suitable approximations to the
solutions of the problem. What is of much greater relevance to our discussion is
the material of a recent paper (Rosenblat and Shepherd [9]), in which the authors
establish existence, uniqueness and asymptoticity properties (as e->0) for the
solution of the Lagerstrom model problem, by comparing this (nonlinear) problem
with a suitably chosen linear problem. Thus in the present paper, we will apply
this technique to the problem Pe, to obtain similar properties, under suitable
assumptions about the function/(.y, x).

The physical analogy between the Lagerstrom model problem and the equations
of fluid motion at low Reynolds numbers has led to the proposal [5] that a suitable
first approximation to the solution of this problem might be obtained from the
solution of a model Oseen equation, in which the nonlinear term in the differential
equation is replaced by one linearized about y = \. This is the particular linear
problem used in [9]. Prompted by this linearization, we generalize it, and propose
that the function Y(x, e), defined to be the solution of the linear problem Le,
given by

Y"+^Y' + ef(l,x)Y' = 0, xe(l,oo), (1.4)

Y(l,e) = a, (1.5)

Y(ao,e)=l, (1.6)

will, under conditions to be determined, provide a suitable first approximation to
the solution y(x,e) of Pe. If the equation (1.1) is viewed as a generalized low
Reynolds number flow equation, the equation (1.4) should be viewed as a
generalized Oseen equation for the same type of flow.
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In the following sections, we will show that the problems Pe andL£ have solutions
y(x, e) and Y(x, e) respectively, with y(x, e) tending to the value 1 as *->-oo, in the
sense that

ej"\l-y(s,e)\ds = O(l) (1.7)

as e->-0; and further, that the solution Y(x, e) is, in an appropriate sense, a uniform
asymptotic approximation to y{x, e). Moreover, we will demonstrate that y(x, e)
has a uniformly valid generalized asymptotic expansion of the form

y(x, e) = Y(x, e) + £ Vi{e) Y%{x, e) + O(vN+1(e)), (1.8)

where {v^e)}^ is an asymptotic sequence, {Yt(x, e)}^ is a sequence of functions
that are 0(1) as e->0 for all xe[l,oo); and we will obtain an algorithm for the
construction of this expansion. This algorithm, which involves only systematic
integration, and which requires only relatively mild restrictions on the function
f{y,x) will be seen to have distinct advantages over the usual series type of
construction, that would usually require/(>>, x) to be analytic in the argument y.

2. Assumptions and preliminary estimates

The discussion of the previous section shows clearly the important part played
by the linear problem Le denned by (1.4)—(1.6). Thus, it is important to examine
the general features of its solution Y(x, e). Obviously, some restriction must be
imposed on the behaviour of/(I,*); and the following assumption suffices for the
purpose of this paper:

(F) f(l,x) is continuous and uniformly bounded on the interval [l,oo) and
satisfies the inequality

(2.1)

as x-^-oo, where C, a are positive constants independent of e, with 0 < a ^ 1.

LEMMA 1. Let f{\,x) satisfy condition (F). Then, for each ee(O,eo], the linear
problem Le has a solution Y(x, e) that may be written in the form

e), (2.2)
where

W(x,e) = Fk(x,e)IFlc(Us), (2.3)
and

Fk{x, e) = J V * exp j - e [7(1, s) ds} dt. (2.4)
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For each e e (0, e0], we have

min {a, 1} < Y(x, e) < max {a, 1}, (2.5)
while

Y'(x,e)>0 ifO^a^l, (2.6)

Y'(x,e)^0 ifa>\. (2.7)

PROOF. Equation (1.4) may be written as

) ) =0 ,

and integration of this, together with the application of the boundary conditions
(1.5), (1.6), gives the result (2.2), provided the infinite integrals involved converge.
Under the condition (F), there exists a finite x0, independent of e, such that (2.1)
holds for all x^x0. Then, for t ^x0 ,

a-1jcS'-£ \X°f(l,s)ds\t-kexp(-eCoc-1t<x),

(2.8)

and this establishes convergence of the integrals in W(x, e). The results (2.5)-(2.7)
then follow, on noting that (K W^ 1, and W <0.

REMARK. Note that the assumption (F) is a sufficient condition only. A weaker
condition might be

fO,x)><f>k(x) a
where

with C a positive constant, independent of e. In this case, there is no need for the
boundedness of/(I,*).

Although the estimates (2.5)-(2.7) give some idea of the behaviour of Y(x, e)
they give no details of the behaviour of this solution as e^-0, and are insufficiently
precise for the purposes of later sections. Such information is provided in the
following lemma, which examines the behaviour of the function W{x, e) for
small values of e.

LEMMA 2. Letf(\,x) satisfy the condition (F). Then, there exist positive constants
A(e), B(e) that are 0(1) and nonvanishing as e-*0, such that

e), (2.9)

B(e) V'k(x, e) < W\x, e) ^ 0, (2.10)
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uniformly on [l,oo). Here,

Vk(x, e) = I^eCa-1 ^ / r ^ e C a " 1 ) , (2.11)
and

rfc(A)= fV*e-«<fe (2.12)
JA

is an incomplete gamma function, given by

rk(\) = \i-*Ek(\), (2.13)

where Ek(X) is the standard exponential integral [1, p. 229].

PROOF. We first consider x^x0, where xQ is as defined in the proof of Lemma 1.
The first factor on the right-hand side of (2.8) is 0(1) and nonvanishing as e-+0.
Then, for x^x0,

0 < Fk(x, e) < 0(1) f V * exp ( - eCor1 ta) dt, (2.14)
J X

where the 0(1) factor does not vanish as e->0.
Now set ta = u, so that the right-hand side of (2.14) becomes

1-(fc-1)a"1 exp (-fiGx-1 u)du. (2.15)

In (2.15), since u^l and 0 < a ^ 1, we have, when k^2,

ir1-**-""-^!!-*, (2.16)

while the same obviously holds when k = 1.
Noting that, for any positive p and q,

(a
s-

ke-<">ds = qk~* Vk(pq), (2.17)
Jp

we have, for x ^ x0,

Ffc(x, e) ^ O(l) (eCa-1)*"1 T^eCa-1 x*). (2.18)

Now, letting G be a bound (independent of e) for | /( l ,x) | on [l,co), we have

Fk(\,e)>e*° rt-ke-°a'dt, (2.19)

and thus,

)fc-irfc(eG). (2.20)

The result (2.8) now follows, for x^x0, on applying (2.18) and (2.20), while noting
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that
rk(eC«-*)/rk(£G) = 0(1) (2.21)

and is nonvanishing as e->0.
When *<xo» we have

Fk(x, e)/Fk(l, e) = Fk(l, e)"1 J V * exp { - e J V o , *)<&) * + U^o, e)/Fk(l, e).
(2.22)

The second term on the right-hand side of (2.22) may be treated by the methods
above, to obtain

x0, e)IFk{\, e)< 0(1) T^eCa^ x*)/rk(eCa^) (2.23)

), (2.24)

where the 0(1) factor does not vanish as e->0.
The first term on the right-hand side of (2.22) may be written

Vk(x,e), (2.25)

where the 0(1) factor does not vanish as e-*-0. Noting that, as A-*0,

ro(A)~l; ri(A)~log(l/A)

T^-A 1 -^- ! ) when k>2, (2.26)

by the standard results for Ek(X) [1, p. 229] applied to (2.13), we see that, since
x^x0, the term in braces in (2.25) is O(l) as e->•(), for all k > 1 (in fact it vanishes
as £H>0 when k = 1). Hence, we arrive at the result (2.9). The result (2.10) for the
derivative may be proved by analogous reasoning.

Lemma 2 gives precise information about the function Y(x, e) both as
and as x-^-oo. When JC^-OO, it follows, from the standard results for Ek{x), that,
for each ee(0,e0],

Y(x, s) = 1 + 0(x-ak e~xy (2.27)

When £->0, but ex is fixed, with k > 2, we see from (2.9) and (2.11) that

) ^ \ as e->0, (2.28)
while if k = 1, this is reduced to e->0 with ex01 fixed. These limits, which correspond
to the so-called outer limits, may be deduced in the case of the Lagerstrom model
problem (when a = 1) on physical grounds.

The following lemma gives an integral estimate for the function W(x, e) that
will prove very useful in subsequent sections.
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LEMMA 3. Let W(x, e) be defined by (2.3), and letf{\, x) satisfy the hypothesis (F).
Then,

W{x,e)dx = hk{e) (2.29)

where

= O(elog(l/e)), hk = O(e), k>3. (2.30)

PROOF. It may be readily established, by integration-by-parts, that

Fk(x,s)dx = xFk(x,j;
and it may be deduced from the results of Lemma 2 that xFk(x, e)\m = 0, for each
ee(0,e0]. Thus,

)-l. (2.31)

The results of Lemma 2 now give

ffc-iO, e)IFk(l, e) < D(e) r^^eCa-^/er^eCa"1), (2.32)

where D(s) is positive, 0(1) and nonvanishing as e-»0. The results of the lemma
now follow, when we note the asymptotic results (2.26).

COROLLARY. Let f(l,x) satisfy the hypothesis (F). Then Y(x,e) satisfies the
condition

£ l \l—Y(x,e)\dx = 0(1) (2.33)
Ji

as e -*• 0.

PROOF. From (2.2)

e 11 — Y(x, s)\dx = \a— l i e W(x,e)dx,

and the result follows from the above lemma.

The fact that Y(x, e), the solution of the linear problem Le, satisfies the condition
(2.33) leads us to seek solutions y(x, s) of the problem Pe that satisfy the same
condition, in the expectation that such solutions might be suitably approximated by
Y(x, e) as e->0. This will be seen to be the case in the following sections; but we
first consider the assumptions made about the function f(y,x).
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We define the domain Ds, for some S > 0 and independent of e, by

Ds = {(x,y,e):\l-y\^\l-a\ + 8, 1 <S*<co, 0<e^e0} (2.34)

and make the following assumptions about f(y,x):

(Al) f(y,x) is Lipschitzian with respect to y, uniformly with respect to x, with
Lipschitz constant L independent of e; that is,

for any (yl9 x, e), (y2, x, e) in Ds.

(A2) f(l,x) satisfies the condition (F).
Note from (2.2) that Y(x,e) lies in Ds for any S>0; and it is this property

that motivates the choice of Ds, since we seek solutions y(x, e) near Y(x, e) in
some sense. The following lemma gives the properties of solutions that satisfy
(2.33) and which lie in Ds forf(y,x) satisfying the above hypotheses.

LEMMA 4. Let y(x, e) be a solution ofPe in Ds that satisfies

ej™\l-y(x,e)\dx=O(l) (2.35)

as e-*0. Let f(y,x) satisfy the assumptions (Al), (A2). Then, for each ee(0, eo],

min {a, 1} *iy(x, s) «S max {a, 1}, (2.36)

(2.37)
and

/(;c,e)<0 ifa>\. (2.38)

Further, there exist functions a(x, e), j8(x, e), continuous and bounded uniformly with
respect to x and s, for x e [ 1, oo), e e (0, e0], such that

e) (2.39)
and

v'(x el = B(x E\ W'(X el O 401

where W(x, e) is given by (2.3).

PROOF. It is readily shown that for any (y, x, s) e Dt,

f Cx \ * ( Cx \
*~*exp{— e f(y,s)ds}4:X-'eexp(eLM)exp{ — e\ f(l,s)ds), (2.41)

where

= ̂ \\-y(s,e)\ds. (2.42)
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Further,

since, for

*exP{

all (y,

J. J. Shepherd

Cx )—e f(y,s)ds)^x~kexp(—el

x,e)eD,,

-eJV(l^)*}

[9]

(2.43)

-y\. (2.44)

Further, since for any (y, x, e) e Da,

f{y,x)>f{\,x)-L\\-y\, (2.45)

we see that every solution of Pe satisfying (2.35) may be represented in the form

y(x, e) = 1 + (a -1 ) Hk(x, e)/Hk(l, e), (2.46)
where

Hk(x,e) = JVfcexp {-« JVcK*. «),*)&) dt. (2.47)

The results of the lemma now follow, on applying the results (2.41) and (2.43) to
(2.46).

3. Existence

In this section, we write the problem Pe as a pair of integral equations, and apply
the contraction mapping principle to this, to deduce the existence of a solution
y(x, e). The procedure parallels that of [9]. We first write the equation (1.1) in the
form

x)y' = e{f{\,x)-f{y,x)}y'. (3.1)
A.

Defining the function v(x, E) by

v(x,s) = l-y(x,e), (3.2)

we may, by constructing the Green's function for the operator on the left-hand
side of (3.1), write the problem Pe as an integral equation for v, of the form

v{x,e) = (l-o) W(X,E) + S rG(x,s,s){f(\,x)-f(l-v,x)}v'ds, (3.3)

where W(x, e) is given by (2.3), and the kernel G{x,s, e) is given by

l(\-W(s,e))W(x,e)

G(x,s,e) =
W'(s,e)

W(s,e)(l-W(x,e))

(3.4)
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Differentiating (3.3), we obtain

v'(x,e) = (l-a) W'(x,e) + e f"'Gx{x,s,e){f{\,x)-f{\-v,x)}v'ds. (3.5)

Defining the functions a.(x, e) and jS(x, e) by (2.39) and (2.40) respectively, we may
write (3.3) and (3.5) as integral equations for a and )8 that take the form

<*(*, e) = (1 - a) + e J "*(*, s, e) H(cc, /3, W) ds, (3.6)

ftx, e) = (1 - a) + e J"s(x, s, e) H(a, j8, W) ds, (3.7)

where

jyfejB, W) = {f(l,x)-f(l-aW,x)}fl. (3.8)

The kernels R and S are given by

!

1-

\-W(x,e)u/, . (3.9)

and

respectively.
The following lemma summarizes the manipulations above.

LEMMA 5. For each e > 0, every solution y(x, e) ofPe satisfying (2.35), with f(y, x)
satisfying (Al) and (A2) may be represented in the form (2.39), (2.40), where a,/3
are bounded continuous solutions of the integral equations (3.6), (3.7), whose bounds
are 0(1) as e->0.

Conversely, under the assumptions above, the function y(x, e) defined by (2.39),
(2.40), where a, j8 are bounded continuous solutions of (3.6), (3.7) is a solution of the
problem Pe. If these bounds are O(l) as e->0, this solution satisfies (2.35).

PROOF. Obvious, except for the very last part, which is proved by applying
Lemma 3.

We now show that the integral equations (3.6), (3.7) have a unique continuous
bounded solution a(x, e), /J(x, e). We define the set Q by

Cl = {(x,e): ls£;c<oo, 0<e^e 0 } (3.11)

for suitably small e0, and let CM(Q) be the set of ordered pairs of functions
(oc(x, e), j3(x, e)) that are continuous on Q and are uniformly bounded in the sense
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that
(3.12)

where M is a constant, independent of e. We denote elements of CM(Q) by

£ = («,# (3.13)
and define a metric on CM(Q) by

i, &) = max {sup | a i - ĉ  |, sup | & - j321}. (3.14)

Then, Q^Q) is a complete metric space with respect to pe.
The right-hand sides of the integral equations (3.6), (3.7) define a map

(a,/J) ->(a,p) on CM(H), which we write as

where T: (a,/})-»• (a, $) is given by

&(x, e) = (l-a) + e j~R(x, s, s) H(oc, p, W) ds, (3.15)

fee) = (l-o) + e ̂ S(x,s,e)H(a,p, W)ds. (3.16)

From (3.15), we have

(3.17)

Noting that O<PF<1, with W(x, e) monotonically decreasing, while for
M<\ 1 — a\ + S, (1 — aW(s, e),s) lies in Ds, we may deduce from (3.17) that

W(s,e)ds. (3.18)

A similar result holds for the image ft of jS, and an application of Lemma 3 gives
the following result.

LEMMA 6. The operator T maps CMo(£l) into itself, where Mo is any value of M
which satisfies simultaneously the inequalities

(3.19)
and

M<\l-a\ + 8. (3.20)

Under the assumptions of Lemma 3, such an M exists for all ee(0,e0] and
e0 sufficiently small.

Now suppose that
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From (3.15), we have

J V («!,&, 00-#(«»A. W)\ds (3.21)

< 2M(1 +L)ptflr Q e J " ^<fr. (3.22)

Noting a similar inequality for \fti—ft2\,
 w e obtain

Pi.ii, &) < 2M(1 +£) hk(e) pMi, &, (3.23)

on applying Lemma 3. The following result follows.

LEMMA 7. The operator T is a contraction on CM|)(O) when

M0<(2{l+L)hk(e))-\ (3.24)

Clearly, (3.19), (3.20) and (3.24) may be satisfied for all ee(0,£0] and eo small

enough. We thus have our basic existence result for this problem.

THEOREM 1. For all ee(0,e0] and e0 sufficiently small, the map T has a unique
fixed point in the space CMo(Q.) when Mo satisfies (3.19) and (3.20).

PROOF. A direct application of the contraction mapping principle [7, p. 27).
Lemma 5 then gives the result below.

THEOREM 2. Let f(y,x) satisfy the conditions (Al), (A2). Then, for all ee(0, eo]
and s0 sufficiently small, Pe has a unique solution y(x, e) satisfying the condition (2.35).

It would appear that to remove the condition (2.35) on solutions of Pe would
prove very difficult without further assumptions about the behaviour of the function
f(y, x). However, in at least one instance, namely that of the Lagerstrom model
problem, it may be proved [9] that all solutions of the problem have a repre-
sentation of the form (2.39), (2.40), and hence all satisfy (2.35). Thus, in this
instance, the restricted uniqueness of Theorem 2 becomes a global uniqueness
result.

We also note that the results of Theorem 2 will hold if we replace the Lipschitz
condition of (Al) by one of the form

, p>\. (3.25)

Since 0< W*^ W^ 1, the inequality (3.19) would be replaced by

(3.26)
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which could be satisfied for small e. It is doubtful if the results would hold for
0 <p < 1, however.

Finally, it is worth noting that, for solutions of Pe satisfying (2.35), we in fact
have, by Lemma 3,

[W\\-y{x,e)\dx-+Q as e-^0. (3.27)

4. Asymptotic expansions

Resulting from the contraction mapping principle, we have the existence of an
iterative scheme

which converges to the fixed point £ of the map T in CMo(Q), for any initial iterate
£0 in this space. Repeating the analysis set out in [9], and choosing (OQ, J80) = (0,0)
as our initial iterate, we obtain the result

(4.2)

(4.3)

for (a,j3), the fixed point of the map T. Noting (2.39), (2.40) we then have the
following theorem.

THEOREM 3. Under the assumptions of Theorem 2, the solution Y(x, e) of Le is an
asymptotic approximation as £->0 to the solution y(x, e) ofPe, with

y(x,e)~Y(x,e); y'(x,e)~ Y'(x,e) (4.4)

uniformly with respect to xe[l,<x>).

Again, repeating the analysis of [9], we obtain the result below.

THEOREM 4. Under the assumption of Theorem 2, the solution to Pe has a generalized
asymptotic expansion

y(x, e) = Y(x, e) + £ vn(e) Yn(x, e) + O(vN+1(e)), (4.5)

y'(x, s) = Y'(x, e) + £ vn(e) ?n(x, e) + O(yN+1(e)), (4.6)

with
vn(s) = hk(er (4.7)
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and
Yn(x,s) = -W(x,e)<l>n(x,s), (4.8)

?n(x, E) = - W'ix, e) +n{x, e). (4.9)

The functions <f>n(x,e) and ^n(x,e) are 0(1) as e-»0, uniformly with respect to
xe[l,oo).

The iterative scheme (4.1) may be used to calculate the expansion (5.5), through
the relationship (2.39). Thus, a uniformly valid first approximation to y(x, e) is
given by (4.1) and (3.15) as

y(x, £) = 1 + c^*, e) W(x, e) + 0{hk{ef), (4-10)
where

o^x, s) = (l-a) + s ^R(x,s, e)#(1,1, W)ds, (4.11)

and
H(l,l,W)=f(l,x)-f(l-W,x). (4.12)

Provided the integration involved in (4.11) can be carried out, this procedure yields
the uniformly valid asymptotic approximation to order h\. In principle, the method
is much simpler than the method of matched expansions, and any difficulty can be
seen to lie in the form of the function/^, x). In the particular case of the Lagerstrom
model problem (a = 0, f(y, x) = y), this calculation may be carried out with
relative ease (Shepherd [10]) to yield, after one integration, a composite expansion
that is asymptotically equivalent to that obtained by matching techniques after
several matching processes [3]. In this sense, then, the process above is the more
efficient of the two.

5. Conclusion

The procedures set out in this paper will allow us to establish desirable properties
of nonlinear singular perturbation problems Pe, providing we can pick the "right"
linear problem Le. The particular linearization (1.4) chosen here is suitable because
of the weak nonlinearity in (1.1). Removal of this type of nonlinearity poses
serious questions about the choice of the linear problem Le; for example, if we
consider the Lagerstrom model for compressible low Reynolds number flow,

y"+^/+y'2+eyy' = o, *e(i,co), (5.1)

with the same boundary conditions, (1.4) is not a suitable linear problem Le.
Further, it is difficult to construct such a linear problem for (5.1), on an ad hoc
basis.
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This question has received considerable attention in a recent paper by Rosenblat
[8], and later by Shepherd [11], in which the authors consider nonlinear singular
perturbation problems Pe on a finite interval [0,1], with the usual "boundary
layer" at x = 0. An equivalent linear problem Le is proposed, with undetermined
coefficients that satisfy specific conditions, and the problem Le is actually constructed
by the requirement that its solution provide a suitable approximation to that of Pe.
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