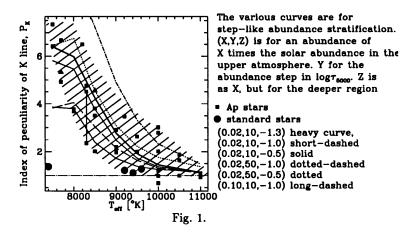
## Detection of calcium abundance stratification in Ap stars

## J. BABEL

Service d'Astrophysique, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette, France


Abstract. We report the discovery of a systematic and large calcium abundance stratification in cold Ap stars. These detections are in very good agreement with diffusion theory and set stringent upper limits on turbulent processes.

## 1. Context and observations

The peculiarity of the Ca II K line at 3933 Å (see Fig.1 of Babel 1993b) is a well-known but unexplained feature of Ap stars (since Babcock 1958). On the theoretical side, abundance stratification is a major prediction of radiative diffusion (e.g. Michaud 1970) and has to be tested.

We made a high resolution spectroscopic survey of the Ca II K and H lines at 152cm of OHP. It includes 28 Ap stars with 7500  $\leq T_{eff} \leq 11000$  K (3 with  $vsini \simeq 100$  km/s, 2 rapidly oscillating Ap (roAp)). The K line profile was parametrized to allow quantitative study of the K line shape.

Our goal was to discriminate spotted-nonstratified models from stratified models on a statistical ground as any peculiar K line can be reproduced either by abundance stratification or by abundance spots (Babel 1993a)



2. Results and Discussion

In various diagrams relative to the shape of the K line (see Babel 1993b), Ap stars follow a very different trend than normal stars. In particular, we did not find Ap stars with nonpeculiar profiles,  $P_K \simeq 1$  for  $T_{eff} < 9000$  K

(Fig. 1). Our results exclude statistically nonstratified-spotted models as an explanation of the peculiar shape of the K line. NLTE effects can also be excluded (Babel 1993b). In contrast, the observations are well explained by a large Ca stratification with decreasing abundance towards the surface.

Stringent additional test comes from the study of the blend  $H_{\epsilon}$ -CaII H and gives another proof of calcium abundance stratification (see Fig. 2.a).

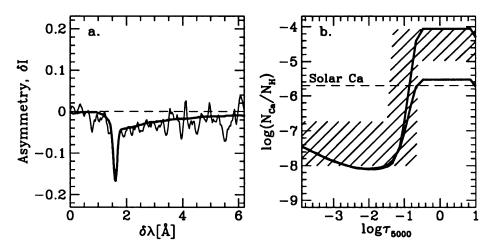



Fig. 2. a.Asymmetry of H<sub>e</sub> in HD 204411. Heavy line: stratified model (0.005,10,-1.3) (see Babel 1993b). Thin line: observation at DAO by Adelman (private comm.)b. Abundance of Ca as a function of optical depth. The heavy curves are for the diffusion-mass loss model of 53 Cam with  $\dot{M} = 3 \ 10^{-15} \ M_{\odot} yr^{-1}$  (upper curve) and  $\dot{M} = 0$  (lower curve) (Babel 1992). The hatched zone is the range of stratification of Ca (step-functions) obtained from the Ca II K and H line for Ap stars with  $T_{eff} \leq 9000 \ K$ .

The results on Ca abundance stratification deduced from the Ca II K and H lines (for an assumed step-function) for Ap stars with  $T_{eff} \leq 9000$ K are summarized by the shaded area in Fig. 3. We obtain that a large Ca stratification, with a variation by 2 dex of the Ca abundance in the lineformation region, seems very common in Ap with  $T_{eff} \leq 9000$  K, without effects to first order from rotational velocity or from pulsation for the roAp.

We obtain a very good agreement with equilibrium abundance distributions from the diffusion model (Babel 1992). These results indicate a very large stability of the photospheric regions.

## References

Babel, J.:1992, A&A 258, 449
Babel, J.:1993a, in Peculiar versus normal phenomena in A-type and related stars, IAU Coll. 138, Eds. Dworetsky et al., Astron. Soc. Pacific, Conf. Series, 44, p. 458
Babel, J.:1993b, A&A, in press
Babcock H. W.:1958, ApJS 3, 141
Michaud, G.:1970, ApJ 160, 641