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Abstract. Scoring rules measure the deviation between a forecast, which assigns degrees of
confidence to various events, and reality. Strictly proper scoring rules have the property that
for any forecast, the mathematical expectation of the score of a forecast p by the lights of p
is strictly better than the mathematical expectation of any other forecast q by the lights of p.
Forecasts need not satisfy the axioms of the probability calculus, but Predd et al. [9] have shown
that given a finite sample space and any strictly proper additive and continuous scoring rule, the
score for any forecast that does not satisfy the axioms of probability is strictly dominated by
the score for some probabilistically consistent forecast. Recently, this result has been extended
to non-additive continuous scoring rules. In this paper, a condition weaker than continuity is
given that suffices for the result, and the condition is proved to be optimal.

§1. The main results. Scoring rules measure the deviation between a forecast, which
assigns degrees of confidence or credence to various events, and reality. Strictly proper
scoring rules have the property that for any forecast, the mathematical expectation
of the score of a forecast p by the lights of p is strictly better than the mathematical
expectation of any other forecast q by the lights of p. Forecasts need not satisfy the
axioms of probability, but under some conditions whose discussion is the main purpose
of this paper, the score of a forecast that does not satisfy the axioms of probability is
strictly dominated by the score of a forecast by that does satisfy these axioms. This
result has been interpreted by epistemologists as supporting the idea that reasonable
forecasts will always be probabilistically consistent (e.g., [4, 5, 7]).

To be precise, let Ω be a finite sample space, encoding the possible situations that
the forecasts concern. Let C be the set of all functions from the power set of Ω to
the reals: these we call credence functions. Let P be the subset of C which consists of
the functions satisfying the axioms of probability. Members of C can be thought of as
forecasts regarding Ω. An accuracy (respectively, inaccuracy) scoring rule is a function
s from a set F ⊇ P of credence function to [–∞,M ]Ω (respectively, [M,∞]Ω) for some
finite M, whereAB is the set of functions from B to A. Then s(c)(�) for c ∈ F measures
the accuracy of the forecast c when we are in fact at � ∈ Ω, with higher (respectively,
lower) values being more accurate. Since inaccuracy and accuracy scoring rules differ
merely by a sign, we shall now assume that scoring rules are accuracy scoring rules,
translating results from the literature as needed.
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DOMINATION AND PROPER SCORING RULES 133

Given a probability p ∈ P and an extended real function f on Ω, let Epf be the
expected value with respect to p defined in the following way to avoid multiplying
infinity by zero:

Epf =
∑

�∈Ω,p({�})�=0

p({�})f(�).

We then say that a scoring rule s is proper on F ⊇ P provided that for every p ∈ P
and every c ∈ F , we have Eps(p) ≥ Eps(c), that it is strictly proper there provided the
inequality is always strict, and that it is quasi-strictly proper there provided that it is
proper and the inequality is strict when p ∈ P and c ∈ F\P .

Propriety captures the idea that if an agent adopts a probability function p as their
forecast, then by the agent’s lights there can be no improvement in the expected score
from switching to a different forecast. Strict propriety captures the idea that an agent
who has adopted a probability function p as their forecast will think other forecasts to
be inferior. Proper and strictly proper scoring rules have been widely studied: for a few
examples, see [1, 3, 7, 9, 12].

A scoring rule is said to be additive provided that F = C and there is a collection of
extended-real functions (sA)A⊆Ω on R× {0, 1} such that for all c ∈ F and � ∈ Ω:

s(c)(�) =
∑

A⊆Ω

sA(c(A), 1A(�)).

The set of probabilitiesP can be equipped with the topology resulting from its natural
embedding� in the product space [0, 1]Ω, where�(p)(�) = p({�}). Thus, a sequence
of probabilities (pn) converges to a probability p just in case pn({�}) → p({�}) for
all � ∈ Ω.

A scoring rule is probability-continuous provided that the restriction of s to P is a
continuous function to [–∞,M ]Ω equipped with the Euclidean topology.

Say that a score s(c1) is weakly dominated by a score s(c2) provided that s(c2)(�) ≥
s(c1)(�) for all � ∈ Ω, and strictly dominated if the inequality is strict.

Predd et al. [9] showed that if s is a probability-continuous additive strictly proper
scoring rule, then for any non-probability c, there is a probability p such that s(c) is
strictly dominated by s(p). In other words, any forecaster whose forecast fails to be a
probability can find a forecast that is a probability and that is strictly better no matter
what. Recently, Pettigrew [8] announced that this result holds without the assumption
of additivity, merely assuming probability-continuity. His proof was shown to have
flaws [6], but correct proofs were found by Nielsen [6] and Pruss [10]. Nielsen’s proof
also extended the result to the quasi-proper case. A philosophical upshot of these
results is that we can get an argument in favor of probabilistic consistency in one’s
credence assignments under much weaker conditions than the additivity assumed by
Predd et al.

However, the Pettigrew–Nielsen–Pruss theorem still assumes the continuity of the
scoring rule. The purpose of the present paper is to identify what is the weakest possible
assumption on a strictly proper scoring rule as restricted to the probability functions
that guarantees the strict domination property.

We need some definitions to state our main result.
Say that a score s ∈ [– ∞,M ]Ω is finite provided that |s(�)| <∞ for all �. Note

that R
Ω is an n-dimensional vector space. Let 〈·, ·〉 be the usual scalar product on
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134 ALEXANDER R. PRUSS

R
Ω: 〈f, g〉 =

∑
� f(�)g(�) for anyf, g ∈ R

Ω. We say that a boundary point z of a set
G ⊆ R

Ω is positive-facing provided that G has a normal v at z all of whose components
are positive, i.e., there is a v ∈ (0,∞)Ω such that 〈v,w〉 ≤ 〈v, z〉 for all w ∈ G . Write
∂+G for the set of all the positive-facing boundary points.

Write ConvF for the convex hull of F, i.e., the union of all the line segments with
endpoints in F. A set A is dense in a set B in a topological space if every open set that
intersects B also intersects A (e.g., the rational numbers are dense in the reals).

Theorem 1. Consider a proper scoring rule s on P . Then the following conditions are
equivalent:

(a) For every extension of s to a quasi-strictly proper scoring rule s ′ : C →
[– ∞,M ]Ω, if c ∈ C\P , then there is a p ∈ P such that s ′(p) = s(p) strictly
dominates s ′(c).

(b) Either Eps(p) is infinite for some p ∈ P or both:
(i) For any sequence (pn) in P that converges to some probability function

p such that s(pn) is finite for all n while s(p) is not finite, we have
limn Epn s(pn) = Eps(p).

(ii) If F = s[P] ∩ R
Ω is the set of finite scores, then F is dense in ∂+ ConvF .

Combining the above with the following will yield a new proof of the Pettigrew–
Nielsen–Pruss theorem.

Proposition 1. Suppose that s is quasi-strictly proper and continuous on C. Then
condition (b) of Theorem 1 is fulfilled.

It follows from Lemma 3, below, that for any proper scoring rule s, the function
p �→ Eps(p) is continuous on the probabilities with finite score. Thus, in condition
(b)(i) of Theorem 1 we can drop the restriction that s(p) is not finite.

The proofs of the theorem and proposition will be given in Section 2.
Theorem 1 becomes simpler in the special case where all the values of the proper

scoring rule s are finite, because in that case condition (b)(i) is always satisfied, and
(b)(ii) is necessary and sufficient for the domination condition (a).

To visualize geometrically what the crucial condition (b)(ii) says, identify our space
Ω with the set {1, 2, ... , n}. Then a probability p can be thought of as a vector
in n-dimensional Euclidean space R

n whose kth coordinate is p({k}), with all the
coordinates non-negative and summing to one, and a score s(p) can be thought of
as an extended-real “vector” whose kth coordinate is s(p)(k). By abuse of notation,
in this geometrical explanation we won’t distinguish probabilities and the vectors
corresponding to them, or scores and the vectors corresponding to them (we will be a
little more careful when we get to proofs). Then F is the set of scores that lie in R

n. The
set ∂+ ConvF consists of those points z on the boundary of the convex hull of F such
that some ray starting at z whose direction is positive in every coordinate immediately
leaves the convex hull of F. Condition (b)(ii) then says that any such z is the limit of
some sequence s(pi) of finite scores of probabilities pi .

When we form the convex hull of F, we are adding to F various line segments to
obtain a convex set (a set that contains the line segment joining every pair of points
in it). Doing this may increase the positive-facing boundary of F to include some
additional line segments. Condition (b)(ii) then says that any point on any of these
additional line segments has a point of F arbitrarily close to it. In some sense, this
means that F doesn’t have any positive-facing open gaps.
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Fig. 1. Left: Calculating the score ofp = (3/7, 4/7) with � = �(p) = 0.927 > �/4. Right: Thick
lines and filled nodes indicate the set F. Shading indicates the convex hull. The set ∂+ ConvF
consists of of the thick lines, the thin line segment BC , and the filled and unfilled nodes.

We can illustrate this by describing a finite strictly proper scoring rule that does
not satisfy (b)(ii). Suppose Ω = {1, 2}, so our probabilities and scores are identified
with points in the plane R

2. Given a probability p, i.e., a non-zero vector with both
coordinates non-negative, let �(p) be the angle that p makes with the x-axis. Then �(p)
ranges between 0 and �/2 radians. If �(p) ≤ �/4, let s(p) be the point at angle �(p)
on the circle T1 of radius 1 with center (1, 0). Thus, s(p) = (1 + cos �(p), sin �(p)). If
�/4 < �(p), let s(p) be the point at angle �(p) on the circle T2 of radius 1 with center
(0, 1), so s(p) = (cos �(p), 1 + sin �(p)) (see Figure 1, left). This is a strictly proper
scoring rule.1 It’s worth noting if T1 and T2 were both the unit circle (so that the �/4
switchover was irrelevant), the resulting scoring rule would have been the spherical
scoring rule.

In Figure 1 (right), the set F of values (all finite) of s consists of an arc AB of T1

from angle 0 inclusive to �/4 inclusive together with an arc CD of T2 from angle �/4
to �/2. The convex hull of F consists of the shaded region in the figure as well as
some parts of the boundary of the shaded region2). The positive-facing boundary of
ConvF consists of the arcs AB and CD as well as the line segment BC , together with
all four endpoints. We can now see that F is not dense in ∂+ ConvF , because F has a
gap consisting of the interior of the line segment BC , while ConvF has positive-facing
boundary there.

1 Here is a quick geometric sketch why. Consider a probability p at angle �(p). Let L be
a line through s(p) tangent to the circle that s(p) is on (Figure 1, left). The line L is
tangent to one of our circles at the point s(p), which is at angle �(p) on the relevant circle.
Thus, L has angle �(p) + �/2 and is thus perpendicular to the vector p, which has angle
�(p) ∈ [0, �/2]. The line L cuts the plane into two open half-spaces. Let H be the half-space
that contains the origin (this half-space is below/left of L—see the figure). Then H is the
set of points z such that 〈p, z〉 < 〈p, s(p)〉, where 〈·, ·〉 is the dot product. But 〈p, z〉 = Epz
and 〈p, s(p)〉 = Eps(p). Now, all possible scores lie on the arcs AB and CD, with the point
C not being a possible score, and so it is easy to see (considering the case where s(p) is B
separately) that all the possible scores s(q) for q �= p lie below and/or to the left of the line
L. Hence they all satisfy Eps(q) < Eps(p), and we have strict propriety.

2 The set ConvF includes all of its topological boundary except for the point C and the interior
of the line segment BC , but it doesn’t matter for the definition of ∂+ ConvF which parts of
the boundary are members of ConvF .
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136 ALEXANDER R. PRUSS

Finally, we give a family of examples of proper scoring rules that satisfy (b)(i) and
(b)(ii) but are not continuous. The family will even include some scores that are finite
everywhere on Ω. LetR be the set of probabilities that are regular in the Bayesian sense,
i.e., probability functions p such that p({�}) > 0 for all �. Note that if p is regular
and s is strictly proper, then we must have Ep(s(p)) >– ∞ or else we couldn’t have
Ep(s(q)) < Ep(s(p)) for a different probability q. Then by regularity of p it follows
that s(p) is finite.

Let s be any continuous strictly proper everywhere-finite accuracy scoring rule.
Choose any α ∈ [– ∞,M ] such that α ≤ s(p)(�) for all p ∈ P and � ∈ Ω. Define
a scoring rule sα as follows. If either p /∈ P or p ∈ R, let sα(p) = s(p). If p ∈ P\R,
then let sα(p)(�) = s(p)(�) if p({�}) > 0, and sα(p)(�) = α if p({�}) = 0. In other
words, we have tweaked s so that in the case where the forecast assigns zero probability
to some outcome�, we assign α there. It is easy to see that sα is strictly proper because
Epsα(p) = Eps(p) and Epsα(q) ≤ Eqs(q) for all p, q ∈ P .

For a fixed �, the set of possible values of s(p)(�) is contained in a finite interval,
since a continuous function on a compact set takes on a compact set of values, and P
is compact. Thus we can choose α so that α < s(c)(�) for all �, letting α be – ∞ or a
finite value as we wish. Then sα will be discontinuous everywhere on P\R, since sα is
discontinuous wherever it differs from s. And if α is finite, then sα will be everywhere
finite as well.

We now show that sα satisfies the conditions of Theorem 1. First, s satisfies condition
(b) by Proposition 1, and hence it satisfies condition (a) by the theorem. Now let s ′α
be a quasi-strictly proper extension of sα to C. Define s ′(c) = s(c) for c ∈ P and
s ′(c) = s ′α(c) for c /∈ P . Then s ′ is quasi-strictly proper, because for any c /∈ P and
p ∈ P we have

Eps
′(c) = Eps ′α(c) < Epsα(p) = Eps(p) = Eps ′(p),

where the first inequality follows from the quasi-strict propriety of s ′α . Thus, because
s satisfies condition (a), for any c ∈ P there is a p ∈ P such that s ′(c) is strictly
dominated by s ′(p). Since s ′ is continuous on P and R is dense in P , we can choose
the probability p to be in R. Then s ′α(c) = s ′(c) will be strictly dominated by s ′(p) =
s(p) = sα(p), and so sα will satisfy condition (a) of the theorem, and hence also
condition (b).

Note that in the case where α =– ∞ the modified scoring rule s–∞ has some intuitive
plausibility for measuring the accuracy of a credence assignment or forecast. For if I
assign credence zero to an outcome� of our sample space, when in fact� is the actual
outcome, then I make an error that in an important sense is infinitely bad, because
no amount of Bayesian conditionalization on events with non-zero probability will get
me out of the error. The modified scoring rule s–∞ thus makes forecasts that are not
regular be much more risky than an everywhere finite scoring rule s does. I do not, of
course, propose that scoring rules like sα be generally adopted, but only want to note
that someone sufficiently attached to regularity might have some reason to do so.

§2. Proofs. Given a probability function p, let p̂ be the function from Ω to [0, 1]
defined by p̂(�) = p({�}). Define P̂ = {p̂ : p ∈ P} and R̂ = {p̂ : p ∈ R} (recall that
R is the set of regular probabilities, i.e., ones that are non-zero on every singleton).
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Thus, P̂ is the set of non-negative functions on Ω the sum of whose values is 1, and R̂
is the subset of the strictly positive ones.

Given p ∈ P̂ , let p̌ be the probability function such that p̌({�}) = p(�) for all
� ∈ Ω.

Given a scoring rule s defined on P , by abuse of notation let s(p) = s(p̌) for p ∈ P̂ .
Given two functions f and g from Ω to the extended reals, say that g strictly (weakly)

dominates f provided that f < g (f ≤ g) everywhere.
Let · be a multiplication operation on the extended reals with the stipulation that

a · 0 = 0 · a = 0 for any a, finite or not. With this stipulation, multiplication is upper
semicontinuous on [– ∞,∞) × [0, 1], and continuous at all (x, y) where x is finite or y
is positive. Now define the extended scalar product on X = [0, 1]Ω × [– ∞,∞)Ω by

〈f, g〉 =
∑

�∈Ω

f(�) · g(�),

using the above stipulation. The following properties are easy to check.

Lemma 1. (a) The extended scalar product is an upper semicontinuous function from
X to [– ∞,∞). Moreover, (b) it is continuous at any (f, g) such that either f is strictly
positive everywhere or g is finite everywhere. Finally, (c) for a fixed f ∈ [0, 1]Ω, the
function g �→ 〈f, g〉 is continuous on [– ∞,∞)Ω.

Observe that Epf = 〈p̂, f〉. This fact will allow us to go back and forth between
probabilistic concepts and geometric concepts.

For a subset F of RΩ and a vector v ∈ R
Ω, let

�F (v) = sup
z∈F

〈v, z〉

be the support function of F at v.

Lemma 2. Assume s is a proper scoring rule on P with Eps(p) finite for all p. Let F
be the set of finite scores. Suppose that for every convergent sequence (pn) of members
of P̂ with s(pn) ∈ F for all n, we have limn 〈pn, s(pn)〉 = 〈p, s(p)〉, where p = limn pn.
Then �F (p) = 〈p, s(p)〉 for all p ∈ P̂ .

Proof of Lemma 2. First, suppose s(p) ∈ F . Then for every z ∈ F we have 〈p, z〉 ≤
〈p, s(p)〉 by propriety. Since s(p) ∈ F , it follows that �F (p) = 〈p, s(p)〉.

Now suppose s(p) is not finite. Let (pn) be a sequence in R̂ converging to p. For
q ∈ R̂, the fact that Eqs(q) is finite implies that s(q) is finite, so s(pn) ∈ F for all n.
Using compactness and passing to a subsequence if necessary, assume that s(pn)
converges to some value z ∈ [– ∞,M ]Ω. Then

�F (p) ≥ lim
n

〈p, s(pn)〉 = 〈p, z〉 ≥ lim sup
n

〈pn, s(pn)〉 = 〈p, s(p)〉,

where the relations follow respectively by definition of�F , the continuity of the extended
scalar product for a fixed first argument (Lemma 1(c)), the upper semicontinuity of
the extended scalar product on X (Lemma 1(a)), and the assumptions of our present
lemma.

On the other hand:

〈p, s(p)〉 ≥ 〈p, s(q)〉

by propriety for all q ∈ P̂ . Hence 〈p, s(p)〉 ≥ �F (p). Thus, �F (p) = 〈p, s(p)〉.
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Lemma 3. Let s be a proper scoring rule on P . Let H = {p ∈ P̂ : s(p) is finite}. For
for any p in the closure H̄ of H, the limit of 〈q, s(q)〉 as q tends to p within H exists. If
s(p) is finite, the limit equals 〈p, s(p)〉. Finally, if pn is a sequence in H converging to
p ∈ H̄ such that limn s(pn) = r, then 〈p, r〉 = limn 〈pn, s(pn)〉.

Proof. Fix p ∈ H̄ . To show that a sequence converges to some member of a compact
set, it suffices to show that every convergent subsequence of it converges to the same
point. The set [– ∞,M ] is compact and 〈q, s(q)〉 ∈ [– ∞,M ] for all q. Thus to show the
existence of our limit, all we need to show is that if (pn) and (p′n) are two sequences in H
converging to p with 〈pn, s(pn)〉 → L and 〈p′n, s(p′n)〉 → L′, then L = L′. Moreover,
if we can show this, then letting p′n = p for all n, it will follow that L = s(p) if s(p) is
finite.

Thus, suppose (pn) and (p′n) are two sequences in H converging to p with 〈pn, s(pn)〉
and 〈p′n, s(p′n)〉 convergent. Passing to subsequences if necessary, assume that s(pn)
and s(p′n) converge respectively to r and r′ in [– ∞,M ]Ω.

I now claim that 〈p, r〉 = limn 〈pn, s(pn)〉. First, note that

lim sup
n

〈pn, s(pn)〉 ≤ 〈p, r〉

by Lemma 1(a). Next observe that for any fixed m we have

〈pn, s(pn)〉 ≥ 〈pn, s(pm)〉

by propriety. Since s(pm) is finite as pm ∈ H , by Lemma 1(b) the right-hand side
converges to 〈p, s(pm)〉 as n → ∞. Thus,

lim inf
n

〈pn, s(pn)〉 ≥ 〈p, s(pm)〉.

Taking the limit as m → ∞ and using Lemma 1(c) we get

lim inf
n

〈pn, s(pn)〉 ≥ 〈p, r〉.

Thus we have 〈p, r〉 = limn 〈pn, s(pn)〉, which is the final remark in the statement of
our lemma.

Thus,

〈p, r′〉 = lim
m

〈p, s(p′m)〉

= lim
m

lim
n

〈pn, s(p′m)〉

≤ lim
m

lim
n

〈pn, s(pn)〉

= lim
m

〈p, r〉 = 〈p, r〉,

where the first equality was due to Lemma 1(c), the second due to Lemma 1(b) and the
finiteness of s(p′m), and the inequality was due to propriety. In exactly the same way,
〈p, r〉 ≤ 〈p, r′〉. Thus, 〈p, r〉 = 〈p, r′〉. But 〈p, r′〉 = limn 〈p′n, s(p′n)〉, just as we proved
in the unprimed case. Thus, limn 〈pn, s(pn)〉 = limn 〈p′n, s(p′n)〉.

Lemma 4. Let F be a nonempty subset of [– ∞,∞)Ω. Suppose z0 ∈ [– ∞,∞)Ω is such
that 〈p, z0〉 < �F (p) for all p ∈ P̂ . Then z0 is strictly dominated by some member of
Conv(F ).
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Proof of Lemma 4. Let z0 be as in the statement of the lemma. Let Q = {z ∈ R
Ω :

∀�(z(�) > z0(�))} be the set of points of RΩ strictly dominating z0. We need to show
that Q ∩ Conv(F ) �= ∅.

Suppose that Q does not intersect Conv(F ). Both Q and Conv(F ) are convex sets.
Thus by hyperplane separation, there is a non-zero p ∈ R

Ω and an α ∈ R such that
〈p, z〉 ≥ α for all z ∈ Q and 〈p, z〉 ≤ α for all z ∈ Conv(F ).

I claim that p(�) ≥ 0 for all �. To see this, suppose p(�0) < 0 for some �0 ∈ Ω.
Let z be any member of Q. Let 	 = 〈p, z〉. Let z ′(�) = z(�) for � �= �0 and z ′(�0) =
z(�0) + (α – 	 – 1)/p(�0). Then z ′ ∈ Q since z ∈ Q while 	 ≥ α and p(�0) < 0.
Observe that

〈p, z ′〉 = 〈p, z〉 + (α – 	 – 1) = α – 1,

which is impossible as 〈p, z ′〉 ≥ α since z ′ ∈ Q.
Rescaling if necessary, we may assume that

∑
� p(�) = 1 and hence p ∈ P̂ .

Since z0 is on the boundary of Q ⊆ [– ∞,∞)Ω, by the upper semicontinuity of
the extended scalar product (Lemma 1(a)) we have 〈p, z0〉 ≥ α. Moreover, since
〈p, z〉 ≤ α for all z ∈ Conv(F ), we must have �F (p) ≤ α. Thus, 〈p, z0〉 ≥ �F (p), which
contradicts the assumptions of the lemma.

Say that a vector v is normal to a convex set G at a point z1 ∈ G provided that
〈v, z〉 ≤ 〈v, z1〉 for all z ∈ G . The following lemma is due to a MathOverflow user [2].
Given a point z ∈ R

n, letQz be the positive orthant Rn+ = (0,∞)n translated to put its
vertex at z, i.e., Qz = {z + w : w ∈ R

n
+}.

Lemma 5. Fix z1 ∈ R
n. Let G be a closed convex subset of Rn whose intersection with

Qz1 is non-empty and bounded. Then there is a vector v in the positive orthant Rn+ that is
normal to G at some point z ∈ G ∩Qz1 .

Proof. Translating G as needed, assume without loss of generality that z1 = 0 and
Qz1 = R

n
+.

Let f(x1, ... , xn) = x1 ···xn be the product-of-coordinates function. Let
U = G ∩ R

n
+. Then f is a continuous function on the closure Ū of U in R

n. Moreover,
Ū is compact by the boundedness requirement, so f attains a maximum on Ū . This
maximum is not attained on the boundary of R

n
+, i.e., on any point with a zero

coordinate, since f is zero at any such point, while there is at least one point in Ū
where f is strictly positive (since f is non-zero everywhere on U �= ∅). Hence, the
maximum is attained at a point z of U. That point cannot be an interior point (since
then z + (ε, ... , ε) would be in U and f would be bigger there than at z), so it must be a
boundary point of U that isn’t a boundary point of Rn+. Thus, z must be a boundary
point of G. The basic normal cone condition for optimality tells us that the gradient
of f must be normal to U at z for a differentiable f to be optimal at z over U (see
[11, theorem 6.12] in the case of minima). Since R

n
+ is a neighborhood of z, and the

intersection of U with that neighborhood is the same as that of G with it, it follows
that the gradient of f must be normal to G at z. But the gradient of f on R

n
+ always

lies in R
n
+, which completes the proof.

Let ‖z‖∞ = max�∈Ω |z(w)| for z ∈ [– ∞,∞)Ω and let

B(z, r) = {z ′ : ‖z ′ – z‖∞ < r}
be the open ball of radius r around a finite z in this norm.
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Lemma 6. Fix p ∈ R̂ and α ∈ R, and let K = {y ∈ [– ∞,∞)Ω : 〈p, y〉 ≤ α}. Fix
ε > 0 and x ∈ R

Ω such that 〈p, x〉 = α. Then there is a � ∈ (0, ε) such that no point of
K ∩ B(x, �) is weakly dominated by any point of K\B(x, ε).

Proof of Lemma 6. Translating if necessary, without loss of generality assume x = 0
and α = 0. Fix y ∈ K ∩ B(0, �). Suppose that y is weakly dominated by z ∈ K .

Then – z(�) ≤– y(�) ≤ � for all � and
∑
� z(�)p(�) ≤ 0 as well as∑

� y(�)p(�) ≤ 0. Let c = 1/min� p(�). Then for any �:

z(�) ≤–

∑
�′ �=� z(�

′)p(�′)

p(�)
≤–

∑
�′ �=� y(�′)p(�′)

p(�)
≤

∑
�′ �=� �p(�′)

p(�)
≤ c�.

Moreover – � ≤ z(�) and c ≥ 1, so ‖z‖∞ ≤ c�. Thus, we have shown that if y ∈
K ∩ B(0, �) is weakly dominated by z ∈ K\B(x, ε), then ε ≥ c�. Hence, if ε > 0 is
fixed, any choice of � ∈ (0, c–1ε) will complete the proof.

Proof of Theorem 1. If Eps(p) is infinite (i.e., equal to – ∞ since we are working
with accuracy scores) for some probability function p, then s has no extension to a
quasi-strictly proper scoring rule on C, as no point z ∈ [– ∞,∞)Ω will be such that
Epz < Eps(p). Thus, we may assume for all our proofs that Eps(p) is finite for all
probabilities p, and hence that so is 〈p̂, s(p̂)〉.

Without loss of generality, assume we have accuracy scores with ranges in [– ∞, – 1].
Recall that Eps(q) = 〈p̂, s(q̂)〉. If (i) fails, then there is a sequence pn → p in P̂

such that 〈pn, s(pn)〉 does not converge to 〈p, s(p)〉 while s(pn) is finite and s(p) is
infinite. By Lemma 3, limn 〈pn, s(pn)〉 = L exists and cannot equal 〈p, s(p)〉. Passing
to a subsequence if necessary, we may assume that s(pn) has a limit r ∈ [– ∞, – 1]Ω,
and then

lim
n

〈pn, s(pn)〉 = 〈p, r〉 (1)

by the same lemma.
Note that

〈q, r〉 = lim
n

〈q, s(pn)〉 ≤ 〈q, s(q)〉

for all q ∈ P̂ by Lemma 1(c) and propriety. In particular,L = 〈p, r〉 ≤ 〈p, s(p)〉. Thus,
L < 〈p, s(p)〉 since 〈pn, s(pn)〉 does not converge to 〈p, s(p)〉. Further, 〈p, s(p)〉 is
negative since our accuracy scores are negative. Choose α ∈ (1, L/〈p, s(p)〉) so that

α〈p, s(p)〉 > L = 〈p, r〉. (2)

Let x = αs(p).
Infinite scores cannot strictly dominate any score. Now I claim that x is not weakly

dominated by any finite score. For suppose that s(q) is finite. Then by Lemma 1(b),
propriety, (1) and (2) we have

〈p, s(q)〉 = lim
n

〈pn, s(q)〉 ≤ lim
n

〈pn, s(pn)〉 = 〈p, r〉 < α〈p, s(p)〉 = 〈p, x〉.

And this implies that x is not strictly dominated by s(q).
On the other hand,

〈q, x〉 = α〈q, s(p)〉 ≤ α〈q, s(q)〉 < 〈q, s(q)〉 (3)

for any q ∈ P̂ since α > 0 and our scores are negative.
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Now define s ′(c) = s(c) if c ∈ P and s ′(c) = x if c ∈ C\P . Then s ′ is quasi-strictly
proper by (3), but s ′(c) is not dominated by any score of a probability. Hence condition
(a) fails.

Now suppose (ii) fails. Thus there is a z0 ∈ ∂+ ConvF and ε > 0 such that
F ∩ B(z0, ε) = ∅. Then ConvF has a normal in (0,∞)Ω at z0. Rescaling if necessary,
we can assume that normal is somep ∈ R̂. LetK = {z ∈ [–∞,∞)Ω : 〈p, z〉 ≤ 〈p, z0〉},
which then contains ConvF . By Lemma 6, there is a � ∈ (0, ε) such that no point in
B(z0, �) is strictly dominated by any point inK\B(z0, ε). Choose a point z1 in B(z0, �)
that is strictly dominated by z0. Note that z0 is a limit of convex combinations of
points of F. If q is any member of P̂ and u is any point of F, then 〈q, u〉 ≤ 〈q, s(q)〉 by
propriety. Thus, the same is true if u is a convex combination of points of F, and by
Lemma 1(c) also if u is a limit of convex combinations of points of F.

Hence, 〈q, z0〉 ≤ 〈q, s(q)〉 for all q ∈ P̂ . Since z1 is strictly dominated by z0, it follows
that 〈q, z1〉 < 〈q, s(q)〉 for all q ∈ P̂ .

On the other hand, since z1 is not strictly dominated by anything in K\B(z0, ε),
it’s not strictly dominated by anything in F as ConvF ⊆ K . Much as before, let
s ′(c) = s(c) if c is a probability function and s ′(c) = z1 if c is not a probability
function. As before, we have strict quasi-propriety and yet no credence that isn’t a
probability is strictly s ′-dominated by any probability function.

Now suppose that (i) and (ii) hold. Let s ′ be an extension of s to a quasi-strictly
proper scoring rule defined for all credences. Fix a non-probability credence c and
let z0 = s ′(c). By (i) and Lemma 2, 〈p, s(p)〉 = �F (p) for all p. By Lemma 4 and
quasi-strict propriety, z0 is strictly dominated by some member of Conv(F ).

Let G be the closure of Conv(F ) in R
Ω. Then there is a point z1 ∈ (–∞,∞)Ω such

that z0 is strictly dominated by z1 and z1 is strictly dominated by some member of
G (e.g., if z2 is a point of G that strictly dominates z0, then let z1(�) = z2(�) – 1 if
z0(�) is infinite, and z1(�) = (z0(�) + z2(�))/2 otherwise). Let Q = Qz1 be the set
of points of (– ∞,∞)Ω that strictly dominate z1. Then Q ∩G is non-empty. Note that
every point z of F satisfies

〈u, z〉 ≤ 〈u, s(u)〉 (4)

by propriety, where u(�) = 1/|Ω| for all �, and hence every point z of G satisfies (4)
as well (a convex combination of points z satisfying (4) will satisfy it as well, and by
Lemma 1(c), so will every point in the closure of ConvF ). Moreover, 〈u, s(u)〉 is finite.
The set of points z ∈ Q such that 〈u, z〉 ≤ 〈u, s(u)〉 is bounded, and hence Q ∩G is
bounded.

Since Q ∩G is bounded and non-empty, by Lemma 5 (letting n = |Ω| so that RΩ

and R
n are isomorphic as vector spaces), there is a z3 ∈ Q ∩G such that z3 ∈ G has a

normal in the positive orthant. Thus, z3 ∈ ∂+G = ∂+ ConvF . By condition (ii), there
are points of F arbitrarily close to z2. Since z2 strictly dominates z0, so do points that
are sufficiently close to z2, and hence some point of F strictly dominates z0.

Proof of Proposition 1. Suppose s is continuous. We must have Eps(p) finite for all
probability functions p or else quasi-strict propriety is impossible. It follows that the
score of any regular probability is finite.

By Lemma 1(a), p �→ 〈p, s(p)〉 is upper semicontinuous on P̂ if the scoring rule is
continuous.
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Moreover, 〈p, s(p)〉 = supq∈P 〈p, s(q)〉. Since R̂ is dense in P̂ and q �→ 〈p, s(q)〉
is continuous for a fixed p (using Lemma 1(c)), it follows that supq∈P̂ 〈p, s(q)〉 =
supq∈R̂ 〈p, s(q)〉. Moreover, since every score of a regular probability is finite, p �→
〈p, s(q)〉 is continuous by Lemma 1(b) for q ∈ R̂. Thus, p �→ supq∈R̂ 〈p, s(q)〉 is the
supremum of continuous functions and hence it is lower semicontinuous at these points.
(This observation is due to Nielsen (2021).)

Hence, p �→ 〈p, s(p)〉 is continuous at every point of P̂ , and so we have (i).
It remains to prove (ii). Assume first that s is strictly proper. Let F be the set of

finite scores of probabilities. Then F considered as a subset of RΩ is closed, since it is
the intersection with R

Ω of the set of scores of probability functions, and the set of
probability functions is compact while s is continuous. Moreover, for any p ∈ P̂ , we
have 〈p, s(p)〉 > 〈p, z〉 for all z ∈ F \{s(p)}. It follows that for any p, the only point
z in the closed convex hull of F such that 〈p, s(p)〉 = 〈p, z〉 is s(p) itself, from which
(ii) follows.

Now, suppose s is merely quasi-strictly proper. Let b : C → [– 1, 0] be any strictly
proper continuous accuracy score, for instance – 1 plus the Brier score. Let sε = s + εb
for any ε > 0. Then sε is a strictly proper continuous score, and (ii) must hold for it.
Let Fε = sε[P] ∩ R

Ω.
Now, consider a point z0 ∈ ∂+ ConvF . Fix ε > 0. We will show that there is a point

of F within distance ε of z0. Let � = ε/4. Thus there is a p ∈ R̂ (since any vector in the
positive orthant (0,∞)Ω can be rescaled to get a vector in R̂) such that 〈p, z〉 ≤ 〈p, z0〉
for all z ∈ F . The point z0 is a convex combination z0 = c1w1 + ··· + cnwn of points
of F, where ci > 0 and

∑
i ci = 1. We then have to have 〈p,wi〉 = 〈p, z0〉 for each i.

Choose pi ∈ P̂ such that wi = s(pi). Since s� is continuous and R̂ is dense in P̂ , for
each i choose p′i of R̂ such that ‖s�(p′i) – s�(pi)‖∞ ≤ �. Then ‖wi – s�(pi)‖∞ ≤ 2�
since s� is never more than � away from s.

Let z ′0 =
∑
i ci s�(p

′
i). Then, ‖z ′0 – z0‖∞ ≤ 2�. Note that s�(p′i) ∈ ∂+Fε , since

p′i ∈ (0,∞)Ω is normal to Fε at s�(p′i) by the propriety of s� . Applying the strictly
proper case of our proposition to s� , we conclude that there is a p ∈ P̂ such that
‖s�(p) – z ′0‖∞ ≤ � and s�(p) ∈ Fε . Then, ‖s(p) – z ′0‖∞ ≤ 2�, and so ‖s(p) – z0‖∞ ≤
4� = ε, which completes the proof.
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