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THE AVERAGE DISTANCE BETWEEN TWO POINTS
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Abstract

We provide bounds on the average distance between two points uniformly and independently chosen from
a compact convex subset of the s-dimensional Euclidean space.
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Let X be a compact convex subset of the s-dimensional Euclidean space Rs and
assume that we choose uniformly and independently two points from X . How large
is the expected Euclidean distance ‖ · ‖ between these two points? In other words, we
require the quantity

a(X) := E[‖x − y‖] =
1

λ(X)2

∫
X

∫
X
‖x − y‖ dλ(x) dλ(y),

where λ denotes the s-dimensional Lebesgue measure. This problem was stated
in [1, 2, 4, 5]. Note that there is a close connection between this problem and that
of finding the moments of the length of random chords (see [8, Ch. 4, Section 2] or
[9, Ch. 2]).

Trivially a(X)≤ d(X), where d(X)=max{‖x − y‖ : x, y ∈ X} is the diameter
of X . The following results are well known from the literature.

EXAMPLE 1.

(1) For all compact convex subsets of R (the intervals) we have a(X)= d(X)/3.
(2) If X ⊆ Rs is a ball with diameter d(X), then

a(X)=
s

2s + 1
βs d(X),
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where

βs =


23s+1((s/2)!)2s!

(s + 1)(2s)!π
for even s,

2s+1(s!)3

(s + 1)(((s − 1)/2)!)2(2s)!
for odd s.

For a proof see [4] or [8]. In particular, if X is a disc in R2 with diameter d(X),
then

a(X)= 64d(X)/(45π)= 0.45271 . . . d(X).

(3) If X ⊆ R2 is a rectangle of sides a ≥ b, then (see [8])

a(X) =
1
15

[
a3

b2 +
b3

a2 + d

(
3−

a2

b2 −
b2

a2

)
+

5
2

(
b2

a
log

a + d

b
+

a2

b
log

b + d

a

)]
,

where d = d(X)=
√

a2 + b2. In particular, if X is a square, then

a(X)= (2+
√

2+ 5 log(
√

2+ 1))
d(X)

15
√

2
= 0.36869 . . . d(X).

(4) If X is a cube in Rs , then

a(X)=
1
√

6

(
1−

7
40s
−

65

869s2 + · · ·

)
d(X)

and

a(X)≤
1
√

6

(
1+ 2

√
1− 3/(5s)

3

)1/2

d(X).

For a proof of the asymptotic formula see [5], and for a proof of the upper
bound see [2].

(5) If X ⊆ R2 is an equilateral triangle of side a, then (see [8])

a(X)=
3a

5

(
1
3
+

log 3
4

)
.

In the following we prove a general bound on a(X) for X ⊆ Rs with fixed diameter
d(X)= 1. Furthermore, we present two results which may be useful to give upper and
lower bounds on a(X).

Denote by M(X) the space of all regular Borel probability measures on X . It is
well known that M(X) equipped with the w∗-topology becomes a compact convex
space. For x ∈ X , let δx ∈M(X) be the point measure concentrated on x . It is easy to
show that the set {δx | x ∈ X} is the set of all extreme points of M(X) and hence from
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the Krein–Milman theorem we find that M(X) is the w∗-closure of the convex hull of
{δx | x ∈ X}. Let F = {(1/n)

∑n
i=1 δxi | x1, . . . , xn ∈ X, n ∈ N}. Then one can show

that F is the set of all convex combinations with rational coefficients of extreme points
of M(X). Now, since Q is dense in R, we deduce from the above considerations that F
is dense in M(X).

For any µ ∈M(X), we define

I (µ) :=
∫

X

∫
X
‖x − y‖ dµ(x) dµ(y).

It is known that the mapping I :M(X)→ R is continuous with respect to the
w∗-topology on M(X) (see [10, Lemma 1]). Note that a(X)= I (λ′) where λ′ is the
normalized Lebesgue measure on X .

REMARK 2. Let X be a compact subset of Rs and let (xn)n≥0 be a sequence which is
uniformly distributed in X with respect to the normalized Lebesgue measure λ′ on X ,
that is, µN := N−1 ∑N−1

i=0 δxi → λ′ with respect to w∗-topology on M(X). Then by
continuity of I we obtain

1

N 2

N−1∑
i, j=0

‖xi − x j‖ = I (µN )→ I (λ′)= a(X) as N →∞.

THEOREM 3. Let X be a compact subset of Rs with diameter d(X)= 1. Then

a(X)≤

√
2s

s + 1
2s−20(s/2)2

0(s − 1/2)
√
π
,

where 0 denotes the gamma function. For s = 2 this bound can be improved to

a(X)≤
229
800
+

44
75

√
2−
√

3+
19
480

√
5= 0.678442 . . . .

PROOF. We have
a(X)= I (λ′)≤ sup

µ∈M(X)
I (µ).

Since I :M(X)→ R is continuous with respect to the w∗-topology on M(X) and F
is dense in M(X) we obtain

sup
µ∈M(X)

I (µ)= sup
n∈N,x1,...,xn∈X

1

n2

n∑
i, j=1

‖xi − x j‖.

It was shown by Nickolas and Yost [6] that, for all x1, . . . , xn ∈ X ⊆ Rs with
d(X)= 1,

1

n2

n∑
i, j=1

‖xi − x j‖ ≤

√
2s

s + 1
2s−20(s/2)2

0(s − 1/2)
√
π
.
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For s = 2 it was shown by Pillichshammer [7] that, for all x1, . . . , xn ∈ R2 with
‖xi − x j‖ ≤ 1,

1

n2

n∑
i, j=1

‖xi − x j‖ ≤
229
800
+

44
75

√
2−
√

3+
19
480

√
5= 0.678442 . . . .

The result follows from these bounds. 2

REMARK 4. Note that it is not true in general that X ⊆ Y implies a(X)≤ a(Y ).
For example, for h > 0, let Ah denote the right triangle with vertices
{(0, 0), (1, 0), (1, h)}. Then

a(Ah) =
4

h2

∫ 1

0

∫ hx1

0

∫ 1

0

∫ hx2

0

√
(x1 − x2)2 + (y1 − y2)2 dy2 dx2 dy1 dx1

≥ 4
∫ 1

0

∫ 1

0

1

h2

∫ hx1

0

∫ hx2

0
|x1 − x2| dy2 dy1 dx2 dx1

= 4
∫ 1

0

∫ 1

0
|x1 − x2|x1x2 dx2 dx1 =

4
15
.

On the other hand,

a(Ah)≤ 4
∫ 1

0

∫ 1

0
x1x2

√
(x1 − x2)2 + h2 dx2 dx1

and hence limh→0+ a(Ah)= 4/15. Thus for any ε > 0 there is a h0 > 0 such that,
for all 0< h < h0, |a(Ah)− 4/15|< ε.

For l > 0, let Bl be the rectangle with vertices {(0, 0), (1, 0), (1,−l), (0,−l)}.
Then from Example 1 we obtain liml→0+ a(Bl)= 1/3. Thus for any ε > 0 there is
a l0 > 0 such that, for all 0< l < l0, |a(Bl)− 1/3|< ε.

Now let ε, δ > 0. Choose 0< h <min{1, h0}, and 0< l <min{1, l0} small enough
such that λ(Bl) < δλ(Ah) and let Ch,l := Ah ∪ Bl . Then

a(Ch,l) =
λ(Ah)

2

(λ(Ah)+ λ(Bl))2
a(Ah)+

λ(Bl)
2

(λ(Ah)+ λ(Bl))2
a(Bl)

+
2

(λ(Ah)+ λ(Bl))2

∫
Ah

∫
Bl

‖x − y‖ dλ(x) dλ(y)

< a(Ah)+

(
δ

1+ δ

)2

a(Bl)+
3δ

1+ δ
<

4
15
+ ε + δ2

(
1
3
+ ε

)
+ 3δ.

Hence if we choose 1/60> ε > 0 and δ > 0 small enough we can obtain
a(Ch,l) < 3/10. Of course Bl ⊆ Ch,l , but

a(Bl)≥
1
3 − ε ≥

19
60 >

3
10 > a(Ch,l).
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LEMMA 5.

(1) Let X and Y be compact sets in Rs with λ(X ∩ Y )= 0. Then

λ(X ∪ Y )a(X ∪ Y )≥ λ(X)a(X)+ λ(Y )a(Y ).

(2) Let X ⊆ Y be compact sets in Rs . Then

λ(X)a(X)≤ λ(Y )a(Y ).

PROOF. (1) We have

a(X ∪ Y ) =
λ(X)2

(λ(X)+ λ(Y ))2
a(X)+

λ(Y )2

(λ(X)+ λ(Y ))2
a(Y )

+ 2
λ(X)λ(Y )

(λ(X)+ λ(Y ))2
1

λ(X)λ(Y )

∫
X

∫
Y
‖x − y‖ dλ(x) dλ(y).

For any regular Borel probability measures µ and ν on a subset A of the Euclidean
space Rs we have (see [10, Equation (∗∗)])

2
∫

A

∫
A
‖x − y‖ dµ(x) dν(y)≥ I (µ)+ I (ν).

Now let A = X ∪ Y , let µ be the probability measure on A which is the normalized
Lebesgue measure on X and which is zero on Y and let ν be the probability measure
on A which is the normalized Lebesgue measure on Y and which is zero on X . Then

2
λ(X)λ(Y )

∫
X

∫
Y
‖x − y‖ dλ(x) dλ(y)= 2

∫
A

∫
A

∫
Y
‖x − y‖ dµ(x) dν(y)

≥

∫
X∪Y

∫
X∪Y
‖x − y‖ dµ(x) dµ(y)+

∫
X∪Y

∫
X∪Y
‖x − y‖ dν(x) dν(y)

= a(X)+ a(Y ).

Hence

(λ(X)+ λ(Y ))2a(X ∪ Y ) ≥ λ(X)2a(X)+ λ(Y )2a(Y )+ λ(X)λ(Y )(a(X)+ a(Y ))

= (λ(X)a(X)+ λ(Y )a(Y ))(λ(X)+ λ(Y )).

(2) This assertion follows from the first one. 2

COROLLARY 6. Let X ⊆ Rs be compact and convex and let r = r(X) be the in-radius
and R = R(X) be the circumradius of X. Then

π s/2

0(s/2+ 1)
2s

2s + 1
βsr s+1

≤ λ(X)a(X)≤
π s/2

0(s/2+ 1)
2s

2s + 1
βs Rs+1

with equality if X is a ball. In particular, for s = 2 we have

128
45

r3
≤ λ(X)a(X)≤ R3 128

45
with equality if X is a disc.
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PROOF. Let Kin be the in-ball and let Kcirc be the circumscribed ball of X . From
Lemma 5 we obtain λ(Kin)a(Kin)≤ λ(X)a(X)≤ λ(Kcirc)a(Kcirc) and the result
follows from Example 1 (note that the volume of an s-dimensional ball of radius t > 0
is given by π s/2t s/0(s/2+ 1)). 2

REMARK 7. It follows from a result of Blaschke [3] that, for any plane compact
convex X ⊆ R2,

a(X)≥
128
45π

√
λ(X)

π

with equality if X is a disc. In many cases this bound yields better results than the
lower bound from Corollary 6 in the plane case (see Examples 8 and 10 below). For
more information see [8, Ch. 4, Section 2] or [9, Ch. 2, Equation (2.55)].

EXAMPLE 8. For n ∈ N, n ≥ 3, let Xn ⊆ R2 be the regular n-gon with vertices on
the unit circle. Then λ(Xn)= (n/2) sin(2π/n), R = 1 and r = cos(π/n). Hence we
obtain

256
45

cos3(π/n)

n sin(2π/n)
≤ a(Xn)≤

256
45

1
n sin(2π/n)

.

From Remark 7 we even obtain the lower bound

a(Xn)≥
128
45π

√
n

2π
sin

2π
n

which is slightly better than the lower bound above. Note that

lim
n→∞

128
45π

√
n

2π
sin

2π
n
= lim

n→∞

256
45

cos3(π/n)

n sin(2π/n)
= lim

n→∞

256
45

1
n sin(2π/n)

=
128
45π

.

In some cases the following easy lemma gives better estimates than Corollary 6.

LEMMA 9. Let X be a compact subset of Rs and let T : Rs
→ Rs be a linear mapping

with norm ‖T ‖2. Then we have a(T (X))≤ a(X)‖T ‖2.

EXAMPLE 10. Let X be an ellipse x2
+ y2/b2

≤ 1 in the Euclidean plane with
0< b ≤ 1. Then X = T (K ) where K is the disc with diameter 2 and center in
the origin and where T =

(
1 0
0 b

)
. It is easy to see that ‖T ‖2 =max{1, |b|} = 1 and

‖T−1
‖2 = 1/b. Then from Lemma 9 we obtain

b
128
45π
= ba(K )≤ a(X)≤ a(K )=

128
45π

whereas from Corollary 6 we would just obtain

b2 128
45π
≤ a(X)≤

1
b

128
45π

.

From Remark 7 we obtain the lower bound a(X)≥
√

b(128/45π).
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