Bull. Aust. Math. Soc. 80 (2009), 353–359 doi:10.1017/S0004972709000707

THE AVERAGE DISTANCE BETWEEN TWO POINTS

BERNHARD BURGSTALLER and FRIEDRICH PILLICHSHAMMER[™]

(Received 19 May 2008)

Abstract

We provide bounds on the average distance between two points uniformly and independently chosen from a compact convex subset of the *s*-dimensional Euclidean space.

2000 *Mathematics subject classification*: primary 52A22; secondary 60D05. *Keywords and phrases*: distance geometry, random convex sets, average distance.

Let *X* be a compact convex subset of the *s*-dimensional Euclidean space \mathbb{R}^s and assume that we choose uniformly and independently two points from *X*. How large is the expected Euclidean distance $\|\cdot\|$ between these two points? In other words, we require the quantity

$$a(X) := \mathbb{E}[\|x - y\|] = \frac{1}{\lambda(X)^2} \int_X \int_X \|x - y\| \, d\lambda(x) \, d\lambda(y),$$

where λ denotes the *s*-dimensional Lebesgue measure. This problem was stated in [1, 2, 4, 5]. Note that there is a close connection between this problem and that of finding the moments of the length of random chords (see [8, Ch. 4, Section 2] or [9, Ch. 2]).

Trivially $a(X) \le d(X)$, where $d(X) = \max\{||x - y|| : x, y \in X\}$ is the diameter of *X*. The following results are well known from the literature.

EXAMPLE 1.

- (1) For all compact convex subsets of \mathbb{R} (the intervals) we have a(X) = d(X)/3.
- (2) If $X \subseteq \mathbb{R}^s$ is a ball with diameter d(X), then

$$a(X) = \frac{s}{2s+1}\beta_s \, d(X),$$

^{© 2009} Australian Mathematical Publishing Association Inc. 0004-9727/2009 \$16.00

where

$$\beta_{s} = \begin{cases} \frac{2^{3s+1}((s/2)!)^{2}s!}{(s+1)(2s)!\pi} & \text{for even } s, \\ \frac{2^{s+1}(s!)^{3}}{(s+1)(((s-1)/2)!)^{2}(2s)!} & \text{for odd } s. \end{cases}$$

For a proof see [4] or [8]. In particular, if X is a disc in \mathbb{R}^2 with diameter d(X), then

$$a(X) = 64d(X)/(45\pi) = 0.45271 \dots d(X).$$

(3) If $X \subseteq \mathbb{R}^2$ is a rectangle of sides $a \ge b$, then (see [8])

$$a(X) = \frac{1}{15} \left[\frac{a^3}{b^2} + \frac{b^3}{a^2} + d\left(3 - \frac{a^2}{b^2} - \frac{b^2}{a^2}\right) + \frac{5}{2} \left(\frac{b^2}{a} \log \frac{a+d}{b} + \frac{a^2}{b} \log \frac{b+d}{a}\right) \right],$$

where $d = d(X) = \sqrt{a^2 + b^2}$. In particular, if X is a square, then

$$a(X) = (2 + \sqrt{2} + 5\log(\sqrt{2} + 1))\frac{d(X)}{15\sqrt{2}} = 0.36869\dots d(X).$$

(4) If X is a cube in \mathbb{R}^s , then

$$a(X) = \frac{1}{\sqrt{6}} \left(1 - \frac{7}{40s} - \frac{65}{869s^2} + \cdots \right) d(X)$$

and

$$a(X) \le \frac{1}{\sqrt{6}} \left(\frac{1 + 2\sqrt{1 - 3/(5s)}}{3} \right)^{1/2} d(X).$$

For a proof of the asymptotic formula see [5], and for a proof of the upper bound see [2].

(5) If $X \subseteq \mathbb{R}^2$ is an equilateral triangle of side *a*, then (see [8])

$$a(X) = \frac{3a}{5} \left(\frac{1}{3} + \frac{\log 3}{4}\right).$$

In the following we prove a general bound on a(X) for $X \subseteq \mathbb{R}^s$ with fixed diameter d(X) = 1. Furthermore, we present two results which may be useful to give upper and lower bounds on a(X).

Denote by $\mathcal{M}(X)$ the space of all regular Borel probability measures on X. It is well known that $\mathcal{M}(X)$ equipped with the w^* -topology becomes a compact convex space. For $x \in X$, let $\delta_x \in \mathcal{M}(X)$ be the point measure concentrated on x. It is easy to show that the set $\{\delta_x \mid x \in X\}$ is the set of all extreme points of $\mathcal{M}(X)$ and hence from

354

the Krein–Milman theorem we find that $\mathcal{M}(X)$ is the w^* -closure of the convex hull of $\{\delta_x \mid x \in X\}$. Let $\mathcal{F} = \{(1/n) \sum_{i=1}^n \delta_{x_i} \mid x_1, \ldots, x_n \in X, n \in \mathbb{N}\}$. Then one can show that \mathcal{F} is the set of all convex combinations with rational coefficients of extreme points of $\mathcal{M}(X)$. Now, since \mathbb{Q} is dense in \mathbb{R} , we deduce from the above considerations that \mathcal{F} is dense in $\mathcal{M}(X)$.

For any $\mu \in \mathcal{M}(X)$, we define

$$I(\mu) := \int_X \int_X \|x - y\| \, d\mu(x) \, d\mu(y).$$

It is known that the mapping $I : \mathcal{M}(X) \to \mathbb{R}$ is continuous with respect to the w^* -topology on $\mathcal{M}(X)$ (see [10, Lemma 1]). Note that $a(X) = I(\lambda')$ where λ' is the normalized Lebesgue measure on X.

REMARK 2. Let *X* be a compact subset of \mathbb{R}^s and let $(x_n)_{n\geq 0}$ be a sequence which is uniformly distributed in *X* with respect to the normalized Lebesgue measure λ' on *X*, that is, $\mu_N := N^{-1} \sum_{i=0}^{N-1} \delta_{x_i} \to \lambda'$ with respect to w^* -topology on $\mathcal{M}(X)$. Then by continuity of *I* we obtain

$$\frac{1}{N^2} \sum_{i,j=0}^{N-1} \|x_i - x_j\| = I(\mu_N) \to I(\lambda') = a(X) \quad \text{as } N \to \infty.$$

THEOREM 3. Let X be a compact subset of \mathbb{R}^s with diameter d(X) = 1. Then

$$a(X) \le \sqrt{\frac{2s}{s+1}} \frac{2^{s-2} \Gamma(s/2)^2}{\Gamma(s-1/2)\sqrt{\pi}},$$

where Γ denotes the gamma function. For s = 2 this bound can be improved to

$$a(X) \le \frac{229}{800} + \frac{44}{75}\sqrt{2-\sqrt{3}} + \frac{19}{480}\sqrt{5} = 0.678442\dots$$

PROOF. We have

$$a(X) = I(\lambda') \le \sup_{\mu \in \mathcal{M}(X)} I(\mu).$$

Since $I : \mathcal{M}(X) \to \mathbb{R}$ is continuous with respect to the w^* -topology on $\mathcal{M}(X)$ and \mathcal{F} is dense in $\mathcal{M}(X)$ we obtain

$$\sup_{\mu \in \mathcal{M}(X)} I(\mu) = \sup_{n \in \mathbb{N}, x_1, \dots, x_n \in X} \frac{1}{n^2} \sum_{i, j=1}^n \|x_i - x_j\|.$$

It was shown by Nickolas and Yost [6] that, for all $x_1, \ldots, x_n \in X \subseteq \mathbb{R}^s$ with d(X) = 1,

$$\frac{1}{n^2} \sum_{i,j=1}^n \|x_i - x_j\| \le \sqrt{\frac{2s}{s+1}} \frac{2^{s-2} \Gamma(s/2)^2}{\Gamma(s-1/2)\sqrt{\pi}}$$

For s = 2 it was shown by Pillichshammer [7] that, for all $x_1, \ldots, x_n \in \mathbb{R}^2$ with $||x_i - x_j|| \le 1$,

$$\frac{1}{n^2} \sum_{i,j=1}^n \|x_i - x_j\| \le \frac{229}{800} + \frac{44}{75}\sqrt{2 - \sqrt{3}} + \frac{19}{480}\sqrt{5} = 0.678442\dots$$

The result follows from these bounds.

REMARK 4. Note that it is not true in general that $X \subseteq Y$ implies $a(X) \leq a(Y)$. For example, for h > 0, let A_h denote the right triangle with vertices $\{(0, 0), (1, 0), (1, h)\}$. Then

$$\begin{aligned} a(A_h) &= \frac{4}{h^2} \int_0^1 \int_0^{hx_1} \int_0^1 \int_0^{hx_2} \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \, dy_2 \, dx_2 \, dy_1 \, dx_1 \\ &\ge 4 \int_0^1 \int_0^1 \frac{1}{h^2} \int_0^{hx_1} \int_0^{hx_2} |x_1 - x_2| \, dy_2 \, dy_1 \, dx_2 \, dx_1 \\ &= 4 \int_0^1 \int_0^1 |x_1 - x_2| x_1 x_2 \, dx_2 \, dx_1 = \frac{4}{15}. \end{aligned}$$

On the other hand,

$$a(A_h) \le 4 \int_0^1 \int_0^1 x_1 x_2 \sqrt{(x_1 - x_2)^2 + h^2} \, dx_2 \, dx_1$$

and hence $\lim_{h\to 0^+} a(A_h) = 4/15$. Thus for any $\varepsilon > 0$ there is a $h_0 > 0$ such that, for all $0 < h < h_0$, $|a(A_h) - 4/15| < \varepsilon$.

For l > 0, let B_l be the rectangle with vertices $\{(0, 0), (1, 0), (1, -l), (0, -l)\}$. Then from Example 1 we obtain $\lim_{l\to 0^+} a(B_l) = 1/3$. Thus for any $\varepsilon > 0$ there is a $l_0 > 0$ such that, for all $0 < l < l_0, |a(B_l) - 1/3| < \varepsilon$.

Now let ε , $\delta > 0$. Choose $0 < h < \min\{1, h_0\}$, and $0 < l < \min\{1, l_0\}$ small enough such that $\lambda(B_l) < \delta\lambda(A_h)$ and let $C_{h,l} := A_h \cup B_l$. Then

$$a(C_{h,l}) = \frac{\lambda(A_h)^2}{(\lambda(A_h) + \lambda(B_l))^2} a(A_h) + \frac{\lambda(B_l)^2}{(\lambda(A_h) + \lambda(B_l))^2} a(B_l) + \frac{2}{(\lambda(A_h) + \lambda(B_l))^2} \int_{A_h} \int_{B_l} \|x - y\| d\lambda(x) d\lambda(y) < a(A_h) + \left(\frac{\delta}{1+\delta}\right)^2 a(B_l) + \frac{3\delta}{1+\delta} < \frac{4}{15} + \varepsilon + \delta^2 \left(\frac{1}{3} + \varepsilon\right) + 3\delta.$$

Hence if we choose $1/60 > \varepsilon > 0$ and $\delta > 0$ small enough we can obtain $a(C_{h,l}) < 3/10$. Of course $B_l \subseteq C_{h,l}$, but

$$a(B_l) \ge \frac{1}{3} - \varepsilon \ge \frac{19}{60} > \frac{3}{10} > a(C_{h,l}).$$

[4]

LEMMA 5.

(1) Let X and Y be compact sets in \mathbb{R}^s with $\lambda(X \cap Y) = 0$. Then

$$\lambda(X \cup Y)a(X \cup Y) \ge \lambda(X)a(X) + \lambda(Y)a(Y).$$

(2) Let $X \subseteq Y$ be compact sets in \mathbb{R}^s . Then

$$\lambda(X)a(X) \le \lambda(Y)a(Y).$$

PROOF. (1) We have

$$a(X \cup Y) = \frac{\lambda(X)^2}{(\lambda(X) + \lambda(Y))^2} a(X) + \frac{\lambda(Y)^2}{(\lambda(X) + \lambda(Y))^2} a(Y) + 2\frac{\lambda(X)\lambda(Y)}{(\lambda(X) + \lambda(Y))^2} \frac{1}{\lambda(X)\lambda(Y)} \int_X \int_Y ||x - y|| \, d\lambda(x) \, d\lambda(y).$$

For any regular Borel probability measures μ and ν on a subset A of the Euclidean space \mathbb{R}^s we have (see [10, Equation (**)])

$$2\int_{A}\int_{A} \|x - y\| d\mu(x) d\nu(y) \ge I(\mu) + I(\nu).$$

Now let $A = X \cup Y$, let μ be the probability measure on A which is the normalized Lebesgue measure on X and which is zero on Y and let ν be the probability measure on A which is the normalized Lebesgue measure on Y and which is zero on X. Then

$$\frac{2}{\lambda(X)\lambda(Y)} \int_X \int_Y \|x - y\| \, d\lambda(x) \, d\lambda(y) = 2 \int_A \int_A \int_Y \|x - y\| \, d\mu(x) \, d\nu(y)$$

$$\geq \int_{X \cup Y} \int_{X \cup Y} \|x - y\| \, d\mu(x) \, d\mu(y) + \int_{X \cup Y} \int_{X \cup Y} \|x - y\| \, d\nu(x) \, d\nu(y)$$

$$= a(X) + a(Y).$$

Hence

$$\begin{aligned} (\lambda(X) + \lambda(Y))^2 a(X \cup Y) &\geq \lambda(X)^2 a(X) + \lambda(Y)^2 a(Y) + \lambda(X)\lambda(Y)(a(X) + a(Y)) \\ &= (\lambda(X)a(X) + \lambda(Y)a(Y))(\lambda(X) + \lambda(Y)). \end{aligned}$$

(2) This assertion follows from the first one.

COROLLARY 6. Let $X \subseteq \mathbb{R}^s$ be compact and convex and let r = r(X) be the in-radius and R = R(X) be the circumradius of X. Then

$$\frac{\pi^{s/2}}{\Gamma(s/2+1)}\frac{2s}{2s+1}\beta_s r^{s+1} \le \lambda(X)a(X) \le \frac{\pi^{s/2}}{\Gamma(s/2+1)}\frac{2s}{2s+1}\beta_s R^{s+1}$$

with equality if X is a ball. In particular, for s = 2 we have

$$\frac{128}{45}r^3 \le \lambda(X)a(X) \le R^3 \frac{128}{45}$$

with equality if X is a disc.

PROOF. Let K_{in} be the in-ball and let K_{circ} be the circumscribed ball of X. From Lemma 5 we obtain $\lambda(K_{in})a(K_{in}) \le \lambda(X)a(X) \le \lambda(K_{circ})a(K_{circ})$ and the result follows from Example 1 (note that the volume of an *s*-dimensional ball of radius t > 0 is given by $\pi^{s/2}t^s/\Gamma(s/2+1)$).

REMARK 7. It follows from a result of Blaschke [3] that, for any plane compact convex $X \subseteq \mathbb{R}^2$,

$$a(X) \ge \frac{128}{45\pi} \sqrt{\frac{\lambda(X)}{\pi}}$$

with equality if X is a disc. In many cases this bound yields better results than the lower bound from Corollary 6 in the plane case (see Examples 8 and 10 below). For more information see [8, Ch. 4, Section 2] or [9, Ch. 2, Equation (2.55)].

EXAMPLE 8. For $n \in \mathbb{N}$, $n \ge 3$, let $X_n \subseteq \mathbb{R}^2$ be the regular *n*-gon with vertices on the unit circle. Then $\lambda(X_n) = (n/2) \sin(2\pi/n)$, R = 1 and $r = \cos(\pi/n)$. Hence we obtain

$$\frac{256}{45} \frac{\cos^3(\pi/n)}{n\sin(2\pi/n)} \le a(X_n) \le \frac{256}{45} \frac{1}{n\sin(2\pi/n)}$$

From Remark 7 we even obtain the lower bound

$$a(X_n) \ge \frac{128}{45\pi} \sqrt{\frac{n}{2\pi} \sin \frac{2\pi}{n}}$$

which is slightly better than the lower bound above. Note that

$$\lim_{n \to \infty} \frac{128}{45\pi} \sqrt{\frac{n}{2\pi} \sin \frac{2\pi}{n}} = \lim_{n \to \infty} \frac{256}{45} \frac{\cos^3(\pi/n)}{n \sin(2\pi/n)} = \lim_{n \to \infty} \frac{256}{45} \frac{1}{n \sin(2\pi/n)} = \frac{128}{45\pi}$$

In some cases the following easy lemma gives better estimates than Corollary 6.

LEMMA 9. Let X be a compact subset of \mathbb{R}^s and let $T : \mathbb{R}^s \to \mathbb{R}^s$ be a linear mapping with norm $||T||_2$. Then we have $a(T(X)) \le a(X)||T||_2$.

EXAMPLE 10. Let X be an ellipse $x^2 + y^2/b^2 \le 1$ in the Euclidean plane with $0 < b \le 1$. Then X = T(K) where K is the disc with diameter 2 and center in the origin and where $T = \begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix}$. It is easy to see that $||T||_2 = \max\{1, |b|\} = 1$ and $||T^{-1}||_2 = 1/b$. Then from Lemma 9 we obtain

$$b\frac{128}{45\pi} = ba(K) \le a(X) \le a(K) = \frac{128}{45\pi}$$

whereas from Corollary 6 we would just obtain

$$b^2 \frac{128}{45\pi} \le a(X) \le \frac{1}{b} \frac{128}{45\pi}.$$

From Remark 7 we obtain the lower bound $a(X) \ge \sqrt{b}(128/45\pi)$.

References

- [1] V. S. Alagar, 'The distribution of the distance between random points', *J. Appl. Probab.* **13** (1976), 558–566.
- [2] R. S. Anderssen, R. P. Brent, D. J. Daley and P. A. P. Moran, 'Concerning $\int_0^1 \cdots \int_0^1 (x_1^2 + \cdots + x_k^2)^{1/2} dx_1 \cdots dx_k$ and a Taylor series method', *SIAM J. Appl. Math.* **30** (1976), 22–30.
- [3] W. Blaschke, 'Eine isoperimetrische Eigenschaft des Kreises', Math. Z. 1 (1918), 52-57.
- [4] S. R. Dunbar, 'The average distance between points in geometric figures', *College Math. J.* 28 (1997), 187–197.
- [5] D. J. Gates, 'Asymptotics of two integrals from optimization theory and geometric probability', *Adv. Appl. Probab.* **17** (1985), 908–910.
- [6] P. Nickolas and D. Yost, 'The average distance property for subsets of Euclidean space', Arch. Math. (Basel) 50 (1988), 380–384.
- [7] F. Pillichshammer, 'A note on the sum of distances under a diameter constraint', Arch. Math. (Basel) 77 (2001), 195–199.
- [8] L. A. Santaló, Integral Geometry and Geometric Probability, Encyclopedia of Mathematics and its Applications, 1 (Addison-Wesley, Reading, MA, 1976).
- [9] H. Solomon, *Geometric Probability*, CBMS-NSF Regional Conference Series in Applied Mathematics, 28 (SIAM, Philadelphia, PA, 1978).
- [10] R. Wolf, 'On the average distance property and certain energy integrals', Ark. Mat. 35 (1997), 387–400.

BERNHARD BURGSTALLER, Doppler Institute for Mathematical Physics, Trojanova 13, 12000 Prague, Czech Republic e-mail: bernhardburgstaller@yahoo.de

FRIEDRICH PILLICHSHAMMER, Institut für Finanzmathematik, Universität Linz, Altenbergstraße 69, A-4040 Linz, Austria e-mail: friedrich.pillichshammer@jku.at