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INVARIANT KAHLER METRICS AND PROJECTIVE EMBEDDINGS
OF THE FLAG MANIFOLD

KICHOON YANG

We determine explicitly the space of invariant Hermitian and Kahler metrics on
the flag manifold. In particular, we show that a Killing metric is not Kahler.
The Chern forms are also computed in terms of the Maurer—Cartan form, and
this calculation is used to prove that the flag manifold is projective algebraic. An
explicit projective embedding of the flag manifold is also given.

1. INTRODUCTION

Let G be a simple compact connected Lie group and also let T be a maximal torus
in G. The coset space G/T is called a flag manifold. For example, taking G = SU(n)
and T = S(U(l)n) we obtain

G/T = Flt2 n ( C ) ,

which is the space of all flags in C" . Flag manifolds are important in that they are the
basic building blocks of all compact homogeneous complex spaces [3]. Moreover, a flag
manifold is nonsymmetric and Kahler-Einstein of nonconstant holomorphic sectional
curvature; hence, exhibits interesting differential geometric properties not encountered
in, say, the complex projective space.

In this paper we take the space Fll2,i(<C?) = Stf(3)/s(tf(l)S) and determine
explicitly the space of invariant Hermitian as well as Kahler metrics. In particular,
we show that a Killing metric is not Kahler. We also compute the Chern forms of
- ^ ^ ( C 3 ) and show that the first Chern form is positive, thus establishing via the
Kodaira embedding theorem that the flag manifold is projective algebraic. A notewor-
thy feature of our exposition is that the calculations are made quite explicitly in terms
of the Maurer-Cartan form of SU(3). Moreover, it will be made clear that a similar
analysis applies to any flag manifold.

The second section of our paper contains a description of an embedding of
-Fi,2,j(C3) into the complex Grassmannian Gr(3, 8), and is based upon the work [2].
(In general, an arbitrary flag manifold of complex dimension n can be embedded in a

Received 5 April 1993

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 SA2.00+0.00.

239

https://doi.org/10.1017/S0004972700016300 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016300


240 K. Yang [2]

similar way into the complex Grassmannian Gr (n, N), where N is the real dimension
of G). Via the Pliicker embedding Gr(3, 8) •-> P s s we can thus realise F i ^ C ? ) as
a smooth projective variety. We should mention that the flag manifolds are essentially
the only known Kahler-Einstein smooth projective varieties that are not of constant
holomorphic sectional curvature.

1. INVARIANT METRICS

We consider the complex flag manifold

= SU{3)/S(U{1)3).

The group SlU(l) J , diagonally included in SU(3), is the isotropy subgroup at the

reference flag

[ei] C [ E I A E J I C C ,

where (e,-) denotes the canonical basis for Cs .

Let dj denote the 3 by 3 matrix with +1 at the (i, j)-th entry and zeros elsewhere,
and put

Eij = eij — eji, Fij = eij + £ji.

Then the Lie algebra of SU(3) decomposes as

su(3)=t®}^Vij)

where t denotes the Lie algebra of the maximal torus T = S(U(1) 1 , and

The spaces (Vij) are the root spaces of SU(3) with respect to T.

The vector subspace

is an Ad (T)-invariant complement to t, and it will be identified with the tangent space

to F(CS) at the identity coset via 7r«e, where

The su(3)-valued Maurer-Cartan form ft = (fl\) ^. .^ decomposes into
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where f2v;y denotes the Vij-component of Cl. So

QVij = Re n) ® Eij + ImQ*- <g) Fij.

The standard complex structure of F(C3) is given by letting the pullbacks of the
following complex-valued 1-forms to be of type (1,0):

nj, nj, nj.

Note that the real and imaginary parts of these forms constitute the m-component of
the Maurer-Cartan form. By way of notation we put

where s is a local section of the principal fibration 517(3) —» .F(C?).

THEOREM. Any invariant Hermitian metric on F(€?) is given by the Ad(T)-
in variant tensor product

where a, b, c are positive constants. Thus the totality of invariant Hermitian metrics
on F(<C?) is naturally parameterised by (R+)S .

The above result is a straightforward consequence of the following rather general
consideration. Let G be a simple compact connected Lie group, and consider the root
space decomposition with respect to a maximal torus T

Recall that any two bi-invariant metrics on G are constant multiples of each other;
hence, the root spaces of a simple Lie group are defined canonically. The subspace

n

m = @ 53 V{ is identified with the tangent space TT(G/T); an invariant metric on
i=i

G/T corresponds, via restriction, to an Ad (T)-invariant inner product in m. Now
Ad(T) restricted to each VJ is irredicible, and consequently each Vi possesses only a
one-dimensional family of Ad (T)-invariant inner products. Thus the totality of Ad (21)-
invariant inner products in m is given by

where K denotes the Killing form of G.
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THEOREM. The metric <fc*Oi6|C) on F(<C?) is Kahler if and oniy if

for some A G K + .

PROOF: A unitary coframe for the metric da2
a b c» is given by

/jl __ _, ,1 rt2 ^^ L 1 ij* __ _. 2

We then have
dfl'' = _^« A 0> + T\

where (^j) is the u(3)-valued connection form and (T*) are the torsion forms. It is
well-known that the metric ds2

a b ^ is Kahler if and only if the torsion forms vanish
identically. Using the Maurer-Cartan structure equations of SU(Ji) we calculate that

1 -

e2

e5
-b aS
Hi0

o
b 01 A

"01

e2

o3

It follows that (T*') = 0 if and only if

a
be

b
2ac

and = —-.
2ac ab

DAnd this is so if and only if (a, b, c) = A(l, y/2, l) for some A > 0.

DEFINITION: The metric ds2, ,_ , will be called the normal Kahler metric.

REMARK. In general, on a flag manifold G/T of complex dimension n the space of
invariant Hermitian metrics is parameterised by (R+)n . And amongst these exactly
K.+ many of them are Kahler. More precisely, any two invariant Kahler metrics on
G/T are homothetically equivalent to each other.

A Killing metric on /^(C5) is, by definition, a Hermitian metric coming from a
negative multiple of the Killing form restricted to m. Since for any X, Y in the Lie
algebra su(n)

trace (adx ° ady) = c • (trace (X • Y))

for some dimensional constant c, we see that a Killing metric is given by

This observation combined with the above theorem yields the following somewhat sur-
prising corollary.
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COROLLARY. A Killing metric on i^C3) is not Kahler.
We now compute the Chern forms of F(C?) using the normal Kahler metric

ds1, - •.. From the computation above we see that the connection matrix of this

metric with respect to the unitary coframe

01=w1
2,

is given by

Tie curvature forms x = (xj) a r e computed from the formulae

We caicuiate that

-01 A

Let ct(x), 1 < fc ^ 3, denote the k-th Chern form of F(C3) constructed using
so that

We find that

(1)

(2)

(3)

= U - det*

c3(X) = (-3t/47rs) (fl
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THEOREM. The Bag manifold F (C ' ) equipped with the normal Kahler metric is
Kahler-Einstein with constant scalar curvature 24.

PROOF: The Kahler form of (F(C?), da2, _ * J is given by

Then from (1) we see that

ci(x) = | A ,

showing that F(C S ) is Kahler-Einstein. Now the scalar curvature a satisfies

a n d * = 24. D

Incidentally, the Kahler manifold I ^ ( C 3 ) , da2. _ \ ) 1B n ° t of constant holomor-

phic sectional curvature. To see this recall that the curvature forms (xjj) » written

relative to a unitary coframe (0°), of a Kahler manifold with constant holomorphic

sectional curvature c are given by

THEOREM. T i e Sag manifold F(C3) is projective algebraic.

PROOF: The formula (1) shows that the first Chern class of F(C?) is positive.
Then the anticanonical line bundle K* —> ^ ( C 5 ) must be ample since

Thus by the Kodaira embedding theorem a suitable pluri-anticanonical linear system
(that is, the linear system of divisors associated with a large enough positive integral
power of K*) gives rise to a projective embedding of F(C?) . D

REMARK. A similar consideration shows that any flag manifold is projective algebraic.
In fact, [2] shows that a flag manifold is a rational variety.

2. THE FLAG MANIFOLD AS A SUBVARIETY OF THE COMPLEX GRASSMANNIAN

Let G be a semisimple simply connected and connected compact Lie group, and
fix a maximal torus T C G. Then there is a unique holomorphic Lie group Gc with
Lie algebra g c (the complexification of g) containing G.
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REMARK. We are making the simple connectivity assumption here merely to avoid
certain technical complications. After all, if G is the quotient of G by any finite
invariant subgroup and T is the image of T under the projection G —» G, then the
spaces G/T and G/T are well-known to be difFeomorphic.

A root of the holomorphic Lie group Gc is an element a of ( i c ) such that the
root space

g a = { v 6 9 C : adk («) = [h, v) = a{h)(v), h G t c }

is nontrivial. The set of all roots of Gc will be denoted by A C ( i c ) * . We then have
the root space decomposition

gc = t c

We fix a system of positive roots in A, and write

A = A+UA_.

We then put

b=tc©

The algebra b is a Borel subalgebra and n is nilpotent. We let B (respectively, N)
denote the analytic subgroup of b (respectively, n) in Gc. It can then be verified that

= T, GDN = {e},

implying that the map
G/T -f G°/B, gT •-» gB

is a diffeomorphism.

We are interested in the case

G = SU{3), T =

Gc = SL(3, C), B = {upper triangular matrices}.

We shall identify the complex Lie algebra s[(3, C) with C8 via the map

eo i-> eo, 1 ̂  a ̂  8,

where

es = e 2 J ,

= E n — £22, e 5 = £22 — £ j j ,

=C32, £7=^21. £8 = £is-
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Note tha t

ic = span{e4, e 5 } .

In addition, the roots of 5X(3, C) corresponding to the root vectors e\, e2 and ej
form a system of positive roots A+ so that

b = t° © Cei © Ce2 © C e s ,

n = Ce6 e Ce7

From the formula

we compute the image of the adjoint map ad: sl(3, C) —» gl(k, C) , where $j((8, C) is
the set of all 8 by 8 complex matrices. Write

8

ad(sl(3, C)) = {X = ̂ z a a d ( e a ) : x
8

o=l

Calculations show that X is given by

(*)
* 4 + XS —X3 X2 —Xi —Zl 0 0 0

—x6 2x4 - zs 0 - 2 z 2 x2 xi 0 0
x7 0 - x 4 + 2xs x3 - 2 z s 0 - z i 0

- x 8 - x 7 0 0 0 0 x2 xi
- x 8 0 —x6 0 0 xs 0 xi

0 xa 0 x6 2x6 x4 - 2xs 0 - x 2

0 0 - x 8 2x7 - x 7 0 -2x 4 + xs xs

0 0 0 xs xs —XT xg —X4 — x

And ad(b) consists of those matrices with xa = xj = xa = 0.

Let GL(8, C) act on the complex Grassmannian Gr(3, 8) in the usual manner,
and also let K denote the isotropy subgroup at the 3-plane [ci A £2 A e3]. Thus

The Lie algebra of K is given by

From (*) we then observe that

(t) ad(b) = fnad(s((3,C)).
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Let d C GL(8, C) denote the group generated by ad(sl(3, C)) , and let B^ C

GL(8, C) denote the group generated by ad(b) . Then G\ is locally isomorphic to Gc

and B\ is locally isomorphic to B; in such a case it is well-known (see [1], for example)

that the spaces G\/Bi and Gc/B are biholomorphically identified with each other.

Moreover, ( f) shows that the map

$: G1/B1 -+ GL(8)/K, gB1 .-» gK

is a well-defined monomorphism. We have thus arrived at the following theorem.

THEOREM. The flag manifold F(C3) = Gi/Bx is a smooth subvariety ot the

complex Grassmannian Gr (3, 8) via the map $ .

It would be quite interesting to relate the projective embedding

1/-D1 C IJT^O, oj C IT

to a pluri-anticanonical projective embedding of F (C 3 ) , whose existence we established

earlier.
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