SOME REMARKS ON SET-VALUED DYNAMICAL SYSTEMS

J. W. NIEUWENHUIS

(Received 22 November 1979)

(Revised 26 February 1980)

Abstract

It is shown that under some conditions a collection of continuous mappings gives rise to a set-valued dynamical system. Using this it is further shown that under some other conditions the system $\dot{x}(t) \in F(x(t))$ is equivalent to a set-valued dynamical system.

1. Introduction

In mathematical economics a number of phenomena involving time can be modelled as $\dot{x}(t) = f(x(t))$, $x(t) \in C$, where f has discontinuities on the boundary of C. In some circumstances this system is equivalent to $\dot{x}(t) \in$ F(x(t)), where F is an upper semicontinuous compact-convex valued correspondence (see, for instance, Champsaur, Drèze and Henry [2]).

Other phenomena can be described by $\dot{x}(t) = f(x(t), u(t))$, where x(.) is a state function and u(.) a control function. Here f is a continuous mapping.

Another way of modelling dynamic economic phenomena is by means of a so-called set-valued dynamical system, abbreviated as SVDS. This is done for instance by Cherene in his monograph [3].

In all these cases we are interested in the behaviour of trajectories; hence the fundamental object of study should be that of a trajectory.

In this paper we will show that, given a particular set of continuous functions, there is a SVDS with as trajectories just these continuous functions. Further, we will show that, under some conditions, $\dot{x}(t) \in F(x(t))$ is equivalent to a SVDS and that, under some other conditions, $\dot{x}(t) = f(x(t), u(t))$ is equivalent to $\dot{x}(t) \in F(x(t))$.

[©]Copyright Australian Mathematical Society 1981

2. Set-valued dynamical systems

In the sequel X will stand for a complete metric space with metric δ_x and CX will denote the set of all non-empty compact of X. The letter T will stand for the set $[0, \infty)$.

DEFINITION 1. The mapping $G: X \times T \to CX$ is called a SVDS if and only if: (1) G(x, 0) = x for all $x \in X$, (2) G(G(x, r), t) = G(x, r + t) for all $x \in X$ and for all $r, t \in T$, and (3) G is upper semi-continuous in x for every $t \in T$ and continuous in t for every

(3) G is upper semi-continuous in x for every $i \in I$ and continuous in t for every fixed $x \in X$.

Closely related definitions can be found in Cherene [3], Roxin [9] and Kloeden [6].

DEFINITION 2. A trajectory of a SVDS with name G starting at x is a mapping $x(.): T \to X$ such that x(0) = x and $x(r + t) \in G(x(r), t)$ for all $r, t \in T$.

Repeating almost *ad verbatim* the proofs given by Roxin [9] and Kloeden [6] it can easily be shown that:

THEOREM 1. Every trajectory is continuous. Further, let $\bar{x} \in G(x, t)$; then there is a trajectory x(.) such that x(0) = x and $x(t) = \bar{x}$.

THEOREM 2. (Barbashin's theorem.) Let t be an arbitrary number of T and $\{x_i(.)\}$ a collection of trajectories such that $x_i(0) \rightarrow x_0$. Then there is a subsequence $\{x_{ij}(0)\}$ and a trajectory $x_0(.)$ such that $x_{ij}(.)$ converges uniformly on [0, t] to $x_0(.)$.

Now we consider the problem of constructing a SVDS given a set S of continuous mappings from T to X. Let S satisfy the following properties:

(a) For all $x \in X$, there exists $x(.) \in S$ with x(0) = x.

(b) For all $\hat{t} \in T$ and for all $x(.) \in S$, there exists $\tilde{x}(.) \in S$ such that $\tilde{x}(t) = x(t+\hat{t})$ for all $t \in T$.

(c) For all $\bar{x}(...) \in S$ and for all $x(...) \in S$ with $\bar{x}(\hat{t}) = x(0)$ for some $\hat{t} \in T$, there exists $\tilde{x}(...) \in S$ with $\tilde{x}(t) = \bar{x}(t)$ for $t \in [0, \hat{t}]$ and $\tilde{x}(t) = x(t - \hat{t})$ for all $t \ge \hat{t}$.

(d) For all $\{x_i(.)\} \subset S$ with $x_i(1) = x_{i+1}(0), i = 1, 2, ...,$ there exists $x(.) \in S$ with $x(t) = x_i(t)$ for $i - 1 \le t \le i$.

(e) For all $t \in T$ and for all $\{x_i(.)\} \subset S$ with $x_i(0) \to x_0$, there exists $\{x_{i,}(.)\} \subset \{x_i(.)\}$ and $x_0(.) \in S$ such that $x_{i,j}(.) \to x_0(.)$ uniformly on [0, t].

THEOREM 3. Let S satisfy (a) to (e); then G: $X \times T \rightarrow CX$ defined by $G(x, t) = \bigcup \{x(t) | x(.) \in S, x(0) = x\}$ is a SVDS. Further, the trajectories of G are precisely the elements of S.

PROOF. One trivially has that G(x, 0) = x for all $x \in X$. Further, (b) and (c) imply that G(G(x, r), t) = G(x, r + t) for all $x \in X$ and for all $r, t \in T$. Using well-known characterizations of upper and lower semi-continuity (see, for instance, Hildenbrand [5]), property (3) leads to G being compact valued and upper semi-continuous in x for every finite $t \in T$. Now take a fixed $X \in CX$ and define $\eta(t) = G(X, t) = \bigcup_{x \in X} G(x, t)$. Then (e) also implies the continuity of $\eta(.)$; hence we are done with the first part of the theorem.

Now take a trajectory y(.) of G defined by S. Because of (c) and (d), it suffices to prove the existence of a mapping $x(.) \in S$ such that y(t) = x(t) for $t \in [0, 1]$. But (c) and the definition of G imply that, for all $q \in \{1, 2, ...\}$, there exists $x_q(.) \in S$ with $y(p/(2^q)) = x_q(p/(2^q))$ for $p = 1, 2, ..., 2^q$. Applying (e) to $\{x_q(.)\}$ leads to the existence of an element $x(.) \in S$ such that y(t) = x(t) for all dyadic numbers in [0, 1]. The mappings y(.) and x(.) being continuous leads to y(t) = x(t) for $t \in [0, 1]$ and we are done with the proof.

The theorem above stresses the importance of the notion of trajectory: the properties showing how to patch together trajectories, (b) to (d), the property of uniform convergence, (e), and the fact that the starting points of the trajectories form a complete metric space, (a), completely determine a SVDS. Further, Theorem 3 can be of use in proving that a particular system in a SVDS.

3. The differential system $\dot{x}(t) \in F(x(t))$

In this section of the paper, F will denote an upper semi-continuous correspondence from R^{p} to the set of all non-empty convex compact subsets of R^{p} such that, for some $\alpha > 0$,

$$\sup_{v \in F(z)} |w| \leq \alpha(1+|z|).$$

DEFINITION 3. The mapping z(.) is called a solution of $\dot{x}(t) \in F(x(t))$ if and only if $\dot{z}(t) \in F(z(t))$ almost everywhere on $[0, \infty]$ and, for all t > 0, z(.)restricted to [0, t] is absolutely continuous.

1

[4]

Let $S_t(z^0)$ denote the restrictions to [0, t] of all solutions z(.) of $\dot{x}(t) \in F(x(t))$ with $z(0) = z^0$. Then:

THEOREM 4. (Castaing and Valadier [1].) For all $t \in [0, \infty)$ and for all $z^0 \in R^p$, $S_t(z^0)$ is non-empty and compact in $C_u([0, t]; R^p)$, the space of continuous functions from $[0, t] \to R^p$ endowed with the uniform convergence topology. Further, for every $t \in [0, \infty)$, the mapping $z^0 \to S_t(z^0)$ is upper semi-continuous.

By means of this result it is easy to prove that:

THEOREM 5. Let S denote all the solutions of $\dot{x}(t) \in F(x(t))$; then G defined by S is a SVDS.

We would like to remark that Theorem 5 was first proved by Roxin [10, Theorem 5.1] under the stronger assumption of continuity of F.

In our opinion it is conceptually elegant to start with set-valued dynamical systems and to consider $\dot{x}(t) \in F(x(t))$ to be a special case of it since, for instance, a lot of stability results can be phrased and proved in terms of SVDS's. To give an example, we discuss a result taken from Champsaur, Drèze and Henry [2]. These authors define an *equilibrium point* of $\dot{x}(t) \in F(x(t))$ to be a point \bar{z} such that $0 \in F(\bar{z})$. Let G be the set-valued dynamical system associated with $\dot{x}(t) \in F(x(t))$; then the definition of equilibrium point can be rephrased as follows:

DEFINITION 4. A point \overline{z} is an equilibrium point if there is a trajectory z(.) of G such that $z(t) = \overline{z}$ for all $t \in [0, \infty)$.

Defining the notions *limit point*, quasi-stability and Lyapunov-function as is done in [2], we have the following result:

THEOREM 6. If there is a Lyapunov function for G then G is quasi-stable.

The proof being analogous to that of Theorem 6.1 of [2], we omit it.

Categorizing $\dot{x}(t) \in F(x(t))$ and $\dot{x}(t) = f(x(t), u(t))$, see below, as set-valued dynamical systems is, however, not only useful when studying Lyapunov-stability. For instance, the notion of *funnel*, extensively investigated for ordinary differential equations without uniqueness and so on, has been studied in the framework of set-valued dynamical systems by Kloeden [8].

In general one can say, following Kloeden [7], that set-valued dynamical systems "enable concepts and different modes of behaviour to be investigated in

some generality without their inherent features being obscured by circumstantial details pertaining to a particular function or analytical representation".

4. The differential system $\dot{x}(t) = f(x(t), u(t))$

Let us say that a system of differential equations is equivalent to $\dot{x}(t) \in F(x(t))$, where F is as in Section 2, if the solutions of the first system are precisely those of $\dot{x}(t) \in F(x(t))$. Champsaur, Drèze and Henry [2] show that, under certain circumstances, the system $\dot{x}(t) = f(x(t))$ for $x(t) \in C$ is equivalent to $\dot{x}(t) \in F(x(t))$. In this section, however, we will prove that, under certain conditions, $\dot{x}(t) = f(x(t), u(t))$ for $u(t) \in U$ is equivalent to $\dot{x}(t) \in F(x(t))$. Here f will be a continuous mapping from $\mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^p$ such that $|f(x, u)| \leq \alpha(1 + |x|)$ for all $x, u \in U$ and for some $\alpha > 0$.

DEFINITION 5. The mapping z(.) is called a solution of $\dot{x}(t) = f(x(t), u(t))$ for $u(t) \in U$ if there is a mapping u(.): $[0, \infty) \to U$ such that, for every t > 0, u(.) is Lebesgue-measureable on [0, t] such that $\dot{z}(t) = f(z(t), u(t))$ almost everywhere on $[0, \infty)$. Further, z(.) has to be absolutely continuous on [0, t] for every $t \in (0, \infty)$.

We will prove the following:

THEOREM 7. When U is compact and f(x, U) := F(x) is convex for all $x \in \mathbb{R}^p$, then $\dot{x}(t) = f(x(t), u(t))$ for $u(t) \in U$ is equivalent to $\dot{x}(t) \in F(x(t))$.

PROOF. It is easy to see that F is as in Section 2. Hence there remains to be proved that a solution of $\dot{x}(t) \in F(x(t))$ is a solution of $\dot{x}(t) = f(x(t), u(t))$ for $u(t) \in U$. Let z(.) be such a solution. Take $t \in (0, \infty)$; then we know that z(.) is absolutely continuous on [0, t] and

$$\dot{z}(t) = f(z(t), u_t)$$
 almost everywhere for $t \in [0, t]$ and $u_t \in U$.

As $\dot{z}(.)$ is measurable on [0, t], there is a sequence of compact subsets $\{\Delta_i\} \subset [0, t]$ such that $\Delta_1 \subset \Delta_2 \subset \Delta_3 \subset ...$ and $[0, t] - (\Delta_1 \cup \Delta_2 \cup ...)$ has measure zero and, further, the restriction of $\dot{z}(.)$ to Δ_i is continuous (Lusin's theorem). Without loss of generality, we may assume that the measure of Δ_1 is greater than zero. Now define $D_i = \{(t, u) | t \in \Delta_i, \dot{z}(t) = f(z(t), u) \text{ for } u \in U\}$ and $D = D_1 \cup D_2 \cup ...$

Since the measure of Δ_i is greater than zero, we immediately have that $D_i \neq \emptyset$. Further, D_i is trivially bounded. Now take a sequence $\{(t_i, u_i)\} \subset D_i$

such that $t_j \to \hat{t}$ and $u_j \to \hat{u}$. Then $\dot{z}(t_j) \to \dot{z}(\hat{t})$ and $z(t_j) \to z(\hat{t})$. As f is continuous, we have that $\dot{x}(\hat{t}) = f(x(\hat{t}), \hat{u})$; hence $(\hat{t}, \hat{u}) \in D_i$ and therefore D_i is compact. Defining $\Delta = \{t | (t, u) \in D \text{ for some } u \in U\}$, we have that $\Delta \subset \Delta_1 \cup \Delta_2 \cup \ldots$ and, further, that the measure of Δ is equal to the measure of $\Delta_1 \cup \Delta_2 \cup \ldots$. Now the application of a selection lemma (Fleming and Rishel [4, page 199, Lemma B]), implies the existence of a measurable function u(.) on $[0, \tilde{t}]$ such that $(t, u(t)) \in D$ for almost all $t \in \Delta$; hence $\dot{z}(t) = f(z(t), u(t))$ almost everywhere on $[0, \tilde{t}]$.

The proof of the foregoing theorem is a slight alteration of a technique in Fleming and Rishel [4]. Further, we would like to remark that implicit in Theorem 7 is the existence of solutions to $\dot{x}(t) = f(x(t), u(t))$ when f(x, U) is convex, U is compact and $|f(x, u)| \leq \alpha(1 + |x|)$ for all $x, u \in U$.

References

- C. Castaing and M. Valadier, "Equations différentielles multivoques dans les espaces localement convexes", *Revue Française d'Informatique et de Recherche Operationelle* 16 (1969), 3-16.
- [2] P. Champsaur, J. Drèze and C. Henry, "Stability theorems with economic applications", Econometrica 45 (1977), 273-294.
- [3] L. J. Cherene Jr., "Set valued dynamical systems and economic flow", Lecture Notes in Economics and Mathematical Systems 158 (Springer-Verlag, 1978).
- [4] W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal control (Springer-Verlag, 1975).
- [5] W. Hildenbrand, Core and equilibria of a large economy (Princeton University Press, Princeton, New Jersey, 1974).
- [6] P. Kloeden, "General control systems without backward extension, differential games and control theory", *Lecture Notes in Pure and Applied Mathematics* 10 (Marcel Dekker, New York, 1974), 49-58.
- [7] P. Kloeden, "General control systems, mathematical control theory", Lecture Notes in Mathematics 680 (Springer-Verlag, 1978), 119-137.
- [8] P. Kloeden, "The funnel boundary of multivalued dynamical systems", J. Austral. Math. Soc. A 27 (1979), 108-124.
- [9] E. Roxin, "Stability in general control systems", J. Diff. Equations 1 (1965), 115-150.
- [10] E. Roxin, "On generalized dynamical systems defined by contingent equations", J. Diff. Equations 1 (1965), 188-205.

Econometric Institute University of Groningen P.O. Box 800 9700 AV Groningen The Netherlands