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Abstract

In Beijing, the capital of China, routine measles mass vaccination has been in place for decades
with high coverage; and since the 2000s, catch-up vaccination programmes have been imple-
mented formigrant workers coming to the city. However,measles epidemics in Beijing persisted.
Here, we explored the contributing factors of persistent measles transmission in Beijing using an
epidemic model in conjunction with a particle filter. Model inputs included data on birth, death,
migration, and vaccination. We formulated a series of hypotheses covering the impact of
migrant influx, early waning of maternal immunity, and increased mixing among infants; we
compared the plausibility of the hypotheses based on model fit to age-grouped, weekly measles
incidence data from January 2005 to December 2014, and out-of-fit prediction during 2015–
2019. Our best models showed close agreement with the data, and the out-of-fit prediction
generally captured the trend of measles incidence from 2015 to 2019. We found that large influx
of migrants with considerably higher susceptibility likely contributed to the persistent measles
transmission in Beijing. Our findings suggest that stronger catch-up vaccination programmes
for migrants may help eliminate measles transmission in Beijing.

Introduction

Measles is a highly infectious and severe viral infection (estimated case fatality ratio ~ 2% in low-
and middle-income countries [1]). Thanks to mass vaccination, measles incidence has decreased
substantially worldwide in recent years, making global eradication plausible [2]. However, to
date, none of the six World Health Organization regions have achieved and maintained measles
elimination [3]. Moreover, the COVID-19 pandemic has disrupted measles vaccination pro-
grammes, further creating an environment for measles persistence [4].

China has made considerable efforts to control and eliminate measles [5, 6]. The national
Expanded Program on Immunization began in 1978, and for more than a decade, has reported
vaccination coverage formeasles exceeding 95% – the critical level for elimination [5]. From 2004
to 2010, in addition to the two-dose routine vaccination programme, the government conducted
supplementary immunization activities (SIAs), administering ~289 million doses to children
aged between 8months and 14 years [5, 6]. These efforts substantially reduced measles incidence
but did not eliminate the disease in China [5].

Beijing is the capital of China. Routine measles vaccination programme in Beijing started in
the 1970s; since the 2000s, the city has also implemented various catch-up vaccination campaigns
targeting migrants, a subpopulation growing rapidly after 1995 [7]. Despite these efforts, measles
epidemics persisted in Beijing [7]. In a previous study, we applied an epidemic model in
conjunction with a particle filter to yearly measles incidence data to infer the long-term measles
transmission dynamics from 1951 to 2004 in three locations including Beijing [8]. Here, we
modified thismodel-filter system to studymeasles transmission dynamics in Beijing from2005 to
2014 using weekly incidence data. To examine factors driving persistent measles transmission in
Beijing, we formulated a range of hypotheses covering the potential impact of migrant influx,
early waning of maternal immunity, and increased mixing among infants, based on emerging
evidence [9, 10].We assessed these hypotheses and underlyingmechanisms based onmodel fit to
data during 2005–2014, and out-of-fit prediction for data during 2015–2019.

Methods

Data

Weekly measles incidence in 4 age groups (i.e., <1, 1–14, 15–50, and > 50 years) from 2005 to 2016
(627weeks; Figure 1) came from the China Information System for Disease Control and Prevention
(CISDCP) [11], a web-based real-time disease reporting system collecting patient-case reports for all
notifiable diseases, including measles, from all medical institutions in China since 2004. Yearly
incidence rates for all ages combinedduring 1995–2004 (used to generate prior estimates) came from
Li et al. [7], and that during 2017–2019 came from the CISDCP. Data sources on birth, death,
migration, and vaccination are detailed in Sections 1 and 2 of the Supplementary Materials.
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Model-filter system

Epidemic model
The epidemic model (Supplementary Figure S1) followed the age-
structured susceptible-exposed-infectious-removed (SEIR) con-
struct [8, 12], per Equation (1)):

dSi
dt

= � λi tð ÞS
mi

1 tð Þ
i

Ni
þb tð Þ 1� c tð Þð ÞNAi=1þ M

p tð ÞAi=1� vr tð Þδi�1Ai= 2Si�1

�vci tð Þþδi�1Si�1�δiSi�μi tð ÞSiþ ri tð Þf Si tð Þ
dEi

dt
= λi tð ÞS

mi
1 tð Þ

i

Ni
�αEiþδi�1Ei�1� δiEi�μi tð ÞEiþ ri tð Þf Ei tð Þþhi tð Þ

dIi
dt

= αEi� γIiþδi�1Ii�1�δiIi�μi tð ÞIiþ ri tð Þf Ii tð Þ
dRi

dt
= γIiþ vr tð Þδi�1Si�1Ai= 2þδi�1Ri�1�δiRi�μi tð ÞRiþ vci tð Þþ ri tð Þf Ri tð Þ

dM

dt
= b tð Þc tð ÞN� M

p tð Þ�μ1 tð ÞM

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

(1)

where t is time in days. i ( i= 1,2,3,4) represents 4 age groups: <1,
1–14, 15–50, and > 50 years. For Group i, Ni is the population size,
which is divided into thosewho are susceptible, Si; exposed (latently
infected but not yet infectious), Ei ; infectious, Ii ; or recovered or
immunised, Ri . M represents infants with maternal immunity. α
is the rate of progression from latent infection to infectiousness and
γ is the recovery rate. δi and μi are the aging and natural death rates
(δ0 and δ4 were set to 0).

The force of infection, λi tð Þ, is given by

λi tð Þ=
X4
j= 1

βij tð ÞIm
j
2 tð Þ

j : (2)

where mi
2 tð Þ is themixing ratio of infectious individuals inGroup i;

mi
1 tð Þ is the corresponding mixing ratio of susceptible individuals.

These exponents represent the extent of inhomogeneous mixing,
with the value 1 representing homogeneous mixing. The exponents
are further scaled by ki tð Þ to test hypotheses related to differential
mixing among migrants and infants (see Sections 4.4 and 4.6 of the
Supplementary Materials), per
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Figure 1. Measles incidence in Beijing during 2005-2016. Incidence data by week (A) and by year (B) for four age groups.
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mi
1 tð Þ=m1ki tð Þ;

mi
2 tð Þ=m2ki tð Þ

(3)

The transmission rate, βij tð Þ , accounts for seasonality and
school term-time mixing per

βij tð Þ=
βij 1þbseason cos

2π
365

t�ϕð Þ
� �� �

1þb1Term tð Þ
bterm

if i, jð Þ= 2,2ð Þ

βij 1þbseason cos
2π
365

t�ϕð Þ
� �� �

otherwise

8>>><
>>>:

(4)

where βij is the mean transmission rate from Group j to Group i;
bseason is the amplitude of sinusoidal forcing, and ϕ represents the
day of a year when the sinusoidal forcing reaches the maximum. As
in previous work [13], for school-age children (here Group 2), we

included a school term-time forcing 1þb1Term tð Þ
bterm

tomodel the impact
of congregation during school terms. b1 is the amplitude of the
school term forcing, and Term tð Þ is given by

Term tð Þ=
1 if t ∈Tschool terms

�1 if t ∈Tschool break

(
: (5)

Based on the school schedule in China, Tschool break includes a
summer break that lasts for 7 weeks and ends on August 31st, and a
winter break that lasts for 5 weeks and ends on the 14th day after the

Lunar New Year (LNY). 1þb1Term tð Þ
bterm

averages 1 in a calendar year.
The epidemic model includes 4 age groups and thus needs

16 (=4 × 4) parameters for all βij ’s. To reduce the number of
parameters, the β matrix is formulated using 6 parameters:

β =

β1 β1 β5 β4

β1 β2 β6 β4

β5 β6 β3 β4

β4 β4 β4 β4

2
6664

3
7775: (6)

Here, we assumed the transmission rate among infants (aged
<1) equals that between infants and older children (aged 1–14), that
is, β1. We also assumed all transmission rates associated with
Group 4 are the same (i.e., β4 ) because the oldest age group
contributes less tomeasles dynamics and also has less social contact.

The basic reproductive number, R0, in this age-structured model
is related to the βmatrix per the next generationmatrixmethod [13]:

R0 = eigenmax β
1
γ

� �
(7)

where eigenmaxðÞ is the function that gives the largest eigenvalue of
the matrix. We reparametrised the model based on Equation (7)
and included R0 for estimation by setting β1 = 1and estimating the
relative magnitude of βk ( k= 2,…, 6).

Relating to births and maternal immunity, b tð Þ is the birth rate
per data, and c tð Þ is the proportion of infants with maternal

immunity (set to R3 tð Þ
N3

, i.e., the immunity level of the age group of
newmothers). p tð Þ is the mean duration ofmaternal immunity, and
varied by hypothesis (Section 4.5 of the Supplementary Materials).
Ai= 1 and Ai= 2 are indicator functions that were set to 1 for i= 1and
i= 2, respectively; otherwise, these functionswere set to 0. In Line 1 of
Equation (1)), for infants (Group 1), b tð Þ 1� c tð Þð ÞNAi= 1 repre-
sents newborns without maternal immunity; M

p tð ÞAi= 1 represents

infants who are initially protected by maternal immunity gradually
becoming susceptible as this protection wanes.

For vaccination, we included both routine and catch-up vaccin-
ation. For simplicity, the routine vaccination in the model only
includes 1 dose at age 1; this roughly captures the impact of the
2-dose measles vaccination programme, in which the first dose is
administered at 8 months and the second at 18–24 months of age
[6]. To account for vaccine effectiveness, we computed the immun-
ization rate, vr tð Þ, combining vaccination rates and effectiveness
for both doses. In Lines 1 and 4 of Equation (1)), for 1- to
14-year-olds (Group 2), vr tð Þδi�1Ai=2Si�1 represents the number
of children turning age 1 (i.e., δ1S1Þand getting immunised. vci tð Þ
represents the number of individuals acquiring immunity from
catch-up vaccination (see Supplementary Materials for details).

We also accounted for migration. Specifically, ri tð Þ represents
the net number of migrants (i.e., the change in population size
excluding births and deaths, due to a lack of detailed data) in Group

i; f :½ �
i tð Þ represents the fraction of migrants to Group i with a given

disease status as specified by the superscript. The setting for these
migration-related terms varied by hypothesis (Sections 4.1 and 4.3
of the Supplementary Materials). Lastly, hi tð Þ models migration-
related case importation (see specific settings in Section 4.2 of the
Supplementary Materials).

Model inference (parameter estimation)
To estimate the model state variables ( Si, Ei , Ii , Ri , M ) and
parameters ( α, γ, m1, m2, b1, bseason, ϕ, η, R0, and β2 to β6), we
ran the epidemic model in conjunction with a modified particle
filter [14]. Briefly, we initialised themodel-filter system at the start
of 1995, that is, before the large influx of migrants. The initial
model state and parameter values (i.e., prior distributions) for the
particles (i.e., model replica) came from our previous work [8] and
the literature [15] (see Supplementary Materials, Section 3). The
system then estimated the model state sequentially from 1995 to
2014 via prediction-update cycles. In the prediction stage, the
system integrates the particles forward stochastically with a daily
time-step according to the epidemic model (Equation (1)); this
generates the prediction, or the prior, for the next time step. In the
update stage, the system computes the likelihood for each particle,
and combines it with the prior to compute the posterior per
Bayes’ rule.

To compute the likelihood, we modelled the reported incidence
in Group i during reporting period t�Δt to t ( Δt is 1 year during
1995–2004 and 1 week during 2005–2014 based on data availabil-
ity), Yi,t, using a Gaussian distribution:

Yi,t �N ηCi,t ,σ
2
i,t

� �
: (8)

where Ci,t is the corresponding model-estimated measles cases
(including unreported cases) and η is the reporting rate (estimated
by the filter). Following our previous work for Beijing [8], we
assumed the reporting rate increased linearly before 2005 to reflect
the improvement in disease surveillance.We set the annual increase
to 0.0037, corresponding to a 20% increase from 1951 to 2004. σ2i,t is
the observational error variance. During 1995–2004, only yearly
incidence combining all ages (Yt) was available. Accordingly, we
aggregatedmodel estimated cases across all ages and, given the large
year-to-year variation, simply scaled the observational error vari-
ance σ2t to the reported incidence for the same year in addition to an
arbitrary baseline of 100, per

σ2t = 100þYt × 3: (9)

For 2005–2014, weekly incidence data were available for the
4 age groups. We used these data for inference and computed the
observational error variance as
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σ2i,t = 100þ

P4
k= 0

Yi,t�k

5
× 3:

(10)

As a sensitivity analysis, we tested smaller observational errors,
that is, replacing the baseline of 100 with 50 and scaling factor of
3 with 1.

During filtering, we applied space reprobing, a technique to
explore the state space to a larger extent to prevent the particles
from being trapped in a sub-state space (a challenge known as
particle impoverishment) [16]. We reprobed the parameter space
during 1995–2004 when only yearly data were available, and during
2005 when the filter switched to using weekly data. In addition, the
netmigration estimates used in themodel likely underestimated the
influx of susceptible migrants, particularly during 2011–2014 when
the estimates were low (Supplementary Figure S2); as such, we also
reprobed S3 (i.e., susceptibles aged 15–50, the age group where
most migrants were in) during the first four weeks after the LNY
(i.e., the likely timing of worker migration) in 2011–2014.

Models to test different hypotheses

Using the base epidemic model described above, we modified
related model terms to test six sets of hypotheses (Table 1); each
set, including several competing hypotheses, represents a potential
mechanism underlying the measles epidemics in Beijing, as
described below and detailed in the Supplementary Materials.

Rationale and description
(1) Higher migrant susceptibility Given the disparities in vaccin-
ation programmes across China and the substantial migrant influx
[7], it was possible that higher susceptibility levels of migrants than

those in Beijing contributed to the epidemics. Therefore, we tested
three hypotheses onmigrant susceptibility: Themigrants were (i) as
susceptible as the population in Beijing (referred to as MigSusBase;
Table 1); (ii) as susceptible as the population in Shandong, a proxy
for migrants as Shandong is an important source of migrant
workers and estimates were available from our previous work [8]
(MigSusMedium); and (iii) 50% more susceptible than the popu-
lation in Shandong (MigSusHigh).

(2) Case importation (i.e., seeding) due to migrant influx
Migrant workers typically left their hometowns to seek jobs in Beijing
shortly after the LNY. This is roughly the period when annual measles
epidemics occurred. The epidemics, therefore,might have been driven
by importation of infected migrants (i.e., seeding). We tested three
seeding scenarios by varying the specification of hi tð Þ in Equation (1),
that is, fixing the seeding at a low level (BaseSeed) and scaling the
seeding with migrant influx (MediumSeed and StrongSeed).

(3) Timing of migrant influx After the LNY when intense migra-
tion typically occurs, a sudden large influx of susceptible migrants
could quickly increase the susceptible pool and exacerbate the impact.
We thus tested the timing and intensity of migrant influx, including
constant influx (MigConst, i.e., distributing the netmigration, ri tð Þ in
Equation (1)), evenly over time) and migration concentrating within
4 or 12 weeks following the LNY (MigLNY4 and MigLNY12,
i.e., distributing the net migration ri tð Þ to only those weeks).
(4) Increased migrant mixing During the first few months after
LNY, there could be a large number of temporary job seekers (likely
not captured by the net migration data used in our model), who
typically shared close living space in the city, leading to a period with
potentially increased mixing among migrants. As such, we tested the
impact of increasedmigrantmixing shortly after the LNY. In the tested

Table 1. Tested hypotheses

Hypothesized mechanism Hypothesis label Brief description

Higher migrant susceptibility MigSusBase Migrants as susceptible as the population of Beijing

MigSusMedium Migrants as susceptible as the population of Shandong

MigSusHigh Migrants 50% more susceptible than the population of Shandong

Case importation (i.e., seeding) due to migrant influx BaseSeed Seeding after the LNY fixed at a low level

MediumSeed Seeding after the LNY scales with migrant population size (lower intensity)

StrongSeed Seeding after the LNY scales with migrant population size (higher intensity)

Timing of migrant influx MigConst Constant migrant influx

MigLNY4 Migrant influx ended 4 weeks after the LNY

MigLNY12 Migrant influx ended 12 weeks after the LNY

Increased migrant mixing MigMixBase No periodic change in migrant mixing

MigMixMedium Migrant mixing increased from the LNY to the end of March (k = 1.025)a

MigMixHigh Migrant mixing increased from the LNY to the end of March (k = 1.05)a

Shorter duration of maternal immunity Imm180 180 days of maternal immunity

Imm150 150 days of maternal immunity

Imm120 120 days of maternal immunity

Increased infant mixing InfantMixBase No increase in infant mixing

InfantMixMedium Increased infant mixing (k = 1.025)a

InfantMixHigh Increased infant mixing (k = 1.05)a

LNY, Lunar New Year.
ak represents the extent of increase in mixing intensity.
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scenarios, we either increased the time-varyingmixing parameters for
those aged 15–50, that is, m3

1 tð Þ and m3
2 tð Þ in Equation (3), from the

LNY to the end of March (MigMixMedium and MigMixHigh) or
assumed no change in these mixing parameters (MigMixBase).

(5) Shorter duration of maternal immunity Recent serological
studies have showed that maternal measles antibodies wane earlier
in infants born to mothers who acquired immunity via vaccination
than those via natural infections [9]. In addition, a substantial
proportion of measles cases occurred among infants (<1 year; on
average 22% during 2005–2016; Table 2). We thus hypothesised
that, after decades of mass vaccination, the duration of maternal
immunitymay have been shortened; this in turnmay have rendered
more infants susceptible prior to receiving their first vaccine dose at
8months of age and contributed tomeasles persistence. To test this,
we set p tð Þ in Equation (1), the duration of maternal immunity, to
180, 150, or 120 days (Imm180, Imm150, and Imm120).

(6) Increased infant mixing Infants may cluster together in vari-
ous venues such as hospitals and daycare centres, which may
increase the risk of measles transmission among infants and care-
takers. For instance, a literature review suggests that hospital-
acquired measles infection is an important mode of transmission
in the post-vaccine era [10]. A measles outbreak investigation in
China also identified a hospital as an important venue of transmis-
sion [17]. Therefore, we also hypothesised that mixing intensity
among infants is higher than other age groups. In the tested
scenarios, we either increased the mixing parameters for those aged
<1, that is, m1

1 tð Þ and m1
2 tð Þ in Equation (3), (InfantMixMedium

and InfantMixHigh) or assumed no increase in these mixing
parameters (InfantMixBase).

Comparison procedure
Given the large number of combinations across the six sets of
hypotheses, we compared the aforementioned hypotheses in two
steps that focussed on migrant-related and infant-related hypoth-
eses, respectively. In Step 1, we tested all combinations of the four
sets of migrant-related hypotheses (n = 81; Figure 2), while setting
the two sets of infant-related hypotheses to the baseline scenarios,
that is, Imm180 and InfantMixBase. In Step 2, setting the migrant-
related hypotheses at the most plausible scenario identified from
Step 1, we further tested all combinations of the two sets of infant-
related hypotheses (n = 9; Figure 3).

Model comparisons

We compared the different models based on their goodness-of-fit
(GOF) during 2005–2014 (with weekly data for all four age

groups). We considered two GOF measures: (1) log-likelihood
and (2) root-mean-square-error (RMSE) for the four age groups.
To account for model and filter stochasticity, we ran the inference
process for each model (or combination of hypotheses) 100 times,
each with 8000 particles. Due to the large variance of both GOF
measures, we used boxplots to show their distributions for quali-
tive comparisons.

In instances where competing models fitted the data equally
well, we simulated the models forward from the start of 2015 and
compared their out-of-fit prediction. We initialised the model for
simulation using the posteriors at the end of 2014. In addition, as
the error in state variables grows during the course of simulation,
we reset Ei and Ii at the start of each year to the average of reported
cases in Group i in the first two weeks of each year divided by the
reporting rate, when such weekly data were available (i.e., for 2015
and 2016). In addition, as noted above, the net migration estimates
likely failed to capture migration-induced susceptibility changes,
particularly during 2015–2019 (see the near zero or negative net
migration in Supplementary Figure S2). To address this, we used
the model-filter system and weekly data during 2015–2016 to
estimate the changes in susceptibility among those aged 15–50,
the group including most migrants (i.e., S3 ); we reprobed S3 in
broader state spaces to allow the posterior of S3 to reflect
migration-induced changes. We then adjusted S3 to match the
posterior of S3 for the out-of-fit simulation during 2015–2016. We
did not estimate or adjust S3 for 2017 onwards because of the lack of
weekly data for those years.

Results

Characteristics of themeasles epidemics in Beijing during 2005–
2019

Despite the high vaccination coverage (Supplementary Figure S2),
measles epidemics recurred in Beijing almost annually during the
study period (Figure 1a). Epidemic intensity was substantially lower
in 2011 and 2012 (likely due to the national SIA in September 2010),
resurged during 2013–2016, anddeclined again after 2017 (Table 2).
A seasonal pattern with an increase in cases in early spring was
evident for years with a substantial outbreak (Figure 1a). Those
aged 15–50 accounted for the majority of cases (the proportion of
cases in this age group ranged from 47% to 82%; Table 2). This was
in contrast with the pre-vaccine era, when measles infections
predominantly occurred among young children [13]. In addition,
infants (age < 1 year) saw large numbers of cases (7% to 32% of the
total), and the highest age-specific incidence rates among all age
groups (Figure 1b).

Table 2. Age distribution of measles cases by year and cases combing all ages in Beijing from 2005 to 2019

Age 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

% of cases by age groups

<1 21% 18% 22% 26% 26% 32% 29% 19% 22% 20% 25% 7% –

a
– –

1–14 32% 30% 18% 16% 18% 16% 13% 17% 12% 8% 7% 5% – – –

15–50 47% 52% 60% 57% 55% 51% 58% 61% 64% 69% 64% 82% – – –

>50 0% 0% 0% 0% 1% 1% 0% 3% 2% 3% 4% 5% – – –

Number of cases

All ages 3404 3762 2273 1799 1109 2491 96 75 557 2384 1321 1250 64 103 55

aDuring 2017–2019, measles cases by age groups were not available.
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Impact of migrants

We first tested four sets of migrant-related hypotheses in combin-
ation (i.e., highermigrant susceptibility, seeding intensity, timing of
migrant influx, and increased migrant mixing). Compared with
models assuming no increase in migrant mixing (MigMixBase),
models assuming increased migrant mixing (MigMixMedium and
MigMixHigh) had worse model fit (lower likelihood and higher
RMSE; Figure 2 and Supplementary Figures S3–S5).Models assum-
ing stronger seeding due to migration (MediumSeed and Strong-
Seed) also had worse model fit than those assuming baseline
seeding (Figure 2 and Supplementary Figures S3–S5). As such, we
focussed on models assuming no increase in migrant mixing or
seeding intensity (see the bottom row in Figure 2 and Supplemen-
tary Figure S4 and the nine rows of boxplots at the bottom
of Supplementary Figures S3 and S5). Among these models,
increasing migrant susceptibility improved model fit in terms of
log-likelihood and RMSE for those aged 1–14 and 15–50 (log-
likelihood: MigSusBase <MigSusMedium <MigSusHigh). In com-
parison, model settings on migrant influx timing had a minor
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Figure 2. Comparing migrant-related hypotheses based on medians of log-likelihood. We formulated four sets of migrant-related hypotheses (increased migrant mixing
[MigMixBase/MigMixMedium/MigMixHigh], seeding intensity [BaseSeed/MediumSeed/StrongSeed], higher migrant susceptibility [MigSusBase/MigSusMedium/MigSusHigh], and
timing of migrant influx [MigConst/MigLNY12/MigLNY4]), and tested all combinations of the four sets (n = 81, i.e., the number of cells in the Fig). For each model (or hypothesis
combination), we conducted 100model inference runs using amodel-filter system, and show themedian of the 100 log-likelihood estimates in red. For infant-related hypotheses, all
models tested here assumed Imm180 and InfantMixBase as baseline scenarios. See Table 1 for a summary of all hypotheses.
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100 log-likelihood estimates in red. For migrant-related hypotheses, all models tested
here assumed MigMixBase, BaseSeed, MigLNY4, and MigSusHigh, because the previous
comparison step identified this combination as one of the most plausible scenarios.
See Table 1 for a summary of all hypotheses.
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impact onmodel fit (Supplementary Figures S3 and S5) or out-of-fit
predictions (Supplementary Figures S6 and S7), except for Year
2016 where the MigLNY4 model had smaller under-prediction
than the other two settings (Supplementary Figure S6). Taken
together, these findings suggest migrant susceptibility substantially
affected the overall measles epidemic dynamics in Beijing and that
migrants might have a considerably higher susceptibility level than
the locals.

Impact of Infant-related factors (maternal immunity andmixing
intensity)

Models assuming shorter maternal immunity duration (repre-
sented by Imm180, Imm150, and Imm120) had smaller RMSE
for those aged under 1 year (Supplementary Figure S8B). However,
these competing hypotheses generated similar model performances
when assessed by all other measures, that is, log-likelihood, RMSE
for the other age groups, and out-of-fit prediction (Supplementary
Figures S8–S10). In addition, models assuming different intensity
of infant mixing also generated similar results on all measures of
model performances (Supplementary Figures S8–S10).

Models accounting for higher migrant susceptibility
best captured measles epidemic dynamics in Beijing during
2005–2019

As detailed above, three settings substantially affectedmodel perform-
ance, and those assuming higher susceptibility among migrants and

baseline seeding andmigrantmixing had the bestmodel performance.
Thus, we considered all related models (i.e., MigSusHigh, BaseSeed,
and MigMixBase) best models. The sensitivity analysis, in which we
used smaller observation errors, generated results (Supplementary
Figure S11) that were similar with the main results.

Figure 4 shows the model fit and out-of-fit prediction for one
of these best models. The model was able to capture the annual
epidemics and dynamics among all age groups during the 2005–2014
training period (Figure 4a). The parameter estimates
(Supplementary Figure S12) were generally consistent with those
reported in the literature [18–20]; for instance, estimated R0 was 16.0
(50% credible interval [CrI]: 14.6–17.3; 95% CrI: 12.0–20.0), latent
period ( 1=α) was 8.1 days (50% CrI: 7.8–8.4; 95% CrI: 7.3–9.0), and
infectious period ( 1=γ) was 5.0 days (50%CrI: 4.7–5.3; 95%CrI: 4.2–
5.8). In addition, the out-of-fit prediction, when aggregated across all
ages to yearly totals, correctly captured the downward trend of
measles incidence from 2015 to 2019 (Figure 4b). For years 2015–
2016 when weekly data are available, the model generally captured
the overall and age group-specific epidemic dynamics (Figure 4c).

Discussion

To examine determinants ofmeasles persistence in Beijing, we tested
a series of hypothesisedmechanisms including the impact ofmigrant
influx, early waning of maternal immunity, and increased mixing
among infants. Overall, model inference suggests the influx of
migrants and their higher susceptibility likely contributed to the
persistent measles transmission in Beijing. Models accounting for

Figure 4.Model performance of one of the best models. This model assumedMigSusHigh, BaseSeed, MigLNY4, MigMixBase, Imm180, and InfantMixBase. See Table 1 for a summary
of all hypotheses. The model fit is shown in (a); out-of-fit predictions are shown in (b) and (c). In (a), the red dots represent reported weekly case counts; the blue lines and
surrounding areas represent the mean and 95% CrI of the posterior. In (b), the red asterisks represent reported yearly case counts; the whiskers, box edges, and thick horizontal
segment in themiddle represent the 2.5th (or 97.5th) percentile, interquartile range, andmedian of predicted cases, respectively. In (c), the red dots represent reported weekly case
counts; blue lines show the median of predicted cases; surrounding darker blue areas indicate interquartile range, and lighter blue areas indicate 2.5 to 97.5 percentiles.
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these key factors were able to recreate measles epidemic dynamics
during 2005–2014, and predict epidemics during 2015–2019.

Foremost, model inference estimated higher susceptibility for
migrants and supports vaccinating migrants to control measles.
Indeed, catch-up vaccination campaigns for migrants have been
implemented in Beijing since the 2000s [7, 21], which likely miti-
gated but did not prevent the outbreaks. Our model inference
suggests two important gaps. First, while a large number of
migrants were vaccinated via catch-up vaccination, many were
likely missed and sufficient to sustain endemic transmission (e.g.,
on average ~ 378 thousands vaccinated each year during 2005–2010
[21] vs. ~737 thousands estimated net migration, not including
those uncounted). As such, stronger catch-up vaccination pro-
grammes might be needed. Second, measles epidemics occurred
shortly after the LNY (January–February), but catch-up vaccin-
ation campaigns were conducted during March–May [21]. Given
the delay, catch-up vaccination in coordination with local public
health agencies to vaccinate migrants in source regions before they
leave for big cities like Beijing might be more effective.

Unexpectedly, migrant influx timing did not substantially affect
model dynamics. The similar model performances may be due to
the use of net migration estimates, which likely missed a large
number of temporary migrants who failed to find a job to remain
in the city. Future investigation using more detailed migration data
is thus warranted to further examine the impact of the LNY intense
migration. In addition, this data limitation may have led to over-
estimation of the gap in susceptibility levels between migrants and
locals (estimated 28% susceptible for migrants aged 15–50 and 16%
for their local counterpart in the best models). In reality, it is likely
that a migrant influx of larger volume and lower susceptibility
fuelled the outbreaks.

Four other hypothesised mechanisms – increased case import-
ation due to migrant influx, increased migrant mixing, shorter
duration of maternal immunity, and increased infant mixing – also
did not substantially affect model dynamics. These findings suggest
these potential mechanisms likely had a smaller impact on measles
dynamics during our study period. For instance, in Beijing and
China overall, the first measles vaccine is administered at 8 months
of age [7], earlier than in many other places (e.g., at 12–15 months
in the USA [22]); this earlier vaccine administration and the
relatively low number of cases under 1 may explain the lack of a
major impact from shortening maternal immunity and increasing
infant mixing. Nonetheless, we cannot rule out these potential
mechanisms, due to several study limitations as noted below.
Further investigation on these mechanisms is thus warranted.

We recognise several limitations in our study. First, heremeasles
incidence data combined cases from migrants and local residents.
Thus, wewere unable to test themigration-related hypotheses using
migrant-specific data. Nevertheless, by modelling the long-term
measles dynamics including a period before large migrant influx,
we were still able to identify migration and the higher susceptibility
of migrants as a key contributor to measles persistence. Second, the
lack of migrant-specific data may have limited our ability to detect
more specific impact of migration, for example, changes in migrant
mixing intensity over time. Third, the incidence data were likely
affected by under-reporting [5] and likely more so for migrants.
Lastly, using population-level incidence data and models, we were
also unable to capture some of the more nuanced system dynamics.
In particular, to examine the potential impact of enhanced mixing
and transmission among infants via venues like paediatric hospitals
and daycares and subsequent transmission to caretakers, individual
or household level data may be needed.

In summary, our findings have revealed key mechanisms of
measles persistence in Beijing and suggested potential prevention
strategies.Model inference found considerably higher susceptibility
of migrants likely contributed to persistent measles transmission in
Beijing, suggesting the need for stronger catch-up vaccination
programmes for migrants.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S0950268823001322.
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