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Krull Dimension of Injective Modules Over
Commutative Noetherian Rings

Patrick F. Smith

Abstract. Let R be a commutative Noetherian integral domain with field of fractions Q. Generalizing a

forty-year-old theorem of E. Matlis, we prove that the R-module Q/R (or Q) has Krull dimension if and

only if R is semilocal and one-dimensional. Moreover, if X is an injective module over a commutative

Noetherian ring such that X has Krull dimension, then the Krull dimension of X is at most 1.

Miller and Turnidge [11] give an example of a ring R and a Noetherian injective

left R-module X such that X is not Artinian. On the other hand, Fisher [5, Corollary

3.3] shows that if R is a commutative ring, then every Noetherian injective R-module

is Artinian. A related result of Vinsonhaler [14, Theorem A] states that if R is any

left Noetherian ring such that the injective hull of the left R-module R is a finitely

generated left R-module, then the ring R is left Artinian. For a generalisation of

Vinsonhaler’s Theorem see [7].

Let R be a ring. Every Noetherian left R-module has Krull dimension (see [10,

6.2.3]). In view of the above comments, it is natural to investigate when injective

modules have Krull dimension. It is well known that if U is a simple module over a

commutative Noetherian ring R, then the injective hull E of U is an Artinian R-mod-

ule, i.e., E has Krull dimension 0 (see, for example, [13, Theorem 4.30]. We can

easily give an instance of a particular injective module over a certain ring having

Krull dimension 1. If R is a DVR with field of fractions Q 6= R and if Ra is the unique

maximal ideal of R, then the R-submodules of Q form a totally ordered chain:

0 =

∞⋂
n=1

Ran ⊆ · · · ⊆ Ra2 ⊆ Ra ⊆ R ⊆ R(1/a) ⊆ R(1/a2) ⊆ · · · ⊆
∞⋃

n=1

R(1/an) = Q.

Note that Q is an injective R-module with Krull dimension 1.

We shall show that if an injective module over a commutative Noetherian ring has

Krull dimension, then its Krull dimension cannot exceed 1 (Theorem 2.10).

1 Krull Dimension

Throughout this section R will denote a (not necessarily commutative) ring with

identity and all modules will be unital left R-modules. An R-module M is called

(Goldie) finite dimensional if M does not contain a direct sum of an infinite num-

ber of non-zero submodules. The module M is called quotient finite dimensional if

M/N is finite dimensional for every submodule N of M. Camillo [2] proved that a
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module M is quotient finite dimensional if and only if every submodule N contains a

finitely generated submodule L such that N/L has no maximal submodule. For more

information on quotient finite dimensional modules see [1, 2, 4].

Given a module M with Krull dimension, the Krull dimension of M will be de-

noted by k(M). For the definition and basic properties of Krull dimension see [10,

Chapter 6]. It will be convenient to recall at this point some basic facts concerning

Krull dimension. For the proof of the first result see [10, Chapter 6].

Lemma 1.1 Let M be an R-module.

(i) If M is Noetherian, then M has Krull dimension.

(ii) If M has Krull dimension, then M is quotient finite dimensional.

(iii) If N is a submodule of M, then M has Krull dimension if and only N and M/N

both have Krull dimension, and in this case k(M) = sup{k(N), k(M/N)}.

(iv) If M = M1 ⊕ · · · ⊕ Mn is a finite direct sum of submodules Mi(1 ≤ i ≤ n), then

M has Krull dimension if and only if Mi has Krull dimension for each 1 ≤ i ≤ n,

and in this case k(M) = sup{k(Mi) : 1 ≤ i ≤ n}.

(v) If the (left) R-module R has Krull dimension and M is finitely generated, then M

has Krull dimension and k(M) ≤ k(R).

(vi) If M has Krull dimension, α ≥ 0 is an ordinal and

N =

∑
{L : L is a submodule of M such that k(L) ≤ α}

then k(N) ≤ α.

Note that Lemma 1.1(ii) shows that for any non-zero ring R, not every R-module

has Krull dimension. If R is a non-zero ring then every free R-module F of infinite

rank does not have Krull dimension and the injective hull of F is an injective module

which does not have Krull dimension. The following result will be required later.

Lemma 1.2 Let R be a ring such that the R-module R has Krull dimension. Then an

R-module M has Krull dimension if and only if M is quotient finite dimensional.

Proof The necessity follows by Lemma 1.1(ii). Conversely, suppose that M is quo-

tient finite dimensional. Suppose that k(R) = α for some ordinal α ≥ 0. Let N be

any submodule of M. By [10, 2.2.8], the R-module M/N contains a finitely generated

essential submodule H. By Lemma 1.1(v), H has Krull dimension and k(H) ≤ α. Fi-

nally, M has Krull dimension by [3, 6.3].

Corollary 1.3 Let R be a left Noetherian ring. Then an R-module M has Krull dimen-

sion if and only if M is quotient finite dimensional.

Proof By Lemmas 1.1(i) and 1.2.

Not every quotient finite dimensional module has Krull dimension. To give an

easy example, let p be any prime, let F be any field of characteristic p and let R =

F[G] be the group algebra over F of the Prüfer p-group G. If a, b ∈ R then there
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exists a finite (cyclic) subgroup H of G such that a, b ∈ F[H]. Because F[H] is a

local principal ideal ring (see [12, Lemmas 3.1.1 and 3.1.6]), it follows that F[H]a ⊆
F[H]b or F[H]b ⊆ F[H]a. Thus the R-module R/A is uniform for every proper

ideal A of R, i.e., the R-module R is quotient finite dimensional. Let A denote the

augmentation ideal of R. For each x ∈ G, there exists y ∈ G such that x = y p and

there exists a positive integer n such that xpn

= 1. Hence

x − 1 = (y − 1)p and (x − 1)pn

= 0.

It follows that A is a non-zero nil idempotent ideal of R. By [10, 6.3.7] the R-module

R does not have Krull dimension.

2 Injective Modules

Throughout the remainder of this paper, R will denote a commutative ring with iden-

tity and all modules will be unital R modules.

Given a non-negative integer n, a prime ideal P of the ring R has height n if there

exists a chain P = P0 ⊃ P1 ⊃ · · · ⊃ Pn of prime ideals Pi(i ≥ 0) of R but no longer

such chain. The ring R is defined to have dimension n if R contains a prime ideal of

height n but no prime ideal of height n + 1. Given a positive integer n, a commutative

Noetherian ring has dimension n if and only if k(R) = n by [10, 6.4.8]. Rings R of

dimension 1 are usually called one-dimensional ! A ring R is semilocal if R contains

only a finite number of maximal ideals.

Let R be an integral domain with field of fractions Q. For any ideal A of R we

set A∗
= {q ∈ Q : qA ⊆ R}. Note that A∗ is an R-submodule of Q such that

A ⊆ A∗A ⊆ R ⊆ A∗. An ideal A of R is called invertible provided A∗A = R.

Note the following well known fact.

Lemma 2.1 Let R be any (commutative) ring and let P be a minimal prime ideal of R.

Then for each a ∈ P there exists 0 6= b ∈ R such that ab = 0.

Proof By [8, Theorem 84].

Lemma 2.2 Let R be an integral domain with field of fractions Q such that the R-mod-

ule Q/R is finite dimensional. Then there exist a positive integer n and prime ideals

Pi(1 ≤ i ≤ n) of R such that for each height 1 prime ideal P of R there exists 1 ≤ j ≤ n

such that P ⊆ P j .

Proof By [10, 2.2.8] there exist a positive integer n and independent uniform sub-

modules Ui(1 ≤ i ≤ n) of the R-module Q/R such that U1 ⊕ · · · ⊕Un is an essential

submodule of Q/R. For each 1 ≤ i ≤ n, let Pi = {r ∈ R : rx = 0 for some

0 6= x ∈ Ui}. Then it is well known (and easy to check) that Pi is a prime ideal of R

for each 1 ≤ i ≤ n.

Let P be a height 1 prime ideal of R. Let 0 6= a ∈ P. Then P/Ra is a minimal

prime ideal of the ring R/Ra. Let p ∈ P. By Lemma 2.1 there exists b ∈ R\Ra such

that pb ∈ Ra. Let y = (b/a) + R ∈ Q/R. Then y 6= 0 and py = 0. There exist
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r ∈ R and ui ∈ Ui (1 ≤ i ≤ n) such that 0 6= ry = u1 + · · · + un. It follows that

pu1 + · · ·+ pun = rpy = 0 and hence pui = 0 (1 ≤ i ≤ n). We conclude that p ∈ Pk

for some 1 ≤ k ≤ n. This proves that P ⊆ P1 ∪ · · · ∪ Pn. By [8, Theorem 81] P ⊆ P j

for some 1 ≤ j ≤ n.

Lemma 2.3 Let R be a Noetherian integral domain with field of fractions Q such that

the R-module Q/R is finite dimensional. Then R is a semilocal ring such that R ⊂ P∗

for every maximal ideal P of R.

Proof Let n,Ui(1 ≤ i ≤ n) and Pi(1 ≤ i ≤ n) be as in Lemma 2.2 and its proof. For

each 1 ≤ i ≤ n, Pi is a finitely generated ideal and hence there exists 0 6= vi ∈ Ui such

that Pivi = 0. Let H be a maximal ideal of R. Let 0 6= a ∈ H. Let G be a minimal

prime ideal of the ideal Ra. By the Principal Ideal Theorem (see, for example, [8,

Theorem 142]), G is a height 1 prime ideal of R. By Lemma 2.2, G ⊆ P j for some

1 ≤ j ≤ n. In particular, a ∈ P j . Hence H ⊆ P1 ∪ · · · ∪ Pn. By [8, Theorem 81],

H = Pk for some 1 ≤ k ≤ n. There exists q ∈ Q\R such that vk = q + R and hence

q ∈ H∗\R. The result follows.

Theorem 2.4 Let R be an integral domain with field of fractions Q. Then R is a semilo-

cal principal ideal domain if and only if R is Noetherian and integrally closed and the

R-module Q/R is finite dimensional. In this case Q/R is Artinian and the R-module Q

has Krull dimension 1.

Proof Suppose first that R is a semilocal principal ideal domain. Then R is Noethe-

rian and, by [8, Theorem 50], integrally closed. By [9, Theorem 1] (although it is easy

to prove this directly), the R-module Q/R is Artinian and hence finite dimensional.

By Lemma 1.1(iii), the R-module Q has Krull dimension 1.

Conversely, suppose that R is Noetherian and integrally closed and that the R-

module Q/R is finite dimensional. By Lemma 2.3 R is a semilocal ring. Let P be a

maximal ideal of R. By Lemma 2.3 again, R ⊂ P∗ and hence, by [8, Theorem 12],

P∗P 6= P. Hence P∗P = R because P is a maximal ideal of R. Thus every maximal

ideal of R is invertible. It follows that R is a Dedekind domain (see [8, p. 73 ex. 12).

Finally R is a principal ideal domain by [15, p. 278 Theorem 16].

Next we strengthen Lemma 2.1 for rings with Krull dimension.

Lemma 2.5 Let R be a ring with Krull dimension and let P be a minimal prime ideal

of R. Then Pa = 0 for some 0 6= a ∈ R.

Proof By [10, 6.3.8], R contains only a finite number of minimal prime ideals P =

P1, P2, . . . , Pn, for some positive integer n, and (P1 · · ·Pn)k
= 0 for some positive

integer k. The result follows.

Next we prove the following variant of Lemma 2.3. It is based on an unpublished

result of J. T. Stafford given in a seminar in the University of Glasgow in 1987.
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Lemma 2.6 Let R be an integrally closed integral domain having Krull dimension and

let Q be the field of fractions of R such that the R-module Q/R is finite dimensional.

Then R has only a finite number of height 1 prime ideals.

Proof Let P be a height 1 prime ideal of R. Let 0 6= a ∈ P. Then P/Ra is a min-

imal prime ideal of the ring R/Ra. By Lemma 2.5, there exists b ∈ R\Ra such that

bP ⊆ Ra. Then the element b/a of Q satisfies (b/a)P ⊆ R, i.e., b/a ∈ P∗, but

b/a /∈ R. Thus R ⊂ P∗ for any height 1 prime ideal P of R.

Let n be a positive integer and let Pi(1 ≤ i ≤ n) be distinct height 1 prime ideals

of R. Let qi ∈ P∗

i (1 ≤ i ≤ n) such that q1 + · · · + qn = r ∈ R. Then

q1(P1 · · ·Pn) = (r − q2 − · · · − qn)P1 · · · Pn ⊆ P1.

But q1P1 ⊆ R and P2 · · ·Pn * P1, so that q1P1 ⊆ P1. By [8, Theorem 12] R integrally

closed gives that q1 ∈ R. It follows that qi ∈ R(1 ≤ i ≤ n). This proves that

(P∗

1 /R) + · · · + (P∗

n/R) is a direct sum of non-zero submodules of the R-module

Q/R. But the R-module Q/R is finite dimensional. It follows that R has only a finite

number of height 1 prime ideals.

Compare the next result with Theorem 2.4. It incorporates [9, Theorem 1].

Theorem 2.7 Let R be a Noetherian integral domain with field of fractions Q 6= R.

Then the following statements are equivalent.

(i) R is semilocal and one-dimensional.

(ii) The R-module Q/R is Artinian.

(iii) The R-module Q/L is Artinian for every non-zero R-submodule L of Q.

(iv) The R-module Q has Krull dimension.

(v) The R-module Q/R has Krull dimension.

(vi) The R-module Q/R is quotient finite dimensional.

In this case the R-module Q has Krull dimension 1.

Proof (i) ⇔ (ii)⇔ (iii) By [9, Theorem 1].

(ii) ⇒ (iv) ⇔ (v) By Lemma 1.1(iii).

(v) ⇔ (vi) By Corollary 1.3.

(iv) ⇒ (i) Let R̂ denote the integral closure of R in Q. By Lemma 1.1(iii), the

R-module R̂ has Krull dimension. Since every ideal of R̂ is an R-submodule of R̂, it

follows that the ring R̂ has Krull dimension (see [10, 6.1.5]). Similarly the R̂-module

Q has Krull dimension. By Lemma 2.6, the ring R̂ contains only a finite number of

height 1 prime ideals.

Let P be a height 1 prime ideal of the ring R. By [8, Theorem 44] there exists a

height 1 prime ideal P ′ of R̂ such that P ′ ∩ R = P. Hence R has only a finite number

of height 1 prime ideals, say P1, . . . , Pn. Let H be a maximal ideal of R. The proof of

Lemma 2.3 gives that H = Pi for some 1 ≤ i ≤ n. Now (i) follows.
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Corollary 2.8 Let R be an integral domain with field of fractions Q. Then R is semilo-

cal, one-dimensional and Noetherian if and only if the R-module Q has Krull dimen-

sion 1.

Proof The necessity follows by Theorem 2.7. Conversely, suppose that k(Q) = 1.

By Lemma 1.1(iii), k(R) = 1. Let 0 6= a ∈ R. Then R/Ra is an Artinian ring by [10,

6.3.9] and hence a Noetherian ring by [13, Theorem 3.25 Corollary]. It follows that

R is a Noetherian ring. By Theorem 2.7, R is semilocal and one-dimensional.

Theorem 2.9 The following statements are equivalent for a Noetherian integral do-

main R.

(i) R is semilocal and one-dimensional.

(ii) There exists a non-zero torsion-free injective R-module having Krull dimension.

(iii) Every finite dimensional R-module has Krull dimension 0 or 1.

Proof (i) ⇒ (iii) Let M be any finite dimensional R-module. If E denotes the injec-

tive hull of M, then E is finite dimensional and hence E = E1 ⊕ · · · ⊕ En for some

positive integer n and indecomposable submodules Ei(1 ≤ i ≤ n) by [13, Proposi-

tions 2.23 and 2.28]. In view of Lemma 1.1(iii), (iv), we can suppose without loss of

generality that M is an indecomposable injective R-module. By [13, Theorem 2.32],

M contains an essential submodule N such that N ∼
= R/P for some prime ideal P

of R. If P 6= 0 then P is a maximal ideal of R, N is simple and M is Artinian by [13,

Theorem 4.30]. If P = 0 then the R-module M is isomorphic to the R-module Q,

where Q is the field of fractions of R. By Theorem 2.7, k(M) = 1.

(iii) ⇒ (ii) The R-module Q is non-zero torsion-free injective and has Krull di-

mension.

(ii) ⇒ (i) Let X be a non-zero torsion-free injective R-module having Krull di-

mension. By Lemma 1.1(ii), X is finite dimensional and, by [13, Proposition 2.6], X

is a finite dimensional vector space over the field Q. Hence, as Q-modules, X ∼
= Q(n)

for some positive integer n. It follows that X ∼
= Q(n) as R-modules and hence the

R-module Q has Krull dimension by Lemma 1.1(iii). Now (i) follows by Theorem

2.7.

Theorem 2.10 Let R be a Noetherian ring and let X be an injective module having

Krull dimension. Then X has Krull dimension at most 1.

Proof By Lemma 1.1(ii), X has finite uniform dimension. Hence X = X1⊕· · ·⊕Xn

for some positive integer n and indecomposable submodules Xi(1 ≤ i ≤ n) by

[13, Propositions 2.23 and 2.28]. In view of Lemma 1.1(iv), we can suppose with-

out loss of generality that X is indecomposable. By [13, Theorem 2.32], there ex-

ists an essential submodule Y of X such that Y ∼
= R/P for some prime ideal P

of R. Let Z = {x ∈ X : Px = 0}. Then Z is a submodule of X and PZ = 0.

Clearly Y is an essential submodule of Z. By [13, Proposition 2.27], Z is an injective

(R/P)-module having Krull dimension. Moreover, because Y is a torsion-free (R/P)-

module and an essential submodule of Z, we know that Z is a non-zero torsion-free
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(R/P)-module. By Theorem 2.9, the Noetherian integral domain R/P is semilocal

and one-dimensional.

Let T denote the sum of all R-submodules S of X such that k(S) ≤ 1. By Theorem

2.9, Z ⊆ T and, by Lemma 1.1(vi), k(T) ≤ 1. Suppose that X 6= T. Let x ∈ X\T. By

[13, Proposition 4.23], Pmx = 0 for some positive integer m. There exists a positive

integer k such that Pk−1x * T but Pkx ⊆ T. Now (Pk−1x+T)/T is a finitely generated

(R/P)-module. By Lemma 1.1(v), k((Pk−1x + T)/T) ≤ k(R/P) = 1 and, by Lemma

1.1(iii), k(Pk−1x) ≤ 1. But this implies that Pk−1x ⊆ T, a contradiction. It follows

that X = T and hence k(X) ≤ 1.

We can extend Theorem 2.10 in case the ring R is a domain. Recall that if R is an

integral domain then an R-module M is called divisible if M = cM for every non-zero

element c of R. Note that if X is an injective module over R, then, by [13, Lemma 2.4

and Proposition 2.6], every homomorphic image of X is divisible .

Theorem 2.11 Let R be a Noetherian integral domain and let M be a divisible R-

module having Krull dimension. Then M has Krull dimension at most 1.

Proof Suppose that M is non-zero. By Lemma 1.1(ii), M is finite dimensional. If E

denotes the injective hull of M, then E = E1⊕· · ·⊕En for some positive integer n and

indecomposable injective submodules Ei (1 ≤ i ≤ n) of E. For each 1 ≤ i ≤ n let

πi : E → Ei denote the canonical projection and let Ki denote the kernel of πi . Note

that K1 ∩ · · · ∩ Kn = 0 and hence M embeds in (M/K1) ⊕ · · · ⊕ (M/Kn). Moreover,

for each 1 ≤ i ≤ n, M/Ki
∼
= πi(M), which is a non-zero divisible submodule of Ei .

Thus, by Lemma 1.1, we can suppose without loss of generality that M is a submodule

of an indecomposable injective R-module X.

We now adapt the proof of Theorem 2.10. As before there exists an essential sub-

module Y of X such that Y ∼
= R/P, for some prime ideal P of R, and we again set

Z = {x ∈ X : Px = 0}. Note that Z is an essential submodule of X, Z is a torsion-free

(R/P)-module and M ∩ Z 6= 0. Let m ∈ M ∩ Z, c ∈ R\P. Since M is divisible it

follows that m = cm ′ for some m ′ ∈ M. However, cPm ′
= Pm = 0 implies that

Pm ′
= 0, because Y is essential in X. Thus m ′ ∈ M ∩ Z. It follows that M ∩ Z is a

non-zero torsion-free divisible module over the integral domain R/P. By [13, Propo-

sition 2.7], M ∩ Z is injective. Applying Theorem 2.9, we conclude that the ring R/P

is semilocal and one-dimensional.

Let N denote the sum of all R-submodules L of M such that k(L) ≤ 1. Note that

M∩Z ⊆ N by Theorem 2.9. Finally the argument at the end of the proof of Theorem

2.10 gives that M = N and hence k(M) ≤ 1.
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