Krull Dimension of Injective Modules Over Commutative Noetherian Rings

Patrick F. Smith

Abstract. Let *R* be a commutative Noetherian integral domain with field of fractions *Q*. Generalizing a forty-year-old theorem of E. Matlis, we prove that the *R*-module Q/R (or *Q*) has Krull dimension if and only if *R* is semilocal and one-dimensional. Moreover, if *X* is an injective module over a commutative Noetherian ring such that *X* has Krull dimension, then the Krull dimension of *X* is at most 1.

Miller and Turnidge [11] give an example of a ring R and a Noetherian injective left R-module X such that X is not Artinian. On the other hand, Fisher [5, Corollary 3.3] shows that if R is a commutative ring, then every Noetherian injective R-module is Artinian. A related result of Vinsonhaler [14, Theorem A] states that if R is any left Noetherian ring such that the injective hull of the left R-module R is a finitely generated left R-module, then the ring R is left Artinian. For a generalisation of Vinsonhaler's Theorem see [7].

Let *R* be a ring. Every Noetherian left *R*-module has Krull dimension (see [10, 6.2.3]). In view of the above comments, it is natural to investigate when injective modules have Krull dimension. It is well known that if *U* is a simple module over a commutative Noetherian ring *R*, then the injective hull *E* of *U* is an Artinian *R*-module, *i.e.*, *E* has Krull dimension 0 (see, for example, [13, Theorem 4.30]. We can easily give an instance of a particular injective module over a certain ring having Krull dimension 1. If *R* is a DVR with field of fractions $Q \neq R$ and if *Ra* is the unique maximal ideal of *R*, then the *R*-submodules of *Q* form a totally ordered chain:

$$0 = \bigcap_{n=1}^{\infty} Ra^n \subseteq \cdots \subseteq Ra^2 \subseteq Ra \subseteq R \subseteq R(1/a) \subseteq R(1/a^2) \subseteq \cdots \subseteq \bigcup_{n=1}^{\infty} R(1/a^n) = Q.$$

Note that *Q* is an injective *R*-module with Krull dimension 1.

We shall show that if an injective module over a commutative Noetherian ring has Krull dimension, then its Krull dimension cannot exceed 1 (Theorem 2.10).

1 Krull Dimension

Throughout this section R will denote a (not necessarily commutative) ring with identity and all modules will be unital left R-modules. An R-module M is called *(Goldie) finite dimensional* if M does not contain a direct sum of an infinite number of non-zero submodules. The module M is called *quotient finite dimensional* if M/N is finite dimensional for every submodule N of M. Camillo [2] proved that a

Received by the editors June 19, 2003; revised September 2, 2003.

AMS subject classification: 13E05, 16D50, 16P60.

[©]Canadian Mathematical Society 2005.

module *M* is quotient finite dimensional if and only if every submodule *N* contains a finitely generated submodule *L* such that N/L has no maximal submodule. For more information on quotient finite dimensional modules see [1, 2, 4].

Given a module M with Krull dimension, the Krull dimension of M will be denoted by k(M). For the definition and basic properties of Krull dimension see [10, Chapter 6]. It will be convenient to recall at this point some basic facts concerning Krull dimension. For the proof of the first result see [10, Chapter 6].

Lemma 1.1 Let M be an R-module.

- (i) If *M* is Noetherian, then *M* has Krull dimension.
- (ii) If M has Krull dimension, then M is quotient finite dimensional.
- (iii) If N is a submodule of M, then M has Krull dimension if and only N and M/N both have Krull dimension, and in this case $k(M) = \sup\{k(N), k(M/N)\}$.
- (iv) If $M = M_1 \oplus \cdots \oplus M_n$ is a finite direct sum of submodules $M_i (1 \le i \le n)$, then M has Krull dimension if and only if M_i has Krull dimension for each $1 \le i \le n$, and in this case $k(M) = \sup\{k(M_i) : 1 \le i \le n\}$.
- (v) If the (left) R-module R has Krull dimension and M is finitely generated, then M has Krull dimension and $k(M) \le k(R)$.
- (vi) If *M* has Krull dimension, $\alpha \ge 0$ is an ordinal and

$$N = \sum \{L : L \text{ is a submodule of } M \text{ such that } k(L) \le \alpha \}$$

then $k(N) \leq \alpha$.

Note that Lemma 1.1(ii) shows that for any non-zero ring R, not every R-module has Krull dimension. If R is a non-zero ring then every free R-module F of infinite rank does not have Krull dimension and the injective hull of F is an injective module which does not have Krull dimension. The following result will be required later.

Lemma 1.2 Let R be a ring such that the R-module R has Krull dimension. Then an R-module M has Krull dimension if and only if M is quotient finite dimensional.

Proof The necessity follows by Lemma 1.1(ii). Conversely, suppose that *M* is quotient finite dimensional. Suppose that $k(R) = \alpha$ for some ordinal $\alpha \ge 0$. Let *N* be any submodule of *M*. By [10, 2.2.8], the *R*-module *M*/*N* contains a finitely generated essential submodule *H*. By Lemma 1.1(v), *H* has Krull dimension and $k(H) \le \alpha$. Finally, *M* has Krull dimension by [3, 6.3].

Corollary 1.3 Let R be a left Noetherian ring. Then an R-module M has Krull dimension if and only if M is quotient finite dimensional.

Proof By Lemmas 1.1(i) and 1.2.

Not every quotient finite dimensional module has Krull dimension. To give an easy example, let p be any prime, let F be any field of characteristic p and let R = F[G] be the group algebra over F of the Prüfer p-group G. If $a, b \in R$ then there

exists a finite (cyclic) subgroup *H* of *G* such that $a, b \in F[H]$. Because F[H] is a local principal ideal ring (see [12, Lemmas 3.1.1 and 3.1.6]), it follows that $F[H]a \subseteq F[H]b$ or $F[H]b \subseteq F[H]a$. Thus the *R*-module *R*/*A* is uniform for every proper ideal *A* of *R*, *i.e.*, the *R*-module *R* is quotient finite dimensional. Let *A* denote the augmentation ideal of *R*. For each $x \in G$, there exists $y \in G$ such that $x = y^p$ and there exists a positive integer *n* such that $x^{p^n} = 1$. Hence

$$x-1 = (y-1)^p$$
 and $(x-1)^{p^n} = 0$.

It follows that *A* is a non-zero nil idempotent ideal of *R*. By [10, 6.3.7] the *R*-module *R* does not have Krull dimension.

2 Injective Modules

Throughout the remainder of this paper, *R* will denote a commutative ring with identity and all modules will be unital *R* modules.

Given a non-negative integer n, a prime ideal P of the ring R has height n if there exists a chain $P = P_0 \supset P_1 \supset \cdots \supset P_n$ of prime ideals $P_i (i \ge 0)$ of R but no longer such chain. The ring R is defined to have dimension n if R contains a prime ideal of height n but no prime ideal of height n+1. Given a positive integer n, a commutative Noetherian ring has dimension n if and only if k(R) = n by [10, 6.4.8]. Rings R of dimension 1 are usually called *one-dimensional*! A ring R is *semilocal* if R contains only a finite number of maximal ideals.

Let *R* be an integral domain with field of fractions *Q*. For any ideal *A* of *R* we set $A^* = \{q \in Q : qA \subseteq R\}$. Note that A^* is an *R*-submodule of *Q* such that $A \subseteq A^*A \subseteq R \subseteq A^*$. An ideal *A* of *R* is called *invertible* provided $A^*A = R$.

Note the following well known fact.

Lemma 2.1 Let R be any (commutative) ring and let P be a minimal prime ideal of R. Then for each $a \in P$ there exists $0 \neq b \in R$ such that ab = 0.

Proof By [8, Theorem 84].

Lemma 2.2 Let R be an integral domain with field of fractions Q such that the R-module Q/R is finite dimensional. Then there exist a positive integer n and prime ideals $P_i(1 \le i \le n)$ of R such that for each height 1 prime ideal P of R there exists $1 \le j \le n$ such that $P \subseteq P_i$.

Proof By [10, 2.2.8] there exist a positive integer *n* and independent uniform submodules $U_i(1 \le i \le n)$ of the *R*-module Q/R such that $U_1 \oplus \cdots \oplus U_n$ is an essential submodule of Q/R. For each $1 \le i \le n$, let $P_i = \{r \in R : rx = 0 \text{ for some} 0 \ne x \in U_i\}$. Then it is well known (and easy to check) that P_i is a prime ideal of *R* for each $1 \le i \le n$.

Let *P* be a height 1 prime ideal of *R*. Let $0 \neq a \in P$. Then *P*/*Ra* is a minimal prime ideal of the ring *R*/*Ra*. Let $p \in P$. By Lemma 2.1 there exists $b \in R \setminus Ra$ such that $pb \in Ra$. Let $y = (b/a) + R \in Q/R$. Then $y \neq 0$ and py = 0. There exist

 $r \in R$ and $u_i \in U_i$ $(1 \le i \le n)$ such that $0 \ne ry = u_1 + \cdots + u_n$. It follows that $pu_1 + \cdots + pu_n = rpy = 0$ and hence $pu_i = 0$ $(1 \le i \le n)$. We conclude that $p \in P_k$ for some $1 \le k \le n$. This proves that $P \subseteq P_1 \cup \cdots \cup P_n$. By [8, Theorem 81] $P \subseteq P_j$ for some $1 \le j \le n$.

Lemma 2.3 Let R be a Noetherian integral domain with field of fractions Q such that the R-module Q/R is finite dimensional. Then R is a semilocal ring such that $R \subset P^*$ for every maximal ideal P of R.

Proof Let $n, U_i (1 \le i \le n)$ and $P_i (1 \le i \le n)$ be as in Lemma 2.2 and its proof. For each $1 \le i \le n$, P_i is a finitely generated ideal and hence there exists $0 \ne v_i \in U_i$ such that $P_i v_i = 0$. Let H be a maximal ideal of R. Let $0 \ne a \in H$. Let G be a minimal prime ideal of the ideal Ra. By the Principal Ideal Theorem (see, for example, [8, Theorem 142]), G is a height 1 prime ideal of R. By Lemma 2.2, $G \subseteq P_j$ for some $1 \le j \le n$. In particular, $a \in P_j$. Hence $H \subseteq P_1 \cup \cdots \cup P_n$. By [8, Theorem 81], $H = P_k$ for some $1 \le k \le n$. There exists $q \in Q \setminus R$ such that $v_k = q + R$ and hence $q \in H^* \setminus R$. The result follows.

Theorem 2.4 Let R be an integral domain with field of fractions Q. Then R is a semilocal principal ideal domain if and only if R is Noetherian and integrally closed and the R-module Q/R is finite dimensional. In this case Q/R is Artinian and the R-module Q has Krull dimension 1.

Proof Suppose first that *R* is a semilocal principal ideal domain. Then *R* is Noetherian and, by [8, Theorem 50], integrally closed. By [9, Theorem 1] (although it is easy to prove this directly), the *R*-module Q/R is Artinian and hence finite dimensional. By Lemma 1.1(iii), the *R*-module *Q* has Krull dimension 1.

Conversely, suppose that *R* is Noetherian and integrally closed and that the *R*-module Q/R is finite dimensional. By Lemma 2.3 *R* is a semilocal ring. Let *P* be a maximal ideal of *R*. By Lemma 2.3 again, $R \subset P^*$ and hence, by [8, Theorem 12], $P^*P \neq P$. Hence $P^*P = R$ because *P* is a maximal ideal of *R*. Thus every maximal ideal of *R* is invertible. It follows that *R* is a Dedekind domain (see [8, p. 73 ex. 12). Finally *R* is a principal ideal domain by [15, p. 278 Theorem 16].

Next we strengthen Lemma 2.1 for rings with Krull dimension.

Lemma 2.5 Let R be a ring with Krull dimension and let P be a minimal prime ideal of R. Then Pa = 0 for some $0 \neq a \in R$.

Proof By [10, 6.3.8], *R* contains only a finite number of minimal prime ideals $P = P_1, P_2, \ldots, P_n$, for some positive integer *n*, and $(P_1 \cdots P_n)^k = 0$ for some positive integer *k*. The result follows.

Next we prove the following variant of Lemma 2.3. It is based on an unpublished result of J. T. Stafford given in a seminar in the University of Glasgow in 1987.

Lemma 2.6 Let R be an integrally closed integral domain having Krull dimension and let Q be the field of fractions of R such that the R-module Q/R is finite dimensional. Then R has only a finite number of height 1 prime ideals.

Proof Let *P* be a height 1 prime ideal of *R*. Let $0 \neq a \in P$. Then *P*/*Ra* is a minimal prime ideal of the ring *R*/*Ra*. By Lemma 2.5, there exists $b \in R \setminus Ra$ such that $bP \subseteq Ra$. Then the element b/a of *Q* satisfies $(b/a)P \subseteq R$, *i.e.*, $b/a \in P^*$, but $b/a \notin R$. Thus $R \subset P^*$ for any height 1 prime ideal *P* of *R*.

Let *n* be a positive integer and let $P_i(1 \le i \le n)$ be distinct height 1 prime ideals of *R*. Let $q_i \in P_i^*$ $(1 \le i \le n)$ such that $q_1 + \cdots + q_n = r \in R$. Then

$$q_1(P_1\cdots P_n)=(r-q_2-\cdots-q_n)P_1\cdots P_n\subseteq P_1.$$

But $q_1P_1 \subseteq R$ and $P_2 \cdots P_n \notin P_1$, so that $q_1P_1 \subseteq P_1$. By [8, Theorem 12] *R* integrally closed gives that $q_1 \in R$. It follows that $q_i \in R(1 \leq i \leq n)$. This proves that $(P_1^*/R) + \cdots + (P_n^*/R)$ is a direct sum of non-zero submodules of the *R*-module Q/R. But the *R*-module Q/R is finite dimensional. It follows that *R* has only a finite number of height 1 prime ideals.

Compare the next result with Theorem 2.4. It incorporates [9, Theorem 1].

Theorem 2.7 Let R be a Noetherian integral domain with field of fractions $Q \neq R$. Then the following statements are equivalent.

- (i) *R* is semilocal and one-dimensional.
- (ii) The R-module Q/R is Artinian.
- (iii) The R-module Q/L is Artinian for every non-zero R-submodule L of Q.
- (iv) The R-module Q has Krull dimension.
- (v) The R-module Q/R has Krull dimension.
- (vi) The R-module Q/R is quotient finite dimensional.

In this case the R-module Q has Krull dimension 1.

Proof (i) \Leftrightarrow (ii) \Leftrightarrow (iii) By [9, Theorem 1].

- $(ii) \Rightarrow (iv) \Leftrightarrow (v)$ By Lemma 1.1(iii).
- $(v) \Leftrightarrow (vi)$ By Corollary 1.3.

(iv) \Rightarrow (i) Let \hat{R} denote the integral closure of R in Q. By Lemma 1.1(iii), the R-module \hat{R} has Krull dimension. Since every ideal of \hat{R} is an R-submodule of \hat{R} , it follows that the ring \hat{R} has Krull dimension (see [10, 6.1.5]). Similarly the \hat{R} -module Q has Krull dimension. By Lemma 2.6, the ring \hat{R} contains only a finite number of height 1 prime ideals.

Let *P* be a height 1 prime ideal of the ring *R*. By [8, Theorem 44] there exists a height 1 prime ideal *P'* of \hat{R} such that $P' \cap R = P$. Hence *R* has only a finite number of height 1 prime ideals, say P_1, \ldots, P_n . Let *H* be a maximal ideal of *R*. The proof of Lemma 2.3 gives that $H = P_i$ for some $1 \le i \le n$. Now (i) follows.

Corollary 2.8 Let R be an integral domain with field of fractions Q. Then R is semilocal, one-dimensional and Noetherian if and only if the R-module Q has Krull dimension 1.

Proof The necessity follows by Theorem 2.7. Conversely, suppose that k(Q) = 1. By Lemma 1.1(iii), k(R) = 1. Let $0 \neq a \in R$. Then R/Ra is an Artinian ring by [10, 6.3.9] and hence a Noetherian ring by [13, Theorem 3.25 Corollary]. It follows that R is a Noetherian ring. By Theorem 2.7, R is semilocal and one-dimensional.

Theorem 2.9 The following statements are equivalent for a Noetherian integral domain R.

- (i) *R* is semilocal and one-dimensional.
- (ii) There exists a non-zero torsion-free injective R-module having Krull dimension.
- (iii) Every finite dimensional R-module has Krull dimension 0 or 1.

Proof (i) \Rightarrow (iii) Let *M* be any finite dimensional *R*-module. If *E* denotes the injective hull of *M*, then *E* is finite dimensional and hence $E = E_1 \oplus \cdots \oplus E_n$ for some positive integer *n* and indecomposable submodules $E_i(1 \le i \le n)$ by [13, Propositions 2.23 and 2.28]. In view of Lemma 1.1(iii), (iv), we can suppose without loss of generality that *M* is an indecomposable injective *R*-module. By [13, Theorem 2.32], *M* contains an essential submodule *N* such that $N \cong R/P$ for some prime ideal *P* of *R*. If $P \ne 0$ then *P* is a maximal ideal of *R*, *N* is simple and *M* is Artinian by [13, Theorem 4.30]. If P = 0 then the *R*-module *M* is isomorphic to the *R*-module *Q*, where *Q* is the field of fractions of *R*. By Theorem 2.7, k(M) = 1.

(iii) \Rightarrow (ii) The *R*-module *Q* is non-zero torsion-free injective and has Krull dimension.

(ii) \Rightarrow (i) Let *X* be a non-zero torsion-free injective *R*-module having Krull dimension. By Lemma 1.1(ii), *X* is finite dimensional and, by [13, Proposition 2.6], *X* is a finite dimensional vector space over the field *Q*. Hence, as *Q*-modules, $X \cong Q^{(n)}$ for some positive integer *n*. It follows that $X \cong Q^{(n)}$ as *R*-modules and hence the *R*-module *Q* has Krull dimension by Lemma 1.1(iii). Now (i) follows by Theorem 2.7.

Theorem 2.10 Let R be a Noetherian ring and let X be an injective module having Krull dimension. Then X has Krull dimension at most 1.

Proof By Lemma 1.1(ii), *X* has finite uniform dimension. Hence $X = X_1 \oplus \cdots \oplus X_n$ for some positive integer *n* and indecomposable submodules $X_i(1 \le i \le n)$ by [13, Propositions 2.23 and 2.28]. In view of Lemma 1.1(iv), we can suppose without loss of generality that *X* is indecomposable. By [13, Theorem 2.32], there exists an essential submodule *Y* of *X* such that $Y \cong R/P$ for some prime ideal *P* of *R*. Let $Z = \{x \in X : Px = 0\}$. Then *Z* is a submodule of *X* and PZ = 0. Clearly *Y* is an essential submodule of *Z*. By [13, Proposition 2.27], *Z* is an injective (R/P)-module having Krull dimension. Moreover, because *Y* is a torsion-free (R/P)-module and an essential submodule of *Z*, we know that *Z* is a non-zero torsion-free

(R/P)-module. By Theorem 2.9, the Noetherian integral domain R/P is semilocal and one-dimensional.

Let *T* denote the sum of all *R*-submodules *S* of *X* such that $k(S) \leq 1$. By Theorem 2.9, $Z \subseteq T$ and, by Lemma 1.1(vi), $k(T) \leq 1$. Suppose that $X \neq T$. Let $x \in X \setminus T$. By [13, Proposition 4.23], $P^m x = 0$ for some positive integer *m*. There exists a positive integer *k* such that $P^{k-1}x \notin T$ but $P^k x \subseteq T$. Now $(P^{k-1}x+T)/T$ is a finitely generated (R/P)-module. By Lemma 1.1(v), $k((P^{k-1}x + T)/T) \leq k(R/P) = 1$ and, by Lemma 1.1(iii), $k(P^{k-1}x) \leq 1$. But this implies that $P^{k-1}x \subseteq T$, a contradiction. It follows that X = T and hence $k(X) \leq 1$.

We can extend Theorem 2.10 in case the ring *R* is a domain. Recall that if *R* is an integral domain then an *R*-module *M* is called *divisible* if M = cM for every non-zero element *c* of *R*. Note that if *X* is an injective module over *R*, then, by [13, Lemma 2.4 and Proposition 2.6], every homomorphic image of *X* is divisible .

Theorem 2.11 Let R be a Noetherian integral domain and let M be a divisible Rmodule having Krull dimension. Then M has Krull dimension at most 1.

Proof Suppose that *M* is non-zero. By Lemma 1.1(ii), *M* is finite dimensional. If *E* denotes the injective hull of *M*, then $E = E_1 \oplus \cdots \oplus E_n$ for some positive integer *n* and indecomposable injective submodules E_i $(1 \le i \le n)$ of *E*. For each $1 \le i \le n$ let $\pi_i : E \to E_i$ denote the canonical projection and let K_i denote the kernel of π_i . Note that $K_1 \cap \cdots \cap K_n = 0$ and hence *M* embeds in $(M/K_1) \oplus \cdots \oplus (M/K_n)$. Moreover, for each $1 \le i \le n$, $M/K_i \cong \pi_i(M)$, which is a non-zero divisible submodule of E_i . Thus, by Lemma 1.1, we can suppose without loss of generality that *M* is a submodule of an indecomposable injective *R*-module *X*.

We now adapt the proof of Theorem 2.10. As before there exists an essential submodule Y of X such that $Y \cong R/P$, for some prime ideal P of R, and we again set $Z = \{x \in X : Px = 0\}$. Note that Z is an essential submodule of X, Z is a torsion-free (R/P)-module and $M \cap Z \neq 0$. Let $m \in M \cap Z$, $c \in R \setminus P$. Since M is divisible it follows that m = cm' for some $m' \in M$. However, cPm' = Pm = 0 implies that Pm' = 0, because Y is essential in X. Thus $m' \in M \cap Z$. It follows that $M \cap Z$ is a non-zero torsion-free divisible module over the integral domain R/P. By [13, Proposition 2.7], $M \cap Z$ is injective. Applying Theorem 2.9, we conclude that the ring R/Pis semilocal and one-dimensional.

Let *N* denote the sum of all *R*-submodules *L* of *M* such that $k(L) \leq 1$. Note that $M \cap Z \subseteq N$ by Theorem 2.9. Finally the argument at the end of the proof of Theorem 2.10 gives that M = N and hence $k(M) \leq 1$.

References

- A. H. Al-Huzali, S. K. Jain, and S. R. López-Permouth, *Rings whose cyclics have finite Goldie dimension*. J. Algebra 153(1992), 37–40.
- [2] V. P. Camillo, *Modules whose quotients have finite Goldie dimension*. Pacific J. Math. **69**(1977), 337–338.
- [3] N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, *Extending modules*. Pitman Research Notes in Mathematics 313, Longman, Harlow, 1994.

P. F. Smith

- [4] C. Faith, Quotient finite-dimensional modules with acc on subdirectly irreducible submodules are Noetherian. Comm. Algebra **27**(1999), 1807–1810.
- [5] J. W. Fisher, *Finiteness conditions for projective and injective modules*. Proc. Amer. Math. Soc. 40(1973), 389–394.
- [6] R. Gordon and J. C. Robson, *Krull dimension*. Memoirs of the American Mathematical Society 133, American Mathematical Society, Providence, RI, 1973.
- [7] T. Izawa, Artinian endomorphism rings of projective modules. Rep. Fac. Sci. Shizuoka Univ. 16(1982), 17-23, and Correction ibid. 17 (1983), 1-2.
- [8] I. Kaplansky, *Commutative rings*. Allyn and Bacon, Boston, 1970.
- [9] E. Matlis, Some properties of Noetherian domains of dimension one. Canad. J. Math. 13(1961), 569–586.
- [10] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings. Wiley-Interscience, Chichester, 1987.
- [11] R. Miller and D. Turnidge, Some examples from infinite matrix rings. Proc. Amer. Math. Soc. 38(1973), 65–67.
- [12] D. S. Passman, The algebraic structure of group rings. Wiley-Interscience,, New York, 1977.
- [13] D. W. Sharpe and P. Vámos, *Injective modules*. Cambridge Tracts in Mathematics and Mathematical Physics 62, Cambridge University Press, Cambridge, 1972.
- [14] C. Vinsonhaler, Supplement to the paper "Orders in QF 3 rings". J. Algebra 17(1971), 149-151.
- [15] O. Zariski and P. Samuel, Commutative algebra. Vol 1 Van Nostrand, Princeton, NJ, 1958.

Department of Mathematics University of Glasgow Glasgow G12 8QW Scotland, U.K.