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Abstract

In this paper we study absorbing continuous-time Markov decision processes in Polish
state spaces with unbounded transition and cost rates, and history-dependent policies.
The performance measure is the expected total undiscounted costs. For the unconstrained
problem, we show the existence of a deterministic stationary optimal policy, whereas,
for the constrained problems with N constraints, we show the existence of a mixed
stationary optimal policy, where the mixture is over no more than N + 1 deterministic
stationary policies. Furthermore, the strong duality result is obtained for the associated
linear programs.
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1. Introduction

Continuous-time Markov decision processes (CTMDPs) have found rich applications
to telecommunication, queueing systems, epidemiology, etc.; see the examples in the
monographs [13] and [25]. Two standard performance measures of a CTMDP are the (expected)
long-run average costs [12], [14], [17], [24], [34], [39] and the (expected) total discounted
costs [15], [27], [30]–[32]. The long-run average criteria are not appropriate for CTMDPs with
transient behavior because in that case the long-run average costs will be zero for each policy.
For short-term decision making, discounted criteria are often employed. For a discounted
CTMDP, the (positive) constant discount factor is often understood as the risk-free rate of
return at which the interest is continuously compounded. Alternatively, one can regard it as the
constant intensity at which the CTMDP jumps (independently of anything else) to an artificially
defined absorbing state, where no further cost is incurred and no further transition takes place.
Adopting the latter interpretation of the discount factor, the expected total discounted cost is
equivalently realized as the expected total undiscounted cost up to the absorbing time; see
Section 2 of [9]. In other words, discounted CTMDPs can be recovered from the more general
CTMDPs with an absorbing set and total (undiscounted) cost criteria. The opposite direction
does not hold.
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Absorbing continuous-time Markov decision processes 491

Leaving alone their relationship with the discounted CTMDPs, absorbing CTMDPs are
also of special interest for their applications too, for instance, epidemic models and
population dynamics, where the state (the number of infected population) zero, indicating that
the epidemic vanishes, is often taken as the absorbing state, and one is interested in minimizing
the expected total undiscounted cost (from immunization, isolation, etc.) up to the absorbing
time. For instance, this criterion has been employed in [7] for susceptible-infective-removed
(SIR) models (in a deterministic setup) initially considered in [11], and in [29] for a controlled
birth-and-death process.

Motivated by the above discussion, in this paper we study CTMDPs in general (Polish) state
spaces with a measurable absorbing set, unbounded transition rates and unbounded (from both
above and below) cost rates, history-dependent policies, constraints, and total undiscounted
cost criteria. The main contributions of this paper are as follows. Firstly, for unconstrained
CTMDPs, we prove the existence of a deterministic stationary optimal policy, and that the value
function is given by the unique solution to the Bellman equation. Secondly, for constrained
CTMDPs with an arbitrary number of constraintsN , we develop its convex analytic approach. In
greater detail, we reformulate the original CTMDPs as convex programs in the space of occupa-
tion measures, whose compactness is shown in an appropriate topology, leading to the existence
of a randomized stationary (constrained) optimal policy, whose occupation measure, under extra
conditions, is then shown to be a convex combination of no more than N+1 occupation measures
of deterministic stationary policies. Thirdly, we further formulate the CTMDP as an infinite-
dimensional primal linear program, and prove its strong duality with the dual linear program.

CTMDPs with total undiscounted cost criteria are considered in [33], requiring uniformly
bounded transition rates; in that case, the uniformization technique could be employed. There
have been very few articles on CTMDPs with unbounded transition rates and total undiscounted
cost criteria, see, for example, [28], which allows one to change instantaneously the state of
the controlled process, but excludes the gradual control of the process through the transition
rates. In the current literature on CTMDPs with gradual controls, unbounded transition rates,
and total undiscounted cost criteria, to the best of the authors’ knowledge, there is only one
article [16]. However, there are significant differences between [16] and the present article.
(i) We consider CTMDPs in Polish spaces and with history-dependent policies, while Guo and
Zhang [16] considered the case of countable state spaces and was restricted to the class of
randomized Markov policies only. (ii) For the constrained CTMDPs, we allow an arbitrary
number of constraints, whereas Guo and Zhang only considered the case of one constraint.
Note that our approach is based on the studies of occupation measures, and is different from the
approach employed in [16] based on the Lagrange multiplier method, which is not suitable for
the case of multiple constraints and Polish state spaces. (iii)We consider the linear programming
formulation of the CTMDPs and derive the (strong) duality result, which was not touched on
in [16] at all. Therefore, this paper is a significant nontrivial extension of and improvement
over [16], and fills the gaps in the current literature about CTMDPs.

Absorbing models in the discrete-time framework have received significant attention in the
literature; however, as our interest lies in their continuous-time counterpart, we only refer the
interested reader to the monographs [2] and [19], where [2] is in the framework of denumerable
state spaces, and [19] is about unconstrained problems only. A very recent contribution to this
topic is [10].

Note that, since we allow transition rates to be unbounded, the standard uniformization
technique might not be applicable to reducing the CTMDPs to equivalent discrete-time Markov
decision processes (DTMDPs).
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The rest of this paper is organized as follows. We describe the mathematical model and
introduce the terminology in Section 2. We then study the dynamic programming approach for
the unconstrained CTMDP problem in Section 3. In Section 4 we present the convex analytic
approach for the constrained CTMDP problem. Section 5 includes the linear programming
formulation and duality results. We point out that the results obtained in Section 2 for uncon-
strained CTMDPs, while being interesting in their own right, are also needed for the studies of
constrained absorbing CTMDPs in Sections 4 and 5. Examples illustrating possible applications
of the obtained results are given in Section 6. Concluding remarks are presented in Section 7.

2. Description of the mathematical model

Notation. Throughout the paper, we only consider finite (signed) measures, and the
measurability is always understood in the Borel sense. We denote by 1D the indicator function of
any set D, by δx(·) the Dirac measure concentrated at a point x, by B(X) the Borel σ -algebra of
a topological space X, and by

∨
0≤t<s Ft the smallest σ -algebra containing all the σ -algebras

{Ft , 0 ≤ t < s}. We define R+ := (0, ∞), R
0+ := [0, ∞), and Z

0+ := {0, 1, . . . }. The
abbreviations ‘s.t.’ and ‘a.s.’ stand for ‘subject to’ and ‘almost surely’.

2.1. Kitaev’s construction of CTMDPs

The primitives of a CTMDP are the elements [15], [24], [25], [30]

{S, A, (A(x) ⊆ A, x ∈ S), q(· | x, a), γ },
where

• S (state space) is a nonempty Polish space endowed with the Borel σ -algebra B(S);

• A (action space) is a nonempty Borel space endowed with the Borel σ -algebra B(A);

• A(x) (admissible action sets) are nonempty subsets in B(A) such that the space of
admissible state-action pairs K := {(x, a) ∈ S × A : a ∈ A(x)} is a subset in B(S × A)

and contains the graph of a (Borel) measurable mapping φ from S to A such that φ(x) ∈
A(x) for all x ∈ S (to ensure the existence of a deterministic stationary policy);

• q(dy | x, a) (transition rates) is a signed kernel on B(S) given (x, a) ∈ K, taking
nonnegative values on �S \ {x} for all �S ∈ B(S), being conservative in the sense
of q(S | x, a) = 0, and stable in that q̄x = supa∈A(x) qx(a) < ∞, where qx(a) :=
−q({x} | x, a);

• γ (·) (initial distribution) is a probability measure on (S, B(S)).

Given the aforementioned primitives, one can refer to Kitaev’s approach, see [24], for the
construction of the underlying stochastic basis (�, F , {Ft }t≥0, Pπ

γ ) and the controlled process
{ξt , t ≥ 0} thereon. Below we briefly recall it in order to define the necessary terminologies;
see [15], [24], [25], [30] for more details.

Having joint to �̃ := (S × R+)∞ all the sequences of the form

(x0, θ1, x1, . . . , θm−1, xm−1, ∞, x∞, ∞, x∞, . . .),

where x∞ /∈ S is an isolated point, xl ∈ S, θl+1 ∈ R+, 0 ≤ l ≤ m − 1, and m ≥ 1, we
obtain the sample space (�, F ), where F is the standard Borel σ -algebra. For each m ≥ 1,
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define on � the maps T0(ω) := 0, Tm(ω) := θ1 + θ2 + · · · + θm, T∞(ω) := limm→∞ Tm(ω),

Xm(ω) := xm, and the process of interest {ξt , t ≥ 0} by

ξt (ω) :=
∑
m≥0

1{Tm≤t<Tm+1} xm + 1{T∞≤t} x∞

for all ω = (x0, θ1, x1, . . . , θm, xm, . . .) ∈ �, where x∞ is the isolated point and will be
regarded as a cemetery since we do not intend to consider the process after T∞.

To continue describing the construction of CTMDPs, we need to introduce some notation.
Let Ft := σ({Tm ≤ s, Xm ∈ �S} : �S ∈ B(S), s ≤ t, m ≥ 0) for all t ≥ 0, A∞ := A∪{a∞},
S∞ := S ∪ {x∞}, A(x∞) := {a∞}, qx∞(a∞) = 0, and Fs− := ∨

0≤t<s Ft . The predictable
(with respect to {Ft }t≥0) σ -algebra P on � × R

0+ is given by P := σ(� × {0}(� ∈ F0),

� × (s, ∞) (� ∈ Fs−)); see [25, Chapter 4] for more details. Now the following definitions
are in position.

• Randomized history-dependent policy: π(· | ω, t), a P-measurable transition probability
function on (A∞, B(A∞)), concentrated on A(ξt−(ω)).

• Randomized Markov policy: π(· | ω, t) = πM(· | ξt−(ω), t). Here πM(· | x, t) is a
kernel on A∞ given S∞ × R

0+.

• (Ordinary) randomized stationary policy: π(· | ω, t) = πS(· | ξt−(ω)). Here πS(· | x)

is a kernel on A∞ given S∞.

• Deterministic stationary policy: π(· | ω, t) = 1{·}(φ(ξt−(ω))), where φ : S∞ → A∞ is
a measurable mapping such that φ(x) ∈ A(x) for all x ∈ S∞. Such policies are denoted
as φ.

Below we denote by �H the class of randomized history-dependent policies, and by �S the
class of randomized stationary policies.

Under any fixed policy π ∈ �H, let us define

νπ (ω, dt × �S) :=
[∫

A

π(da | ω, t)q(�S \ {ξt−(ω)} | ξt−(ω), a)

]
dt

for any �S ∈ B(S). This random measure is predictable, and such that νπ (ω, {t} × S) =
νπ (ω, [T∞, ∞) × S) = 0; see [24], [25], and [27]. Therefore, by [24], see also [23] and [25,
Chapter 4], there exists a unique probability measure Pπ

γ on (�, F ) such that Pπ
γ (ξ0 ∈ dx) =

γ (dx), and, with respect to Pπ
γ , νπ is the dual predictable projection of the random measure

µ(dt, dy) := ∑
m≥1 1{Tm<∞} 1dy(Xm) 1dt (Tm). This gives rise to the desired stochastic basis

(�, F , {Ft }t≥0, Pπ
γ ), always assumed to be complete, concluding Kitaev’s construction.

Below, when γ (·) is a Dirac measure concentrated at x ∈ S, we use the ‘degenerated’
notation Pπ

x . Expectations with respect to Pπ
γ and Pπ

x are denoted as Eπ
γ and Eπ

x , respectively.

2.2. Absorbing CTMDP models

Absorbing set and further notation. In order to state the CTMDP optimization problem under
consideration, we consider measurable functions ci(x, a), i = 0, 1, . . . , N, on K, representing
the cost rates, and fixed constants dj , j = 1, . . . , N . In this paper we are particularly interested
in CTMDPs with an absorbing set, namely, 
 ∈ B(S) such that, for each x ∈ 
, A(x) := A,
ci(x, a) = 0, i = 0, 1, . . . , N, for all a ∈ A(x), and q(�S | x, a) = 0 for all �S ∈ B(S)

and a ∈ A(x). In other words, once the CTMDP enters the set 
, it remains there, and no
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further cost will be incurred thereafter. In what follows, we use the notation X := S \ 
 and
K := K \ (
 × A) for brevity. Since 
 and K are measurable by assumption, so are the
sets X and K . Throughout this paper, by an absorbing CTMDP model we mean the collection
{S, A, A(x), q(dy | x, a), c0, (cj , dj )

k
j=1, γ, 
}.

As is well known, in general, we may have Pπ
γ (T∞ < ∞) > 0, which implies that the process

{ξt , t ≥ 0} is explosive. To avoid such explosiveness, we impose the following condition.

Condition 1. There exist constants ρ > 0 and L ≥ 0, and a measurable function w on S

satisfying w(x) ≥ 1 for each x ∈ X and w(x) = 0 for each x ∈ 
 such that

(a)
∫
S

q(dy | x, a)w(y) ≤ −ρw(x) for all x ∈ X, a ∈ A(x);

(b) qx ≤ Lw(x) for each x ∈ X.

Note that, under Condition 1, for the increasing system of measurable subsets Xl ⊆ X

defined by Xl := {x ∈ X : w(x) ≤ l}, l = 1, 2, . . . , it holds that
⋃∞

l=0 Xl = X and
liml→∞ infx∈X\Xl

w(x) = ∞.

Condition 1 guarantees that, under any policy π and given any initial state x ∈ S, the
expected total time before the controlled process gets absorbed is finite; see the discussion
immediately after Definition 2 and (7) below. On the other hand, the examples presented in
Section 6 illustrate that Condition 1 also admits CTMDPs with unbounded transition rates. The
case of bounded transition rates is of less interest as then one can apply the uniformization
technique to pass to the equivalent DTMDPs.

Under Condition 1, we have the following lemma.

Lemma 1. Suppose that Condition 1 is satisfied. Then the following assertions hold.

(a) For each π ∈ �H, Pπ
γ (T∞ = ∞) = 1, and then Pπ

γ (ξt ∈ S) = 1 for all t ≥ 0.

(b) Eπ
x [w(ξt )] ≤ e−ρtw(x) for all π ∈ �H, x ∈ S, and t ≥ 0.

Proof. The statements follow from Theorem 1(a) of [30], where the requirement of w(x) ≥ 1
for each x ∈ S can be replaced with that of w ≥ 0 without violating its proof.

According to Lemma 1(a), the explosion does not happen to the CTMDP under every history-
dependent policy π. Throughout this paper, we always assume that Condition 1 is satisfied.

In order for the CTMDP optimization problem (yet to be introduced) to be well defined, we
impose the next condition.

Condition 2. (a)
∫
S

w(x)γ (dx) < ∞, where the function w comes from Condition 1.

(b) There exists a constant M ≥ 0 such that |ci(x, a)| ≤ Mw(x) for each x ∈ S, a ∈ A(x),
and i = 0, 1, . . . , N.

Under Condition 2, we have the following statement.

Lemma 2. Suppose that Conditions 1 and 2(b) are satisfied. Then the following assertions
hold.

(a) For each x ∈ S, π ∈ �H, and i = 0, 1, . . . , N,

Eπ
x

[∫ ∞

0

∫
A

|ci(ξt−, a)|π(da | ω, t) dt

]
≤ M

ρ
w(x).
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(b) If, additionally, Condition 2(a) is also satisfied then

Eπ
γ

[∫ ∞

0

∫
A

|ci(ξt−, a)|π(da | ω, t) dt

]
< ∞.

Proof. The proof is an immediate consequence of Lemma 1(b).

Remark 1. In what follows, for simplicity, we put ξt in place of ξt− in formulae like those in
Lemma 2; obviously, this does not change the values of the underlying functionals.

Below, for any given measurable function g on K, we use the notation

V (γ, π, g) := Eπ
γ

[∫ ∞

0

∫
A

g(ξt , a)π(da | ω, t) dt

]

whenever the right-hand side is well defined. When γ (dy) = δx(dy), where δx(dy) is the Dirac
measure concentrated on {x}, we use the simpler notation V (x, π, g) instead of V (δx, π, g).

Under Conditions 1 and 2, the following absorbing CTMDP optimization problems of our
interest are well defined.

Unconstrained absorbing CTMDP problem:

V (x, π, c0) → min
π∈�H

for all x ∈ S. (1)

Constrained absorbing CTMDP problem:

V (γ, π, c0) → min
π∈�H

s.t. V (γ, π, cj ) ≤ dj , j = 1, 2, . . . , N.
(2)

In order to discuss the solvability of the above absorbing CTMDP optimization problems,
we state the following definition.

Definition 1. (a) For the unconstrained CTMDP problem (1), a policy π∗ ∈ �H is said to be
optimal if V (x, π∗, c0) = infπ∈�H V (x, π, c0) for each x ∈ S.

(b) For the constrained CTMDP problem (2), a policy π∗ ∈ �H is said to be feasible if
V (γ, π∗, cj ) ≤ dj for each j = 1, . . . , N. Denoting by �F the set of feasible policies, a
feasible policy π∗ is said to be (constrained) optimal if V (γ, π, c0) = infπ∈�F V (γ, π, c0).

The main goal here is to give the existence of optimal policies and the linear programming
formulations for the unconstrained and constrained CTMDP problems above.

3. Dynamic programming for unconstrained CTMDPs

In this section we show that the value function of problem (1) can be obtained by solving the
Bellman equation, and there exists a deterministic stationary optimal policy out of the class of
(randomized) history-dependent ones. To this end, we need to impose some further conditions.

Condition 3. There exist constants L′ ≥ 0, ρ′ > 0, and M ′ ≥ 0, and a measurable function
w′ on S satisfying w′(x) ≥ 1 for each x ∈ X and w′(x) = 0 for each x ∈ 
 such that

(a) (qx + 1)w′(x) ≤ L′w(x), x ∈ X;

(b)
∫
S

q(dy | x, a)w′(y) ≤ −ρ′w′(x), x ∈ X, and a ∈ A(x);

(c) |ci(x, a)| ≤ M ′w′(x) for each i = 0, 1, . . . , N, x ∈ X, and a ∈ A(x).
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Condition 3 (particularly parts (a) and (b)) validates Dynkin’s formula stated in Lemma 3
below, which is used in the proof of Theorem 1 below. Condition 3(c) admits possibly
unbounded (from both above and below) cost rates since the function w′ could be unbounded
on S. Moreover, under Conditions 1 and 3, it can be shown that part (a) of Lemma 2 still
holds with w, ρ, and M replaced by w′, ρ′, and M ′. Finally, when Condition 3 is satisfied,
Condition 2(b) automatically follows, and thus can be omitted.

Lemma 3. Suppose that Conditions 1 and 3(a), (b) are satisfied. Then the following Dynkin’s
formula holds for any x ∈ S, π ∈ �H, t ≥ 0, and w′-bounded function u on S (i.e. the
measurable function u satisfies supx∈X |u(x)|/w′(x) < ∞ and u(x) = 0 for each x ∈ 
):

Eπ
x [u(ξt )] − u(x) = Eπ

x

[∫ t

0

∫
S

∫
A

π(da | ω, v)q(dy | ξv, a)u(y) dv

]
.

Proof. We define w̃(x) := w(x) + 1
(x), w̃′(x) := w′(x) + 1
(x), and S̃l := Xl ∪ 
,

where Xl is as in the discussion immediately after Condition 1. Then, under the conditions of
the statement, it is easy to verify that Conditions 1 and 5(a), (b) of [30] are satisfied by w̃, S̃l ,
and w̃′. Hence, the statement follows from Theorem 3 of [30].

Condition 4. (a) For any bounded measurable function u on X and for fixed x ∈ X,∫
X

u(y)q(dy | x, a) is lower semicontinuous in a ∈ A(x).

(b) For each fixed x ∈ X,
∫
X

w(y)q(dy | x, a) is continuous in a ∈ A(x).

(c) For each i = 0, 1, . . . , N and x ∈ X, ci(x, a) is lower semicontinuous in a ∈ A(x).

(d) For each fixed x ∈ X, the set A(x) is compact in A. (Recall that X = S \ 
.)

Condition 4 is a standard compactness-continuity condition, and a counterpart of Assump-
tions 8.3.1 and 8.3.3 of [19] imposed for DTMDPs. Condition 4(a) is obviously equivalent
to saying that

∫
X

u(y)q(dy | x, a) is continuous in a ∈ A(x) for each x ∈ S and
bounded measurable function u on X. Moreover, Condition 4(a) and (b) are equivalent
to saying that, for each x ∈ X,

∫
X

u(y)q(dy | x, a) is continuous in a ∈ A(x) for each
w-bounded function u on S (i.e. the measurable function u satisfies supx∈X |u(x)|/w(x) < ∞
and u(x) = 0 for each x ∈ 
). Indeed, if we suppose that Condition 4(a) and (b) are satisfied,
and consider an arbitrarily fixed w-bounded function u on S and the probability measure
q(dy | x, a)/(1 + m(x)) + 1{x∈dy} on B(S), where m is a measurable function on S such
that m(x) ≥ qx, then, for each fixed x ∈ S,

∫
S

u(y)(q(dy | x, a)/(1 + m(x)) + 1dy(x)) is
continuous in a ∈ A(x) (thus, so is

∫
S

u(y)q(dy | x, a)), owing to Lemma 8.3.7 of [19]. This
fact is used, for instance, in the proof of Theorem 1 below.

Under Conditions 1, 3, and 4, having in mind the discussion made right above, the fact
that a w′-bounded function is also w-bounded by Condition 3(a), and the measurable selection
theorem [18, Proposition D.5], we legitimately define the operator T mapping the space of
w′-bounded functions on S to itself by

T ◦ u(x) := inf
a∈A(x)

{
c0(x, a)

1 + m(x)
+

∫
S

u(y)

(
q(dy | x, a)

1 + m(x)
+ 1dy(x)

)}
, x ∈ S, (3)

where u is a w′-bounded function on S and m is a measurable function satisfying m(x) ≥ qx.
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Theorem 1. Suppose that Conditions 1, 3, and 4 are satisfied. Then the following assertions
hold.

(a) The Bellman equation

0 = inf
a∈A(x)

{
c0(x, a) +

∫
S

v(y)q(dy | x, a)

}
, x ∈ S, (4)

admits a w′-bounded solution, say u∗, which is given by the value iteration procedure
u∗(x) := limn→∞ u(n)(x), where

u(0)(x) := M ′

ρ′ w′(x),

u(n+1)(x) := T ◦ u(n)(x), n = 0, 1, . . . ,

with the operator T being defined by (3). (We simply observe, which can be shown by
induction and the measurable selection theorem [18, Proposition D.5], that, for each
n = 0, 1, . . . , u(n) is measurable and w′-bounded on S, so that the proposed value
iteration procedure is well defined.)

(b) The Bellman function u∗ defined in part (a) satisfies

u∗(x) = inf
π∈�H

V (x, π, c0), x ∈ S,

and is the unique solution to (4) out of the class of w′-bounded functions on S.

(c) There is a deterministic stationary optimal policy ϕ∗ for problem (1), which can be
taken as any (there exists at least one) measurable mapping ϕ∗ : S → A providing the
minimizer in the Bellman equation (1), i.e.

inf
a∈A(x)

{
c0(x, a) +

∫
S

u∗(y)q(dy | x, a)

}

= c0(x, ϕ∗(x)) +
∫

S

u∗(y)q(dy | x, ϕ∗(x)), x ∈ S,

gives a deterministic stationary optimal policy.

(d) If, in addition, Condition 2(a) is satisfied then the Bellman function u∗ coming from
part (a) and the deterministic stationary optimal policy ϕ∗ coming from part (c) satisfy∫
S

u∗(x)γ (dx) = infπ∈�H V (γ, π, c0) = V (γ, ϕ∗, c0).

Proof. (a) Firstly we show that the sequence {u(n)} is decreasing. Indeed, for each x ∈ S,
we have

u(1)(x) = inf
a∈A(x)

{
c0(x, a)

1 + m(x)
+

∫
S

M ′

ρ′ w′(y)

(
q(dy | x, a)

1 + m(x)
+ 1dy(x)

)}

≤ inf
a∈A(x)

{
c0(x, a)

1 + m(x)
+ M ′

ρ′
−ρ′w′(x)

1 + m(x)
+ w′(x)

M ′

ρ′

}

≤ M ′w′(x)

1 + m(x)
− M ′w′(x)

1 + m(x)
+ w′(x)

M ′

ρ′

= w′(x)
M ′

ρ′

= u(0)(x),
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where the first and second inequalities are due to Condition 3. This, together with the fact that
the operator T is monotonic (increasing), shows that, for each x ∈ S,

u(n+1)(x)= T n+1 ◦ u(0)(x) = T n ◦ T ◦ u(0)(x) = T n ◦ u(1)(x) ≤ T n ◦ u(0)(x) = u(n)(x)

holds for each n = 0, 1, . . . . Thus, the sequence {u(n)} is decreasing. Secondly, we observe
that, for each n = 0, 1, . . . , |u(n)(x)| ≤ M ′w′(x)/ρ′, x ∈ S. Indeed, this is trivially true for
the case n = 0. Suppose that the claim holds for n = m. Then u(m+1)(x) ≤ M ′w′(x)/ρ′ as the
sequence {u(n)} decreases in n. Moreover, we have

u(m+1)(x) = inf
a∈A(x)

{
c0(x, a)

1 + m(x)
+

∫
S

u(m)(y)

(
q(dy | x, a)

1 + m(x)
+ 1dy(x)

)}

≥ inf
a∈A(x)

{
c0(x, a)

1 + m(x)
−

∫
S

M ′

ρ′ w′(y)

(
q(dy | x, a)

1 + m(x)
+ 1dy(x)

)}

≥ inf
a∈A(x)

{
c0(x, a)

1 + m(x)
+ M ′

ρ′
ρ′w′(x)

1 + m(x)
− w′(x)

M ′

ρ′

}

≥ − M ′w′(x)

1 + m(x)
+ M ′w′(x)

1 + m(x)
− w′(x)

M ′

ρ′

= −w′(x)
M ′

ρ′ .

Hence, |u(m+1)(x)| ≤ w′(x)M ′/ρ′, and the claim follows from the induction. Now it follows
from this and the monotone convergence that there exists a w′-bounded measurable function
u∗ on S such that limn→∞ u(n)(x) = u∗(x) for all x ∈ S. Thirdly, we show that the function
u∗ solves the Bellman equation (4), which is more conveniently written as u∗(x) = T ◦ u∗(x),

x ∈ S. Indeed, for any fixed x ∈ S, by its definition, T ◦ u∗(x) ≤ T ◦ u(n)(x) = u(n+1)(x),
so that upon passing to the limit as n → ∞ we have T ◦ u∗(x) ≤ u∗(x). For the opposite
direction, note that, for each a ∈ A(x) and n = 0, 1, . . . ,

u(n+1)(x) = T ◦ u(n)(x) ≤ c0(x, a)

1 + m(x)
+

∫
S

u(n)(y)

(
q(dy | x, a)

1 + m(x)
+ 1dy(x)

)
,

so that, by legally (using Lebesgue’s dominated convergence theorem) passing to the limit as
n → ∞ and then taking the infimum with respect to a ∈ A(x), we obtain u∗(x) ≤ T ◦ u∗(x).

Hence, u∗(x) = T ◦ u∗(x) holds.
(b) Let a policy π ∈ �H and a w′-bounded measurable function u on S be arbitrarily

fixed. Dynkin’s formula obtained in Lemma 3 is applicable to the function u. Now, under the
conditions of this statement, we can legally add to both sides of Dynkin’s formula given in
Lemma 3 the term Eπ

x [∫ t

0

∫
A

c0(ξv, a)π(da | ω, v) dv] (which is w′-bounded for any t ≥ 0;
see the discussion below Condition 3) and passing to the limit as t → ∞ we obtain

Eπ
x

[∫ ∞

0

∫
A

c0(ξt , a)π(da | ω, t) dt

]
+ lim

t→∞ Eπ
x [u(ξt )] − u(x)

= Eπ
x

[∫ ∞

0

∫
A

π(da | ω, t)

{∫
S

q(dy | ξt , a)u(y) + c(ξt , a)

}
dt

]
.

Since the function u is w′-bounded, we have

0 ≤ lim
t→∞ Eπ

x [|u(ξt )|] ≤ lim
t→∞ sup

x∈X

|u(x)|
w′(x)

Eπ
x [w′(ξt )] ≤ lim

t→∞ sup
x∈X

|u(x)|
w′(x)

L′ e−ρtw(x) = 0,
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where the last inequality follows by Condition 3 and Lemma 1. Therefore, from the equality
derived previously based on Dynkin’s formula, we have

V (x, π, c0) = u(x) + Eπ
x

[∫ ∞

0

∫
A

π(da | ω, t)

{∫
S

q(dy | ξt , a)u(y) + c(ξt , a)

}
dt

]
. (5)

Now, by replacing u in the above equality with the w′-bounded function u∗ from part (a), which
satisfies the Bellman equation, we obtain

V (x, π, c0) ≥ u∗(x) (6)

for any π ∈ �H. On the other hand, if we take any measurable selector ϕ∗ such that

0 = inf
a∈A(x)

{
c0(x, a) +

∫
S

q(dy | x, a)u∗(y)

}
= c0(x, ϕ∗(x)) +

∫
S

q(dy | x, ϕ∗(x))u∗(y),

whose existence is guaranteed due to the fact that c0(x, a) + ∫
S

q(dy | x, a)u∗(y) is lower
semicontinuous under the conditions of the statement, 
 is measurable, and the measurable
selection theorem given in Proposition D.5 of [18], then by (5), with π replaced by ϕ∗,
we have V (x, ϕ∗, c0) = u∗(x), x ∈ S. This and (6) lead to V (x, ϕ∗, c0) = u∗(x) =
infπ∈�H V (x, π, c0). This also proves part (c) of the theorem. As for the uniqueness out
of the class of w′-bounded functions on S, one only needs to note that if we replace u in (5)
with any other w′-bounded solution, say v∗, to the Bellman equation, then the above reasoning
can be applied again to give u∗(x) = infπ∈�H V (x, π, c0) = v∗(x).

(c) This part has been incidentally proved in the proof of part (b).
(d) The statement follows from the fact that

∫
S

u∗(x)γ (dx) =
∫

S

V (x, ϕ∗, c0)γ (dx) ≤
∫

S

V (x, π, c0)γ (dx)

for each π ∈ �H.

Theorem 1 is about the dynamic programming for the absorbing CTMDP with a total cost
criterion, for which the expected long-run average cost is identically equal to zero. In this
case, corresponding to the same policy, one can also view the expected total cost as the bias,
and the dynamic programming approach for the bias optimality has been considered in, for
instance, [40], which, however, imposes restrictive conditions that are generally not satisfied
by the absorbing model under consideration; see Assumption C therein.

In the proof of part (b) of Theorem 1, we have indeed incidentally established the following
statement, which will be used in Section 5.

Lemma 4. Suppose that Conditions 1 and 3 are satisfied. Let u be a w′-bounded measurable
function on S. Then the following two assertions hold.

(a) If 0 ≥ ∫
A

π(da | x){c0(x, a) + ∫
S

q(dy | x, a)u(y)} for all x ∈ S, where π is a
stationary policy and u is a w′-bounded measurable function on S, then V (x, π, c0) ≤
u(x), x ∈ S.

(b) If 0 ≤ ∫
A

π(da | x){c0(x, a) + ∫
S

q(dy | x, a)u(y)} for all x ∈ S, where π is a
stationary policy and u is a w′-bounded measurable function on S, then V (x, π, c0) ≥
u(x), x ∈ S.
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Proof. The statement follows from (5), whose validity only requires Conditions 1 and 3.

We end this section with an auxiliary statement, which is needed in Section 4, for example.

Lemma 5. Suppose that Conditions 1 and 2(b) are satisfied. Moreover, c0(x, a) ≥ 0. Then,
for each stationary policy π , the function V (x, π, c0) solves the equation

0 =
∫

A

π(da | x)

{
c0(x, a) +

∫
S

q(dy | x, a)V (y, π, c0)

}
.

Proof. Let a stationary policy π be fixed. Then the statement follows from Theorem 3.1
of [32].

4. Convex analytic approach for constrained CTMDPs

In what follows, we focus on the constrained CTMDP problem (2), for which we assume
that the consistency holds, i.e. there exists at least one feasible policy for problem (2).

4.1. Occupation measures and optimality of stationary policies

We start this subsection with the following definition of occupation measures (assuming
Conditions 1 and 2(a)).

Definition 2. The occupation measure of a policy π ∈ �H is a measure ηπ on B(S × A)

concentrated on K , defined by

ηπ(�S, �A) := Eπ
γ

[∫ ∞

0
1{�S∩X}(ξt )π(�A | ω, t) dt

]
, �S ∈ B(S), �A ∈ B(A).

We denote by D := {ηπ : π ∈ �H} the space of all occupation measures. Evidently, it holds
that

V (γ, π, u) =
∫

K

u(x, a)ηπ (dx, da) for all π ∈ �H

for any w-bounded measurable function u. This fact is used throughout the paper without
reference. Under Conditions 1 and 2(a), it follows from Lemma 2 that, for each policy π ∈ �H,

ηπ(S, A) = ηπ(X, A) ≤
∫

X

w(x)ηπ(dx, A) = Eπ
γ

[∫ ∞

0
w(ξt ) dt

]
≤ M

ρ

∫
S

w(x)γ (dx) < ∞;
(7)

in other words, under each policy, the expected absorbing time is finite. This justifies the use
of the term ‘absorbing CTMDPs’.

The next statement characterizes the elements of the space D .

Theorem 2. Suppose that Conditions 1 and 2(a) are satisfied. Then the following assertions
hold.

(a) The space D is convex, and a measure η on S × A concentrated on K is in D (i.e. η is
an occupation measure for some policy) if and only if it satisfies the two relations

0 = γ (�S ∩ X) +
∫

K

q(�S ∩ X | y, a)η(dy, da), �S ∈ B(S), (8)
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and ∫
S

w(y)η(dy, A) ≤ M

ρ

∫
S

w(x)γ (dx) < ∞. (9)

(b) For each policy π ∈ �H, there is a stationary policy π ′ such that ηπ(dx, da) =
ηπ ′

(dx, da). Indeed, π ′ can be taken from the disintegration of ηπ(dx, da) with respect
to its marginal ηπ(dx, A), i.e. ηπ(dx, da) = π ′(da | x)ηπ(dx, A).

Proof. (a) The convexity of D automatically follows from the characterization part, for
which we first prove the ‘only if’ part. We consider an arbitrarily fixed policy π ∈ �H and
its occupation measure ηπ ∈ D . It follows from (7) that (9) is satisfied by ηπ . So we only
need verify (8) for ηπ . To this end, it is convenient to consider an equivalent definition of the
occupation measure via the setwise convergence

ηπ(�S, �A) := lim
n→∞ Eπ

γ

[∫ ∞

0
e−t/n 1{�S∩X}(ξt )π(�A | ω, t) dt

]
(10)

for each �S ∈ B(S) and �A ∈ B(A). Indeed, this definition is legal because of Lévy’s
monotone convergence theorem and Theorem 4.6.3 of [5]. Note also that the measure defined
by

1

n
Eπ

γ

[∫ ∞

0
e−t/n 1{�S∩X}(ξt )π(�A | ω, t) dt

]

is in the form of the occupation measure for discounted CTMDPs with the discount factor 1/n

for each n = 1, 2, . . . , as considered in [31, Definition 3.1] (see also [15, Definition 3.4]). So,
by Theorem 3.2 of [31] (see also Theorem 3.5(a) of [15]), we see, for each �S ∈ B(S),

1

n
Eπ

γ

[∫ ∞

0
e−t/n 1{�S∩X}(ξt ) dt

]

= γ (�S ∩ X) + n

∫
K

q(�S ∩ X | y, a)
1

n
Eπ

γ

[∫ ∞

0
e−t/n 1{dy∩X}(ξt )π(da | ω, t) dt

]

= γ (�S ∩ X) +
∫

K

q(�S ∩ X | y, a) Eπ
γ

[∫ ∞

0
e−t/n 1{dy∩X}(ξt )π(da | ω, t) dt

]
.

By passing to the limit as n → ∞ on both sides of the above equality, we further obtain

0 = γ (�S ∩ X) + lim
n→∞

∫
K

q(�S ∩ X | y, a) Eπ
γ

[∫ ∞

0
e−t/n 1{dy∩X}(ξt )π(da | ω, t) dt

]

= γ (�S ∩ X) +
∫

K

q(�S ∩ X | y, a)ηπ (dy, da),

where the last equality is because of the setwise convergence (10) and Theorem 2.1 of [20].
Thus, (8) is satisfied by ηπ , and the ‘only if’ part is thus proved.

We now prove the ‘if’ part. Let a measure η on S × A concentrated on K satisfying (8) and
(9) be arbitrarily fixed. By Proposition D.8 of [18] we can take a stationary policy π satisfying
η(dx, da) = π(da | x)η(dx, A). Now in order to show that ηπ(dx, da) = η(dx, da), it suffices
to show that

∫
K

f (x, a)η(dx, da) = ∫
K

f (x, a)ηπ (dx, da) for each nonnegative, bounded,
measurable function f on S × A such that f (x, a) = 0 for each x ∈ 
 and a ∈ A(x)
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as follows. Indeed, we have∫
K

f (x, a)η(dx, da) =
∫

S

∫
A

f (x, a)π(da | x)η(dx, A)

=
∫

S

{
−

∫
S

∫
A

π(da | x)q(dy | x, a)V (y, π, f )

}
η(dx, A)

=
∫

S

V (y, π, f )

{
−

∫
K

q(dy | x, a)η(dx, da)

}

=
∫

S

V (y, π, f )γ (dy),

where the first equality is by the definition of π, the second equality follows from Lemma 5 with
f in lieu of c0 therein, the third equality is because of the Fubini–Tonelli theorem (recalling that
V (y, π, f ) is bounded, having in mind that f is bounded), (7), and (9), and the last equality is
due to (8) (recalling that V (y, π, f ) = 0 for each y ∈ 
 and a ∈ A(y) because of the definition
of the function f ). This thus implies that

∫
K

f (x, a)η(dx, da) = ∫
K

f (x, a)ηπ (dx, da), as
desired.

(b) This part has been incidentally proved in the proof of the ‘if’ part of the proof of part (a).

Remark 2. By inspecting the proof of Theorem 2, we see that part (b) still holds if we replace
(9) with

∫
S

w(y)η(dy, A) < ∞.

Theorem 2 implies that it suffices to be restricted to the class of stationary policies for the
constrained CTMDP problem (2), which can be conveniently rewritten as the following convex
program in D : ∫

K

c0(x, a)η(dx, da) → min
η∈D

s.t.
∫

K

cj (x, a)η(dx, da) ≤ dj , j = 1, 2, . . . , N.

(11)

This gives rise to the convex analytic approach for the constrained CTMDP problem (2). In what
follows, without loss of generality and for simplicity, we directly regard η ∈ D as measures
on K = K \ (
 × A).

In order to obtain the compactness of D (in an appropriate topology), we need to present
further notation and definitions from measure theory [5], [6].

Notation and definitions. Let the Borel spaces K and X be as above, and let a measurable
function f (x) ≥ 1 on X be fixed. We denote by Bf (K) and Bf (X) the spaces of measurable
functions u on K and X, respectively, with a finite f -norm, i.e. u satisfies

sup
x∈X

supa∈A(x) |u(x, a)|
f (x)

< ∞ and sup
x∈X

|u(x)|
f (x)

< ∞,

respectively. Denote by M
R(K) the space of Radon signed measures on B(K), i.e. each

η ∈ M
R(K) is a signed measure on B(K) such that, for every �S ∈ B(K) and ε > 0,

there exists a compact set Dε ⊆ �S that satisfies |η|(�S \ Dε) < ε, where here and below
|η| denotes the total variation of the signed measure η. Nonnegative Radon signed measures
are simply called Radon measures, the space of which is denoted by M

R,+(K). We equip
M

R(K) and M
R,+(K) with the usual weak topologies, respectively denoted by τ(MR(K)) and

τ(MR,+(K)), which are the weakest topologies such that
∫
K

u(x, a)η(dx, da) is continuous
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in η ∈ M
R(K) and η ∈ M

R,+(K), respectively, for each continuous function u ∈ B1(K).

A family of signed measures D̃ on B(K) is called uniformly tight if, for every ε > 0, there
exists a compact set Dε ⊆ K such that |η̃|(K \ Dε) < ε for all η̃ ∈ D̃ . A signed measure η̃ on
B(K) is called tight if the singleton {η̃} is uniformly tight. It is worthwhile noting that a tight
measure on a Borel space endowed with the Borel σ -algebra is Radon by the first paragraph on
page 70 and Theorem 7.1.7 of [6].

The next lemma will be used in the proof of Lemma 7 below.

Lemma 6. Let K be a Borel space endowed with the Borel σ -algebra. The set M
R,+(K) is

closed in (MR(K), τ (MR(K))).

Proof. Consider a net ηn ∈ M
R,+(K) such that ηn → η ∈ M

R(K), where the convergence
is in the weak topology introduced above. Now suppose that the statement to be proved is
false, i.e. there is some measurable set �1 ⊂ K such that η(�1) < 0. Since η is a Radon
signed measure, there is no loss of generality in regarding �1 as a nonempty, compact (and
thus closed) set. Then, on the one hand, for every nonnegative, bounded, continuous function
f on K , it holds that 0 ≤ limn→∞

∫
K

f (x, a)ηn(dx, da) = ∫
K

f (x, a)η(dx, da). On the other
hand, we fix 0 < ε < −η(�1), and again, by the fact that η is Radon, there exists a compact
(and thus closed) set Dε ⊆ K \ �1, assumed to be nonempty without loss of generality,
such that |η|((K \ �1) \ Dε) < ε. Now, since �1 and Dε are disjoint closed sets, we refer
to Urysohn’s lemma stated as Lemma 7.1 in [3] for the existence of a nonnegative, bounded,
continuous function fC on K such that fC(x, a) = 1 for each (x, a) ∈ �1, f (x, a) = 0 for each
(x, a) ∈ Dε, and 0 < fC(x, a) < 1 for each (x, a) ∈ (K \�1) \Dε. For this function, we have∫
K

fC(x, a)η(dx, da) = ∫
�1

fC(x, a)η(dx, da) + ∫
(K\�1)\Dε

fC(x, a)η(dx, da) < η(�1) +
ε < 0, which is a contradiction. Therefore, η ∈ M

R,+(K), and the statement is proved.

The following version of Prokhorov’s theorem is a consequence of Lemma 6 and
Theorem 8.6.7 of [6].

Lemma 7. Let K be a Borel space endowed with the Borel σ -algebra, and let D̃ ⊆ M
R,+(K)

be uniformly tight and uniformly bounded (i.e. supη̃∈D̃ η̃(K) < ∞). Then D̃ is relatively

compact (also called precompact) in (MR,+(K), τ (MR,+(K))).

Proof. By Lemma 7 and the fourth line of page 40 of [1], the closure of D̃ ⊆ M
R,+(K) is

compact in M
R,+(K) if and only if it is compact in M

R(K), which is true by Theorem 8.6.7
of [6].

We also consider the topological spaces introduced in the following definition.

Definition 3. Let a measurable function f (x) ≥ 1 on X := S \ 
 be fixed.

(a) A Radon signed measure η on K or on X is said to have a finite f -norm if

∫
K

f (x)|η|(dx, da) < ∞ or, respectively,

∫
X

f (x)|η|(dx) < ∞.

The spaces of Radon signed measures on K and on X with finite f -norms are respectively
denoted by M

R
f (K) and M

R
f (X). The spaces of Radon measures on K and on X with

finite f -norms are respectively denoted by M
R,+
f (K) and M

R,+
f (X).
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(b) The f -weak topology on M
R
f (K) is the weakest topology on M

R
f (K) such that

∫
K

u(x, a)

η(dx, da) is continuous in η ∈ M
R
f (K) for each continuous u ∈ Bf (K). This topology

is denoted by τ(MR
f (K)), and the corresponding convergence is denoted by ‘

f→.’ When
f (x) = 1 for each x ∈ X, we typically omit f from the notation for brevity.

Now let the function f (x) ≥ 1 on X be further continuous, and consider the topological
space (M

R,+
f (K), τ (M

R,+
f (K))), where τ(M

R,+
f (K)) is the relative topology of τ(MR

f (K))

to M
R,+
f (K), and is thus the weakest topology on M

R,+
f (K) such that

∫
K

u(x, a)η(dx, da)

is continuous in η ∈ M
R,+
f (K) for each continuous u ∈ Bf (K). Then it can be easily

shown in Lemma 8 below that (M
R,+
f (K), τ (M

R,+
f (K))) is homeomorphic with (MR,+(K),

τ (MR,+(K))).

Lemma 8. Let f (x) ≥ 1 be a fixed, continuous function on X. Then (M
R,+
f (K), τ (M

R,+
f (K)))

is homeomorphic to (MR,+(K), τ (MR,+(K))) with a homeomorphism Qf : M
R,+
f (K) →

M
R,+(K) defined by (for each η ∈ M

R,+
f (K))

Qf ◦ η(�) :=
∫

�

f (x)η(dx, da), � ∈ B(K),

whose inverse is defined by (for each η̃ ∈ M
R,+(K))

Q−1
f ◦ η̃(�) :=

∫
�

1

f (x)
η̃(dx, da), � ∈ B(K).

Proof. We first verify that Qf is a one-to-one correspondence between M
R,+
f (K) and

M
R,+(K). To this end, it suffices to verify that, for arbitrarily fixed η ∈ M

R,+
f (K) and

η̃ ∈ M
R,+(K), f (x)η(dx, da) and η̃(dx, da)/f (x) are both Radon measures. Since the

two measures are both Borel measures, i.e. defined on Borel σ -algebras of Borel spaces, by
Theorem 7.1.7 of [6], for them to be Radon measures, it suffices to show that they are tight
by the first paragraph on page 70 of [6]; see also the discussion above Lemma 6. Consider
now the measure f (x)η(dx, da), and let ε > 0 be fixed. Then, by the absolute continuity
of integrals, there exists δ > 0 such that, for each measurable set � > 0 with η(�) < δ, it
holds that

∫
�

f (x)η(dx, da) < ε. Since η(dx, da) is a Radon measure, there exists a compact
set D ⊆ K such that η(K \ D) < δ, so that

∫
K\D f (x)η(dx, da) < ε. This implies that

the measure f (x)η(dx, da) is tight, and thus Radon. In exactly the same way, we can show
that the measure η̃(dx, da)/f (x) is tight and thus Radon. Therefore, that Qf is a one-to-one
correspondence between M

R,+
f (K) and M

R,+(K) is verified.
We now show that Qf and Q−1

f are both continuous. Let {ηn} be a net in M
R,+
f (K) such

that ηn
f→ η ∈ M

R,+
f (K). Then Qf ◦ ηn =: η̃n→η̃ =: Qf ◦ η. Indeed, for each continuous

function u ∈ B1(K), we see that∫
K

u(x, a)η̃n(dx, da) =
∫

K

u(x, a)f (x)ηn(dx, da)

→
∫

K

u(x, a)f (x)η(dx, da)

=
∫

K

u(x, a)η̃(dx, da),

where the convergence follows from the fact that u(x, a)f (x) is a continuous function in Bf (K).
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Similarly, we can show that if {η̃n} is a net in M
R,+(K) such that η̃n→η ∈ M

R,+(K), then

Q−1
f ◦ η̃n

f→ Q−1
f ◦ η̃. Thus, the continuity of Qf and Q−1

f is proved, completing the proof.

We now impose another compactness-continuity condition for the compactness of the space
of occupation measures D in (MR

w′(K), τ (MR
w′(K))) and the existence of a stationary optimal

policy for problem (2) as follows.

Condition 5. (a) The function w from Condition 1 is continuous on X.

(b) There exists an increasing sequence of compact sets Km ↑ K as m ↑ ∞ such that
limm→∞ inf(x,a)∈K\Km

w(x)/w′(x) = ∞,where the functionw′(x) ≥ 1 onX from Condition 3
is assumed to be continuous.

(c) For the function w′ from part (b), supx∈X qx/w
′(x) < ∞.

(d) For each bounded continuous function u on X,
∫
X

u(y)q(dy | x, a) is continuous in
(x, a) ∈ K.

(e) For each i = 0, 1, . . . , N, the function ci(x, a) is lower semicontinuous in (x, a) ∈ K.

Condition 5(b) implies that A(x) is compact for each x ∈ X by Lemma 3.10 of [31].
The function w/w′ from Condition 5(b) is called a moment by Definition E.7 of [18]. Also,
note that, when K is compact, then Condition 5(b) is automatically satisfied because of the
convention that the infimum over the empty set is ∞. Finally, Condition 5(b) and (c) imply
that supx∈X w′(x)/w(x) < ∞, a fact that will be used in the proof of Theorem 3(a) below and
elsewhere often without special reference.

We can now state the next theorem concerning the solvability of the constrained absorbing
CTMDP problem (2).

Theorem 3. Suppose that Conditions 1, 2(a), and 5(a)–(d) are satisfied. Then the following
assertions hold.

(a) The space of occupation measures D is compact in (M
R,+
w′ (K), τ (M

R,+
w′ (K))).

(b) If, additionally, Conditions 3(c) and 5(e) are satisfied, then there exists an optimal solution
to problem (11), and, thus, there is a (randomized) stationary optimal policy for the
constrained absorbing CTMDP problem (2).

Proof. (a) We first prove that D is relatively compact in (M
R,+
w′ (K), τ (M

R,+
w′ (K))). Since

w′ is continuous, as required in Condition 5(b), by Lemma 8, it is equivalent to showing
that D̃ := {η̃ := Qw′ ◦ η : η ∈ D} is relatively compact in (MR,+(K), τ (MR,+(K))) as
follows. By Theorem 2 (see (9)), for the moment function w/w′ from Condition 5(b), it
holds that supη̃∈D̃

∫
K

w(x)η̃(dx, da)/w′(x) = supη∈D

∫
K

w(x)η(dx, da) < ∞, which, by the
generalized version of Proposition E.8 of [18] (from the case of probability measures to that
of finite measures), as given in the proof of part (b) of Theorem 3 of [38], implies that D̃
is uniformly tight. Incidentally, this fact together with the discussion right above Lemma 6
explains why the inequality D̃ ⊆ M

R,+(K) holds. Again, by Theorem 2 (see (9)) and the
discussion following Condition 5, supη̃∈D̃ η̃(K) < ∞. Therefore, we refer to Lemma 7 to
conclude that D̃ is relatively compact in (MR,+(K), τ (MR,+(K))).

Next, we show that D is closed in (M
R,+
w′ (K), τ (M

R,+
w′ (K))). We consider a net ηn ∈ D

such that ηn
w′→ η ∈ M

R,+
w′ (K), where the convergence is in the w′-weak topology. We show
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that η ∈ D as follows. Firstly, we verify (9) for η. Indeed, we have∫
K

w(x)η(dx, da) =
∫

K

lim
m↑∞ min{m, w(x)}η(dx, da)

= lim
m↑∞

∫
K

min{m, w(x)}η(dx, da)

= lim
m↑∞ lim

n→∞

∫
K

min{m, w(x)}ηn(dx, da)

≤ M

ρ

∫
S

w(x)γ (dx),

where in the first equality min{m, w(x)} is a sequence with the index m = 1, 2, . . . , the second
equality follows by Lévy’s monotone convergence theorem, the third equality follows by the

continuity of w, as required in Condition 5(a), and the assumption that ηn
w′→ η, with ηn being

a net in D , and the last inequality follows by (9) with ηn in lieu of η. Secondly, we verify (8)
for η. To this end, let a bounded, continuous, function u on X be arbitrarily fixed. Then we see
that ∫

X

u(x)

{
γ (dx) +

∫
K

q(dx | y, a)η(dy, da)

}

=
∫

X

u(x)γ (dx) +
∫

K

∫
X

u(x)q(dx | y, a)η(dy, da)

=
∫

X

u(x)γ (dx) + lim
n→∞

∫
K

∫
X

u(x)q(dx | y, a)ηn(dy, da)

= lim
n→∞

∫
X

u(x)

{
γ (dx) +

∫
K

q(dx | y, a)ηn(dy, da)

}

= 0,

where the second equality follows by Condition 5(c) and (d). This, by the proof of Lemma 6 or,
more directly, Lemma 2.3 of [36], implies that γ (dx) + ∫

K
q(dx | y, a)η(dy, da) = 0, i.e. (8)

is satisfied by η. It remains to refer to Theorem 2 to conclude that η ∈ D, and, thus, D is closed
in (M

R,+
w′ (K), τ (M

R,+
w′ (K))). This, together with the relative compactness of D as shown at

the beginning of this proof, asserts the compactness of D in (M
R,+
w′ (K), τ (M

R,+
w′ (K))).

(b) Firstly, we note that problem (11) can be written as
∫
K

c0(x, a)η(dx, da) → min∈DF

with DF := {ηπ : π ∈ �F} = {η ∈ D : ∫
K

cj (x, a)η(dx, da) ≤ dj , j = 1, 2, . . . , N}, where
we recall that �F is the space of feasible policies for the CTMDP problem (2). Under
the additionally imposed Condition 5(e), as in the proof of Theorem 3.11 of [31] based on
Lemma A.3 therein, it can be easily proved that, for each i = 0, 1, . . . , N,

∫
K

ci(x, a)η(dx, da)

is lower semicontinuous in η ∈ D equipped with the w′-weak topology. Therefore, the
space of feasible occupation measures DF is closed in D . This, together with part (a) of
this statement, implies that DF ⊆ D is compact, which, again by the lower semicontinuity of∫
K

c0(x, a)η(dx, da) in η ∈ DF , asserts the existence of an optimal solution η∗ to problem
(11) according to the generalized Weierstrass’ theorem stated as Theorem 2.43 of [1]. By
Theorem 2, the stationary policy π∗ satisfying η∗(dx, da) = π∗(da | x)η∗(dx, A) is optimal
for the constrained absorbing CTMDP problem (2).

4.2. Optimality of mixed policies

Theorem 1(d) asserts the existence of a deterministic stationary optimal policy for the
CTMDP problem (2) withN = 0. This result is not covered by Theorem 3(b), which asserts only
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the existence of (randomized) stationary optimal policies for the CTMDP problem (2) with an
arbitrary number, N , of constraints. In this subsection, we give a more detailed characterization
of stationary optimal policies for the CTMDP problem (2), which covers Theorem 1(d) as a
special case; see the discussion following Definition 4 and Theorem 5 below.

Definition 4. A randomized stationary policy π is said to be (m + 1)-mixed, where
m = 0, 1, . . . , if ηπ(dx, da) = ∑m

l=0 blη
ϕl (dx, da), where the ϕl, l = 0, 1, . . . , m, are

deterministic stationary policies, bl ≥ 0 for each l = 0, 1, . . . , m, and
∑m

l=0 bl = 1.

In other words, the occupation measure of an (m + 1)-mixed (stationary) policy can be
expressed as a convex combination of m + 1 occupation measures generated by deterministic
stationary policies. The realization of an (m + 1)-mixed policy π can be implemented as
follows: before the process starts, one selects a deterministic stationary policy ϕl out of the
m + 1 policies with the probability bl , where the notation is as in Definition 4, and uses it to
control the process; see [26, p. 89] for some discussions. Theorem 5 below asserts that, for
the absorbing CTMDP problem (2) with N constraints, there exists an (N + 1)-mixed optimal
policy, refining the statement of Theorem 3(b), so that, when N = 0, there is a deterministic
stationary optimal policy, covering the statement of Theorem 1(d).

We will establish Theorem 5 as a consequence of the following result about the space of
performance vectors

V := �(D) :=
{(∫

K

c0(x, a)η(dx, da), . . . ,

∫
K

cN(x, a)η(dx, da)

)
: η ∈ D

}

of the constrained absorbing CTMDP problem (2). Below, a point v ∈ V is said to be generated
by a policy π if v = (V (γ, π, c0), . . . , V (γ, π, cN)).

Theorem 4. Suppose that Conditions 1, 2(a), 3, 4, and 5(a)–(d) are satisfied. If, additionally,
for each i = 0, 1, . . . , N, ci(x, a) is continuous in (x, a) ∈ K, then the following assertions
hold.

(a) The space of performance vectors V is nonempty, convex, and compact in R
N+1 equipped

with the usual Euclidean topology.

(b) Each extreme point of V is generated by a deterministic stationary policy.

Proof. (a) Under the conditions of the statement, the mapping � defining V is continuous in
η in the w′-weak topology. Since D is nonempty and convex by Theorem 2, it follows that V is
too, whereas the compactness of V follows from that of D (due to Theorem 3), the continuity
of �, and Theorem 2.34 of [1].

(b) Firstly, we note that, according to part (a) and Corollary 7.66 of [1], there is at least one
extreme point of V. So we arbitrarily fix an extreme point vex of V. We show by induction with
respect to the number of constraints N that vex is generated by a deterministic stationary policy.

Consider N = 0. In this case, according to part (a) of this theorem, V is a closed, bounded
interval in R, and there are only two extreme points, which are given by the two endpoints of V.
On the other hand, these two endpoints correspond to the optimal values of the problems
V (γ, π, c0) → minπ∈�H and V (γ, π, c0) → maxπ∈�H , respectively, which in turn, by
Theorem 1(d) (it can be applied to the maximization problem due to the fact that c0(x, a)

is continuous in (x, a) ∈ K , as required by the conditions of the statement), are generated
by deterministic stationary policies. Hence, the fixed extreme point vex is generated by a
deterministic stationary policy.
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Suppose that the statement holds for the case N = k−1, and let us consider N = k. It follows
that vex := (vex,0, vex,1, . . . , vex,k) /∈ V◦, where V◦ stands for the interior of V. So we can refer
to the supporting hyperplane theorem, as stated in Proposition 2.4.1 of [4], for the existence of
a hyperplane H := {x = (x0, x1, . . . , xk) ∈ R

k+1,
∑k

i=0 λixi = v∗}, where v∗ ∈ R, and at
least one λi ∈ R, i = 0, 1, . . . , N, is not equal to zero, such that vex ∈ H , and

∑k
i=0 λivex,i ≤∑k

i=0 λivi holds for each v ∈ V, i.e. V (γ, πex,
∑k

i=0 λici) = infπ∈�H V (γ, π,
∑k

i=0 λici),
where πex is a policy (not necessarily deterministic stationary) that generates vex. Therefore,
v∗ in the definition of the hyperplane H is given by

v∗ := inf
π∈�H

V

(
γ, π,

k∑
i=0

λici

)
= V

(
γ, πex,

k∑
i=0

λici

)
. (12)

Below, without loss of generality, we assume that λk �= 0, for otherwise we may just perform
some reordering.

We now define U = H ∩ V. Since vex ∈ H and vex ∈ V, U �= ∅. Since V is convex and
compact, and H is closed and convex, U is (nonempty) convex and compact. Thus, vex is also
an extreme point of U as it is one of V.

As to be shown shortly, it turns out that the space U coincides with the space of performance
vectors V̂ of the auxiliary absorbing CTMDP model

{S, A, Â(x), q(dy | x, a), ci, i = 0, 1, . . . , k, γ, 
},

whose validity is yet to be justified below (since we are only concerned with the space of
performance vectors, the constraints dj have been temporarily omitted from consideration and
denotation), where Â(x) is defined by Â(x) := A for each x ∈ 
, and, for each x ∈ X,

Â(x) :=
{
a∗ ∈ A(x) :

k∑
i=0

λici(x, a∗) +
∫

S

q(dy | x, a∗)u∗(y)

= inf
a∈A(x)

{ k∑
i=0

λici(x, a) +
∫

S

q(dy | x, a)u∗(y)

}
= 0

}
, (13)

with u∗ being given by the w′-bounded Bellman function from Theorem 1 with
∑k

i=0 λici in lieu
of c0 therein, and thus satisfying u∗(x) = infπ∈�H V (x, π,

∑k
i=0 λici) (here and throughout

this proof, in a slight abuse of notation the same symbol u∗ is used for the Bellman function
even though the cost rate is different from that in Theorem 1; hopefully this does not lead to
confusion). Note that, since, under the conditions of the statement, A(x) is compact for each
x ∈ X (see the discussion following Condition 5), the discussion following Condition 4 (noting
that supx∈X w(x)/w′(x) < ∞, as mentioned in the discussion below Condition 5) and the
generalized Weierstrass’ theorem stated in Theorem 2.43 of [1] imply that Â(x) is nonempty
compact for each x ∈ X, and Â(x) ⊆ A for each x ∈ S. Therefore, recalling the beginning
of Section 2.1, in order for {S, A, Â(x), q(dy | x, a), ci, i = 0, 1, . . . , k, γ, 
} to be a valid
CTMDP model, we only need further show that K̂ := {(x, a) : x ∈ S, a ∈ Â(x)} is in B(S×A)

and contains the graph of at least one measurable mapping ϕ̂ : S → A such that ϕ̂(x) ∈ Â(x)

for each x ∈ S.
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Indeed, as for the measurability of K̂, we first note that, for each closed set F ⊆ A, the set

{x ∈ X : Â(x) ∩ F �= ∅}

=
{
x ∈ X : inf

a∈A(x)∩F

{ k∑
i=0

λici(x, a) +
∫

S

q(dy | x, a)u∗(y)

}
= 0

}

is measurable by [21], Theorem 3.1 of [22], and the measurable selection theorem given as
Proposition D.5 of [18] validated by the discussions following Conditions 4 and 5. Thus,
the multifunction Â(x) is measurable in the sense of Definition 18.1 of [1]. This in turn
validates Theorem 18.6 of [1], which together with the fact that Â(x) is compact for each
x ∈ X implies that K̂ := {(x, a) : x ∈ X, a ∈ Â(x)} ∈ B(X × A). Since 
 is measurable
in S, it follows that K̂ = K̂ ∪ (
 × A) ∈ B(S × A). On the other hand, it follows from
Theorem 1 (see also its proof) that K̂ contains the graph of at least one measurable mapping
ϕ̂ : S → A such that ϕ̂(x) ∈ Â(x) for each x ∈ S. Thus, {S, A, Â(x), q(dy | x, a), ci,

i = 0, 1, . . . , k, γ, 
} (the functions like ci will be regarded as their restrictions on K̂) is
indeed a valid absorbing CTMDP model, which will be called auxiliary from now on. For this
auxiliary model, all the corresponding versions of the conditions of this theorem are satisfied.
Indeed, for Condition 5(b), we only need take the compact (in the relative topology) sets
K̂m := Km ∩ K̂ , whereas the verification of all the other conditions is automatic because the
auxiliary model is a submodel of the original model. In particular, the last observation implies
that every policy for the auxiliary model is also one for the original model, a fact that is used
below without reference.

Now we are ready to show that the space of performance vectors V̂ of the auxiliary model
coincides with the space U := V ∩ H as defined earlier. Indeed, in one direction, we easily
see that V̂ ⊆ V and V̂ ⊆ H , where the latter inequality follows from the definitions of H
and Â(x) and Theorems 1 and 2(b). Thus, V̂ ⊆ U. To show the opposite direction of the last
inequality, we consider an arbitrarily fixed point v = (V (γ, π, c0), . . . , V (γ, π, ck)) ∈ U, so
that π generating v is a policy for the original model, which is assumed to be stationary without
loss of generality by Theorem 2, and

V

(
γ, π,

k∑
i=0

λici

)
= v∗, (14)

where v∗ comes from the definition of the hyperplane H (recalling that v∗ satisfies (12)). We
now show that v can also be generated by a policy for the auxiliary CTMDP model. Indeed,
the measurable set

�̂ :=
{
x ∈ S :

∫
A

( k∑
i=0

λici(x, a) +
∫

S

q(dy | x, a)u∗(y)

)
π(da | x) > 0

}
,

where u∗(y) is the Bellman function as in (13), is null with respect to the measure ηπ(dx, A),
for otherwise we would obtain a contradiction given by

0 <

∫
X

ηπ(dx, A)

{∫
A

π(da | x)

k∑
i=0

λici(x, a) +
∫

X

∫
A

π(da | x)q(dy | x, a)u∗(y)

}

= V

(
γ, π,

k∑
i=0

λici

)
+

∫
X

ηπ(dx, A)

∫
S

∫
A

π(da | x)q(dy | x, a)u∗(y)
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= V

(
γ, π,

k∑
i=0

λici

)
−

∫
X

u∗(y)γ (dy)

= v∗ − v∗

= 0,

where the second equality follows by (8), and the third equality follows by (14), Theorem 1(d)
(with

∑k
i=0 λici in lieu of c0), and (13). Therefore, the policy is concentrated on Â(x) for each

x ∈ S \ �̂. Now we define a policy π̂ for the auxiliary model by π̂(da | x) := π(da | x) for
each x ∈ S \ �̂, and π̂(da | x) := 1{ϕ̂(x)∈da} for each x ∈ �̂, where ϕ̂ is any fixed measurable
mapping from S to A such that ϕ̂(x) ∈ Â(x) for each x ∈ S, whose existence has been
guaranteed earlier in this proof when verifying that {S, A, Â(x), q(dy | x, a), ci, i = 0, 1, . . . ,

k, γ, 
} is a legal absorbing CTMDP model. The policy π̂ satisfies ηπ(dx, A)π̂(da | x) =
ηπ(dx, A)π(da | x). Now it follows from this and Theorem 2 that ηπ(dx, da) = ηπ̂ (dx, da),
so that v = (V (γ, π, c0), . . . , V (γ, π, ck)) = (V (γ, π̂, c0), . . . , V (γ, π̂, ck)) ∈ V̂,

i.e. U ⊆ V̂. Thus, U = V̂ is proved.
Since vex (the extreme point of V that was arbitrarily fixed at the beginning of this part of

the proof) is an extreme point of U (explained earlier), so is it one of V̂. On the other hand, for
each point v̂ = (v̂0, . . . , v̂k) ∈ V̂, we can always express

v̂k = v∗ − ∑k−1
i=0 λi v̂i

λk

(15)

(v∗ and λi are from the definition of the hyperplane H and λk �= 0 as explained earlier),
since V̂ = U ⊆ H . Therefore, as far as its space of performance vectors is concerned, it
suffices to exclude ck and consider the auxiliary CTMDP model with only k cost rates ci,

i = 0, 1, . . . , k − 1, i.e. with only k − 1 constraints. We denote the space of performance
vectors of this auxiliary model with k −1 constraints by V ′. Then it is easy to see that the point
v′

ex := (vex,0, . . . , vex,k−1) ∈ V ′ is an extreme point of V ′ (recalling also (15)). Therefore,
by the inductive supposition applied to the auxiliary CTMDP model with k − 1 constraints,
the extreme point v′

ex is generated by a deterministic stationary policy, which, by (15), also
generates vex. Since vex is arbitrarily fixed, this completes the induction, completing the proof.

Based on Theorem 4, the Krein–Milman theorem (see Proposition 3.3.1 of [4]), and the
Caratheodory theorem [4, pp. 37–38], it is not hard to show the existence of an (N + 2)-
mixed optimal policy for the constrained absorbing CTMDP problem (2), where the number of
mixtures N + 2 comes from the fact that V ⊆ R

N+1 and the Caratheodory theorem. However,
this result does not cover Theorem 1(d) for the case of N = 0. In order to prove the more
refined Theorem 5 below, we need the following lemma.

Lemma 9. Let f be a concave function on V, where V is a nonempty convex and compact set
in R

N+1 with N being a positive integer, and let H j :={v = (v0, . . . , vN) ∈ R
N+1 : vj ≤ dj },

j = 1, . . . , N, where the dj , j = 1, 2, . . . , N, are constants. Consider the optimization
problem (assumed to be consistent)

f (v) → min
v∈V

s.t. v ∈ H j , j = 1, 2, . . . , N.
(16)

Then there is an optimal solution vopt to problem (16) such that vopt = ∑N
l=0 blv

l
ex, where∑N

l=0 bl = 1, bl ≥ 0 for each l = 0, 1, . . . , N , and vl
ex (the superscript l does not mean the

power) is an extreme point of V.
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Proof. Since problem (16) is consistent, it follows from the conditions on V that VF :=
V ∩ (

⋂N
j=1 H j ) is nonempty, convex, and compact. On the other hand, the concave function f

is automatically continuous by Proposition 1.4.6 of [4]. Hence, by Bauer’s principle, as given
by Corollary 7.70 of [1], we see that there exists an extreme point vopt of VF solving problem
(16). For vopt = (v

opt
0 , . . . , v

opt
N ), it holds that vopt ∈ V ∩ (

⋂
j∈� Hj ) ∩ (

⋂
j /∈� H◦

j ), where,

for each j = 1, 2, . . . , N,H◦
j := {v = (v0, . . . , vN) ∈ R

N+1 : vj < dj }, Hj := H j \ H◦
j , the

possibly empty index set � is given by � := {j = 1, . . . , N : v
opt
j = dj }, and the intersection

over the empty index set is by convention regarded as the universal set. Since vopt is an extreme
point of V, so is it one of the convex subset (V ∩ (

⋂
j∈� Hj )) ∩ (

⋂
j /∈� H◦

j ) � vopt of V.

Therefore, by Statement (5.7) of [8], vopt is also an extreme point of V ∩ (
⋂

j∈� Hj ), which,
by [8, Main Theorem], together with the fact that � has cardinality not bigger than N, in turn
implies that vopt can be expressed as the convex combination of N + 1 extreme points of V.

Now we are in position to state and prove the existence of an (N + 1)-mixed optimal policy
for problem (2).

Theorem 5. Suppose that Conditions 1, 2(a), 3, 4, and 5(a)–(d) are satisfied. If, additionally,
for each i = 0, 1, . . . , N, ci(x, a) is continuous in (x, a) ∈ K, then there exists an (N + 1)-
mixed optimal policy for the constrained absorbing CTMDP problem (2), where N is the number
of constraints.

Proof. By Theorem 4 and the assumption made at the beginning of Section 4 that (2) is
consistent, we see that the space of performance vectors V satisfies the conditions in Lemma 9.
Moreover, the optimal value of problem (2) is given by that of problem (16) with the function
f being defined by (for each v = (v0, . . . , vN) ∈ V)

f (v) = v0, (17)

which is obviously concave (indeed linear). Therefore, we can refer to Lemma 9 for an optimal
solution vopt of problem (16) with f given by (17) such that vopt = ∑N

l=0 blv
l
ex, where, for

each l = 0, 1, . . . , N, bl ≥ 0 and vl
ex (the superscript l does not mean the power) is an

extreme point of V, and
∑N

l=0 bl = 1. By Theorem 4 we obtain N + 1 deterministic stationary
policies ϕl, l = 0, 1, . . . , N, generating vl

ex, l = 0, 1, . . . , N, respectively. Now consider
the measure on K defined by ηopt(dx, da) := ∑N

l=0 blη
ϕl (dx, da). By Theorem 2(a), we see

that ηopt(dx, da) is an occupation measure, and, by Theorem 2(b), there is a stationary policy
πopt generating the measure ηopt(dx, da). It is evident that the policy πopt is the required
(N + 1)-mixed optimal policy for problem (2).

5. Linear programming formulation and strong duality

In this section we will view problem (11) as a (primal) linear program, for which some
duality results will be derived. The motivation behind this comes from the fact that, compared
to the primal program, the dual program can sometimes be easier to solve. However, in the
infinite-dimensional case such as we are concerned with, generally speaking, the values of the
primal and dual programs might be different. In what follows we provide conditions for the
absence of such duality gaps. To this end, we need to select appropriate linear spaces first. So
we introduce the following additional notation.

Notation. Let w(x) ≥ 1 and w′(x) ≥ 1 be measurable (later on they are further assumed
to be continuous) functions on X. We denote by Mw′(X) the space of signed (not necessarily
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Radon) measures on X with a finite w′-norm, i.e. ν ∈ Mw′(X) satisfies
∫
X

w′(x)|ν|( dx) < ∞.

The w′-weak topology on this space is denoted by τ(Mw′(X)), which is generated by the class
of continuous functions u ∈ Bw′(X). Furthermore, we introduce

X := M
R
w(K) × R

N, Y := Bw(K) × R
N,

Z := Mw′(X) × R
N, W := Bw′(X) × R

N.

In what follows, it is standard practice and thus will not be repeated to define elements of the
above spaces by

x := (η(dx, da), x1, . . . , xN) ∈ X, y := (g(x, a), y1, . . . , yN) ∈ Y,

z := (ν(dx), z1, . . . , zN) ∈ Z, w := (h(x), w1, . . . , wN) ∈ W ,

respectively. We introduce, for each x, y, z, w,

〈x, y〉1 :=
∫

K

g(x, a)η(dx, da)+
N∑

j=1

xjyj , 〈z, w〉2 :=
∫

X

h(x)ν(dx)+
N∑

j=1

zjwj . (18)

Below we simply use 〈·, ·〉 for both 〈·, ·〉1 and 〈·, ·〉2, as the context will always make it clear
which one we mean.

The next lemma collects some observations about the above four spaces, which are needed
for the linear program formulations of problem (11). In its statement, we freely use (i.e. without
explicit references) the terminologies introduced in Chapter 6 of [18] and Chapter 12 of [19].

Lemma 10. Suppose that Conditions 2(a), 3, and 5(b) (where the continuity of w′ is not needed
for the moment) are satisfied. Then the following assertions hold.

(a) The spaces X, Y, Z, and W are all linear spaces.

(b) (X, Y) and (Z, W) with the bilinear forms defined by (18) are dual pairs.

(c) The set K := {x ∈ X : η ∈ M
R,+
w (K), xj ≥ 0, j = 1, 2, . . . , N} is a positive cone in X

with the dual cone K∗ := {y ∈ Y : 〈x, y〉 ≥ 0 for all x ∈ K} = {y ∈ Y : g(x, a) ≥ 0
for all (x, a) ∈ K, yj ≥ 0, j = 1, 2, . . . , N}.

(d) The mapping G from X to Z defined by

G(x) :=
(

−
∫

K

q(dx | y, a)η(dy, da),

∫
K

c1(x, a)η(dx, da) + x1, . . . ,

∫
K

cN(x, a)η(dx, da) + xN

)

has its adjoint G∗ given by

G∗(w) :=
(

−
∫

X

h(y)q(dy | x, a) +
N∑

j=1

wjcj (x, a), w1, . . . , wN

)
.

(e) The mapping G defined in part (d) is τ(X, Y)−τ(Z, W) continuous (also called weakly
continuous), where τ(X, Y) denotes the weakest topology on X such that 〈·, y〉 is
continuous on X for each fixed y ∈ Y, and the topology τ(Z, W) on Z is defined
similarly.
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Proof. For part (a), the only thing to be verified is the linearity of X as that of the other
three spaces is evident. It follows from Propositions 19.20, 19.43 and Definition 19.41 of [37]
and Theorem 12.4 of [1] that our definition of a (finite) Radon signed measure (from [6]) is
equivalent to that given in Definition 19.19 of [37]. Now the linearity of the space M

R
w(K)

follows from Propositions 19.39 and 19.44 of [37], which assert that the space of Radon signed
measures is linear, and the obvious fact that the linear combination of Radon signed measures
with a finite w-norm is again one with a finite w-norm. The linearity of X now follows.

Parts (b) and (c) of the statement are obvious.
For part (d), we can directly verify that Equation (6.2.2) of [18], which is the same as

Equation (12.2.15) of [19], is satisfied. The involved interchanges of the order of integrations
are legal under the conditions of the statement, and especially by the fact that the function w′
has a finite w-norm, i.e. supx∈X w′(x)/w(x) < ∞, according to the discussion immediately
following Condition 5(b).

Part (e) now follows from the fact that G∗(W) ⊆ Y (as can be easily seen) and
Proposition 12.2.5 of [19].

Under Conditions 1, 2(a), 3, and 5(b) (where the continuity of w′ is not needed for the
moment), problem (11) is equivalent (by Theorem 2, the discussion after its proof, and
Remark 2) to the following primal linear program, which is well defined due to Lemma 10
and Chapter 6 of [18]:

〈x, ŷ〉 → min
x∈X

s.t. G(x) = ẑ; x ∈ K, (19)

where ŷ := (c0, 0, . . . , 0) ∈ Y and ẑ := (γ, d1, . . . , dN) ∈ Z are fixed points. Indeed, under
Condition 5(b), the function w is a moment (see Definition E.7 of [18]), since the function
w/w′ is, where w′(x) ≥ 1 on x ∈ X. This, together with Theorem 2 (see (9)), implies that D
is uniformly tight according to the proof of Theorem 3(b) of [38]. As each η ∈ D is a measure
on B(K) and satisfies (9), we see that D ⊆ M

R
w(K) by the discussion above Lemma 6. Now,

again by Chapter 6 of [18], the dual linear program of (19) is given by

〈ẑ, w〉 → max
w∈W

s.t. ŷ − G∗(w) ∈ K∗; w ∈ W ,

or, more explicitly and after some rearrangements,

∫
X

h(x)γ (dx) −
N∑

j=1

djwj → max
(h(x),w1,...,wN )∈W

(20)

s.t. c0(x, a) +
N∑

j=1

wjcj (x, a) +
∫

X

h(y)q(dy | x, a) ≥ 0 for all (x, a) ∈ K; wj ≥ 0.

Below we denote the values of problems (19) and (20) by inf(PLP(19)) and sup(DLP(20)). We
collect some observations in the following remark, where the function w could be understood
as a fixed measurable function on X such that w(x) ≥ 1 for each x ∈ X.

Remark 3. Consider the dual pair of the linear spaces M
R
w(K) and Bw(K) with the bilinear

form 〈η, g〉 := ∫
K

g(x, a)η(dx, da), where g ∈ Bw(K) and η ∈ M
R
w(K). Denote by τ(MR

w

(K), Bw(K)) the weakest topology on M
R
w(K) such that 〈·, g〉 is continuous in η ∈ M

R
w(K)

for each fixed g ∈ Bw(K). Then, by the discussion on page 211 and Theorem 5.93 of [1],
the topology τ(MR

w(K), Bw(K)) is compatible with the bilinear form 〈·, ·〉 (defined earlier in
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this remark) in the sense of [35, p. 13]. It follows from its definition that this topology is
stronger than the w-weak topology τ(MR

w(K)). In particular, lower semicontinuous functions
and closed sets in the w-weak topology τ(MR

w(K)) are automatically closed in the topology
τ(MR

w(K), Bw(K)).

Remark 3 and the standard Slater condition (see Condition 6) imposed below will be used
to validate the statement of Theorem 17(a) of [35], which plays an essential role in the proof of
Theorem 6 below about the strong duality between the primal linear program (19) and its dual
program (20).

Condition 6. There exists a policy π ∈ �H such that V (γ, π, cj ) < dj , j = 1, 2, . . . , N.

We are now ready to state the following strong duality theorem.

Theorem 6. Suppose that Conditions 1, 2(a), 3, 4, 5, and 6 are satisfied. Then the strong duality
between the primal linear program (19) and its dual program (20) holds, i.e. both problems
(19) and (20) admit optimal solutions, and inf(PLP(19)) = sup(DLP(20)).

Proof. Similarly to the proof of Theorem 3(a), we can show that D is w-weakly closed
in M

R,+
w (K), which is w-weakly closed in M

R
w(K), as can be verified in a similar way to

the proof of Lemma 6. It is also an easy exercise to show that, for each i = 0, 1, . . . , N,∫
K

ci(x, a)η(dx, da) is w-weakly lower semicontinuous in η ∈ D . By Remark 3, these
two observations lead to the fact that, for each i = 0, 1, . . . , N,

∫
K

ci(x, a)η(dx, da) is
lower semicontinuous on D ⊆ (MR

w(K), τ (MR
w(K), Bw(K))), and D is nonempty convex

and closed in (MR
w(K), τ (MR

w(K), Bw(K))), where the nonemptiness is obvious, and the
convexity follows from Theorem 2(a). These facts, Condition 6, and Remark 3 allow us to
refer to Example 1” and Theorem 17 of [35] for

inf(PLP(19))

= sup
wj ≥0, j=1,2,...,N

inf
η∈D

{∫
K

η(dx, da)

(
c0(x, a) +

N∑
j=1

wjcj (x, a)

)
−

N∑
j=1

wjdj

}
. (21)

For arbitrarily fixed w1 ≥ 0, . . . , wN ≥ 0, we claim that

inf
η∈D

{∫
K

η(dx, da)

(
c0(x, a) +

N∑
j=1

wjcj (x, a)

)
−

N∑
j=1

wjdj

}

= sup
h∈Bw′ (X)

{∫
X

γ (dx)h(x) : c0(x, a) +
N∑

j=1

wjcj (x, a)

+
∫

X

h(y)q(dy | x, a) ≥ 0 for all (x, a) ∈ K

}
−

N∑
j=1

wjdj . (22)

Indeed, by Theorem 1(d) and the discussion following Theorem 2, we see that

inf
η∈D

{∫
K

η(dx, da)

(
c0(x, a) +

N∑
j=1

wjcj (x, a)

)}
= inf

π∈�H
V

(
γ, π, c0 +

N∑
j=1

wjcj

)

=
∫

X

γ (dx)u∗(x), (23)

https://doi.org/10.1239/aap/1370870127 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870127


Absorbing continuous-time Markov decision processes 515

where u∗ ∈ Bw′(X) is the solution to the Bellman equation (4) with c0 + ∑N
j=1 wjcj in lieu of

c0 therein. Therefore, u∗ is feasible for the maximization problem given on the right-hand side
of (22), for which, we suppose that there is some other feasible h satisfying

∫
X

h(x)γ (dx) >∫
X

u∗(x)γ (dx). Then there exist some x ∈ X and ε > 0 such that h(x) > u∗(x) + ε. Since h

is feasible, by Lemma 4, V (x, π, c0 + ∑N
j=1 wjcj ) ≥ h(x) holds for each stationary policy π.

Therefore, infπ V (x, π, c0 + ∑N
j=1 wjcj ) − ε > u∗(x), where the infimum is taken over all

stationary policies π. However, this contradicts the fact that u∗(x) = infπ∈�H V (x, π, c0 +∑N
j=1 wjcj ) for each x ∈ X given by Theorem 1. Hence, (22) follows. By (22), we see that

sup(DLP(20)) coincides with the term on the right-hand side of (21). Thus, it follows from
(21) that inf(PLP(19)) = sup(DLP(20)).

The solvability of problem PLP(19) is guaranteed by Theorem 3(b). As for DLP(20), we
note that an optimal solution is given by (u∗, w∗

1, . . . , w∗
N), where u∗ ∈ Bw′(X) is the Bellman

function from (23), and w∗
1 ≥ 0, . . . , w∗

N ≥ 0 solves the maximization problem on the right-
hand side of (21), whose existence is guaranteed by Theorem 17 of [35]. Thus, the proof is
completed.

We finally remark that the constants w1, . . . , wN in the dual linear problem (20) are just the
Lagrange multipliers with the Lagrangian being

∫
K

η(dx, da)(c0(x, a) + ∑N
j=1 wjcj (x, a))

− ∑N
j=1 wjdj ; see (21).

6. Examples

In this section we present two examples to illustrate the verifications of the imposed
conditions in this paper. We will not consider the standard Slater condition (Condition 6) since it
is not imposed on the primitives; anyway, in practice its verification is typically straightforward.

Example 1. Consider a controlled birth-and-death process with the state space S = {0, 1, . . . , }
and absorbing set 
 := {0} (and thus X := {1, 2, . . .}). Let A be any arbitrarily fixed compact
Borel space, and let A(x) ≡ A for each x ∈ S. So K = S × A and K = X × A. The transition
rate q(dy | x, a) and the cost rates ci(x, a), i = 0, 1, . . . , N, satisfy Assumption 1 below.

Assumption 1. (a) qx(a) = q({x + 1} | x, a) + q({x − 1} | x, a), q({x + 1} | x, a) ≥ 0,

q({x − 1} | x, a) ≥ q > 0 for each x > 0 and a ∈ A, where q is a constant; and
infa∈A, x>0 q({x − 1} | x, a)/q({x + 1} | x, a) ≥ ζ , where ζ > 1 is a constant.

(b) There exist constants 1 < ζ1 < ζ , 1 < ζ2 < ζ/ζ1, ζ1 > ζ2, C1 > 0, and C2 > 0 such that

sup
a∈A, x>0

|ci(x, a)|
ζ x

1
≤ C1

for each i = 0, 1, . . . , N, and

sup
a∈A, x>0

q({x + 1} | x, a) + q({x − 1} | x, a)

ζ x
2

≤ C2.

(c) q({x + 1} | x, a), q({x − 1} | x, a), and ci(x, a), i = 0, 1, 2, . . . , N, are all continuous in
a ∈ A for each x ∈ X.

The initial distribution γ satisfies
∑

x∈S(ζ1ζ2)
xγ (x) < ∞.

Proposition 1. For Example 1, Conditions 1, 2, 3, 4, and 5 are all satisfied.
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Proof. In this proof, for brevity, we define the birth rate λ(x, a) := q({x + 1} | x, a) and
the death rate µ(x, a) := q({x − 1} | x, a) (x > 0). We also put w(x) = (ζ1ζ2)

x 1X(x) and
w′(x) = ζ x

1 1X(x).

Part (b) of Condition 1 can be directly verified by Assumption 1. For part (a) of Condition 1,
we note that, for each x > 0,

λ(x, a)w(x + 1) + µ(x, a)w(x − 1) − (λ(x, a) + µ(x, a))w(x)

= µ(x, a)(ζ1ζ2)
x

{
λ(x, a)

µ(x, a)
(ζ1ζ2) + 1

ζ1ζ2
− λ(x, a)

µ(x, a)
− 1

}

≤ µ(x, a)(ζ1ζ2)
x

{
1

ζ
(ζ1ζ2 − 1) −

(
1 − 1

ζ1ζ2

)}

= µ(x, a)(ζ1ζ2)
x

{
ζ1ζ2

ζ

(
1 − 1

ζ1ζ2

)
−

(
1 − 1

ζ1ζ2

)}

≤ −q

(
1 − 1

ζ1ζ2

)(
1 − ζ1ζ2

ζ

)
w(x).

Thus, Condition 1(a) is verified since q(1 − 1/ζ1ζ2)(1 − ζ1ζ2/ζ ) > 0.

The verification of Condition 2 is trivial, and so is that of Condition 3(a) and (c). For
Condition 3(b), we see that, for each x > 0,

λ(x, a)w′(x + 1) + µ(x, a)w′(x − 1) − (λ(x, a) + µ(x, a))w′(x)

= µ(x, a)ζ x
1

{
λ(x, a)

µ(x, a)
ζ1 + 1

ζ1
− λ(x, a)

µ(x, a)
− 1

}

≤ µ(x, a)ζ x
1

{
1

ζ
(ζ1 − 1) −

(
1 − 1

ζ1

)}

= µ(x, a)ζ x
1

{
ζ1

ζ

(
1 − 1

ζ1

)
−

(
1 − 1

ζ1

)}

≤ −q

(
1 − 1

ζ1

)(
1 − ζ1

ζ

)
w′(x).

Thus, Condition 3(b) is verified since q(1 − 1/ζ1)(1 − ζ1/ζ ) > 0.

We verify Condition 4(a), (b), and (c) using Assumption 1(c), and verification of
Condition 4(d) is trivial. We verify Condition 5(a), (c), (d), and (e) trivially, since the state
space S is countable. Regarding Condition 5(b), we can take Km = {1, . . . , m} × A.

Remark. The unconstrained version of the model described in Example 1 is studied more
carefully in [29], where the authors are restricted to the class of deterministic stationary policies
as an initial assumption. Thus, Proposition 1 and the optimality results obtained in the present
paper justify their assumption. By the way, Assumption 1 is stronger than the conditions
in [29] because there the authors only considered the value function of the underlying absorbing
CTMDP, and the existence of an optimal policy was not needed for their studies. Note also
that, since we allow N , the number of constraints, to be arbitrarily fixed, the result in [16] is
not applicable.

Example 2. Consider an economic entity (a company for instance). The wealth is denoted by
x ∈ S = (−∞, ∞). When the wealth is negative, the economic entity goes bankrupt. Since we
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are only interested in the period before bankruptcy, 
 = (−∞, 0) is taken as the absorbing
set, and, thus, X = [0, ∞). The decision maker decides the amount of wealth to be invested
given the current wealth x ∈ X, denoted by a ∈ A(x) = [0, x] ⊂ A = [0, ∞). If a is invested
given the current wealth x, after an exponentially distributed random time with rate λ > 0, the
wealth is changed to a new state following the uniform distribution U [x − a, x + a + 1] with
the density 1[x−a,x+a+1](y)/(2a + 1). Note that the uniform distribution can be understood as
a noninformative prior. Moreover, lethal disasters (financial crisis) reducing the wealth directly
to 
 occur with a rate given by a continuous function β(x), which is measured by a probability
µ(·) on 
, where we suppose that supx∈X β(x)/(x + 1) < ∞ and β(x) > 4λ for all x ∈ X.
Therefore, the transition rates are taken to be

q(�S | x, a) = β(x)µ(�S ∩ 
) + λ

∫
�S∩[x−a,x+a+1]

1

2a + 1
dy − (λ + β(x)) 1�S

(x)

for x ∈ X, a ∈ A(x), and �S ∈ B(S). Furthermore, the initial distribution is such that∫
X

x2γ (dx) < ∞, and the cost rates ci(x, a), i = 0, 1, . . . , N, are continuous in (x, a) ∈ K

and satisfy supx∈X{supa∈A(x) |ci(x, a)|/(1 + x)} < ∞ for each i = 0, . . . , N, where N is the
number of constraints.

Proposition 2. For Example 2, Conditions 1, 2, 3, 4, and 5 are all satisfied.

Proof. We put w(x) = 1X(x)(1 + x2) and w′(x) = 1X(x)(1 + x), x ∈ S.

Part (b) of Condition 1 can be easily verified. For Condition 1(a), we see that, for x ∈ X

and a ∈ A(x),

∫
S

q(dy | x, a)w(y) = λ

∫ x+a+1

x−a

1

2a + 1
(1 + y2) dy − (λ + β(x))(1 + x2)

≤ λ(1 + 3x2 + a2) − (λ + β(x))(1 + x2)

≤ 4λ(1 + x2) − (λ + β(x))(1 + x2)

≤ (3λ − β(x))(1 + x2)

≤ −λ(1 + x2).

Thus, Condition 1(a) is satisfied since λ > 0.
It is trivial to verify Conditions 2, 3(a), and 3(c). For Condition 3(b), we have, for each

x ∈ X and a ∈ A(x),

∫
S

q(dy | x, a)w′(y) = λ

∫ x+a+1

x−a

1

2a + 1
(1 + y) dy − (λ + β(x))(1 + x)

≤ λ(1 + x) − (λ + β(x))(1 + x)

≤ −β(x)(1 + x)

≤ −4λ(1 + x).

Thus, Condition 3(b) is verified.
We verify Conditions 4 and 5(a), (c), (d), and (e) straightforwardly from the definition of

the transition rates, and the fact that β(x) and ci(x, a), i = 0, 1, . . . , N, are continuous on K .
For Condition 5(b), we can take Km = {(x, a) : x ∈ [0, m], a ∈ A(x)}.
Remark. Since the state space is uncountable, and the transition rate is unbounded, the previous
works on this topic (see [16], [28], [33], and the references therein) seem not to cover Example 2.

https://doi.org/10.1239/aap/1370870127 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870127


518 X. GUO ET AL.

7. Conclusion

In this paper we developed both the dynamic programming approach and the convex analytic
approach for unconstrained and constrained absorbing CTMDPs with total undiscounted cost
criteria. Specifically, we obtained the Bellman equation for the unconstrained CTMDPs and
proved the existence of a deterministic stationary optimal policy; for the constrained CTMDPs,
we defined the space of occupation measures and showed it to be convex and compact, and
characterized the extreme points of the convex space of performance vectors and showed them
to be generated by deterministic stationary policies, leading to the existence of an (N+1)-mixed
optimal policy, with N being the number of constraints. Finally, we introduced appropriate
dual pairs to formulate the CTMDPs as linear programs, and showed the strong duality between
the primal program and its dual program.

It should also be pointed out that we considered fairly general CTMDPs. Indeed, the state
space was allowed to be arbitrary Polish, while the action space was Borel. The transition rates
could be unbounded, and the cost rates may be unbounded from both above and below. Lastly,
the class of history-dependent policies was taken into account.
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