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Second-order Riesz Transforms and
Maximal Inequalities Associated with
Magnetic Schrödinger Operators

Dachun Yang and Sibei Yang

Abstract. Let A ∶= −(∇ − ia⃗) ⋅ (∇ − ia⃗) + V be a magnetic Schrödinger operator on Rn , where

a⃗ ∶= (a1 , . . . , an) ∈ L2
loc(R

n ,Rn
) and 0 ≤ V ∈ L1

loc(R
n
)

satisfy some reverse Hölder conditions. Let ϕ∶Rn × [0,∞) → [0,∞) be such that ϕ(x , ⋅ ) for any
given x ∈ Rn is an Orlicz function, ϕ( ⋅ , t) ∈ A∞(Rn) for all t ∈ (0,∞) (the class of uniformly
Muckenhoupt weights) and its uniformly critical upper type index I(ϕ) ∈ (0, 1]. In this article, the
authors prove that second-order Riesz transforms VA−1 and (∇ − ia⃗)2A−1 are bounded from the
Musielak–Orlicz–Hardy spaceHϕ ,A(Rn), associated with A, to theMusielak–Orlicz space Lϕ(Rn).
Moreover, we establish the boundedness of VA−1 on Hϕ ,A(Rn). As applications, some maximal
inequalities associated with A in the scale of Hϕ ,A(Rn) are obtained.

1 Introduction

In this article, we study second-order Riesz transforms and maximal inequalities as-
sociated with the magnetic Schrödinger operator

A ∶= −(∇ − i a⃗) ⋅ (∇ − i a⃗) + V

on the Euclidean space Rn for n ≥ 2 with the magnetic potential a⃗ ∶= (a1 , . . . , an) ∈
L2

loc(R
n ,Rn) and the electric potential 0 ≤ V ∈ L1

loc(R
n).

For all k ∈ {1, 2, . . . , n} and ak ∈ L2
loc(R

n), let

(1.1) Lk ∶=
∂

∂xk
− iak .

_e operator A can be deûned via the following sesquilinear form Q by setting, for all
f , g ∈ V,

(1.2) Q( f , g) ∶=
n
∑
k=1
∫
Rn

Lk f (x)Lk g(x) dx + ∫
Rn
f (x)g(x)V(x) dx ,
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where

V ∶= { f ∈ L2
(Rn

) ∶ Lk f ∈ L2
(Rn

) for all k ∈ {1, . . . , n} and
√
V f ∈ L2

(Rn
)} .

_en, by (1.2), A can be formally written as

(1.3) Af = −
n
∑
k=1

L2
k f + V f ,

for f ∈D(A), where the domain of A,D(A), is given by

D(A) ∶= { f ∈ V ∶ there exists g ∈ L2
(Rn

) such that for all ϕ ∈ V,

Q( f , ϕ) = ∫
Rn

g(x)ϕ(x) dx} .

It is worth pointing out that the study of the magnetic Schrödinger operators inspires
great interest because of their important applications inmathematics and physics (see,
for example, [1, 2, 10, 18, 20, 26, 27]).

Recall that for q ∈ (1,∞], a nonnegative function w on Rn is said to belong to the
reverse Hölder class RHq(Rn), if when q ∈ (1,∞), we have w ∈ Lq

loc(R
n) and

(1.4) [w]RHq(Rn) ∶= sup
B⊂Rn

{
1
∣B∣ ∫B

[w(x)]q dx}
1/q

{
1
∣B∣ ∫B

w(x) dx}
−1
< ∞,

and when q = ∞, we have w ∈ L∞loc(Rn) and

(1.5) [w]RH∞(Rn) ∶= sup
B⊂Rn

{ess sup
x∈B

w(x)}{ 1
∣B∣ ∫B

w(x) dx}
−1
< ∞,

where the suprema are taken over all balls B ⊂ Rn . A typical example of an element
of the reverse Hölder class is a nonnegative polynomial on Rn , which turns out to
be in RH∞(Rn) (see, for example, [28]). Furthermore, for 0 ≤ U ∈ RHq(Rn) with
q ∈ [n/2,∞], the auxiliary function m( ⋅ ,U) associated with U is deûned by setting

(1.6) [m(x ,U)]
−1
∶= sup{ r ∈ (0,∞) ∶

r2

∣B(x , r)∣ ∫B(x ,r)
U(y) dy ≤ 1}

for all x ∈ Rn (see Shen [28]). It is known from [12] that RHq(Rn) has the property
of self-improvement. Namely, if V ∈ RHq(Rn) for some q ∈ (1,∞), then there exists
є ∈ (0,∞) such that V ∈ RHq+є(Rn). _us, for any V ∈ RHq(Rn) with q ∈ (1,∞],
the critical index q+ for V is deûned as follows:

(1.7) q+ ∶= sup{q ∈ (1,∞] ∶ V ∈ RHq(Rn
)} .

For all x ∈ Rn , let

(1.8) B(x) ∶= curl a⃗(x) ∶= (b jk(x))1≤ j,k≤n

be themagnetic ûeld generated by a⃗, where for any j, k ∈ {1, . . . , n}, b jk ∶=
∂ak
∂x j

−
∂a j

∂xk .
Assume that there exist positive constants C and c such that

∣B∣ + V ∈ RHn/2(Rn
),

0 ≤ V ≤ C[m( ⋅ , ∣B∣ + V)]
2 ,

∣∇B∣ ≤ c[m( ⋅ , ∣B∣ + V)]
3 ,

(1.9)
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where B is as in (1.8),

(1.10) ∣B∣ ∶= {
n
∑

i , j=1
∣b i j ∣

2
}

1/2
, ∣∇B∣ ∶= {

n
∑

i , j=1
∣∇b i j ∣

2
}

1/2
,

and m( ⋅ , ∣B∣ + V) is as in (1.6) with U replaced by ∣B∣ + V . Now let

(1.11) L ∶= (L1 , . . . , Ln),

where, for any k ∈ {1, . . . , n}, Lk is as in (1.1). Shen [26, _eorem 4.7] proved that
second-order Riesz transforms L2A−1 are bounded on Lp(Rn) for p ∈ (1,∞) and
are also of weak type (1, 1). Kurata and Sugano [21] studied the boundedness of the
operators, VA−1, V 1/2LA−1, and L2A−1, on Lp(Rn), with p ∈ (1,∞), under more
additional assumptions for V and B. Furthermore, under assumption (1.9), Ben Ali
[1, _eorem 1.10, Remark 3.15] established the boundedness of L2A−1 and VA−1 on
Lp(Rn) with p ∈ (1,∞) by using diòerent methods from those used in [26]. Re-
cently, also under assumption (1.9), the boundedness of VA−1, V 1/2LA−1, and L2A−1,
from theMusielak–Orlicz–Hardy space associated with the operator A,Hϕ ,A(Rn), to
the Musielak–Orlicz space Lϕ(Rn), was obtained in [6, _eorem 1.1] via establishing
several Sobolev-type estimates for the heat kernels of A. In particular, when a⃗ = 0⃗, A
and L are, respectively, the Schrödinger operator and the gradient operator onRn ; in
this case, denote the operator A by A0. _e boundedness of VA−1

0 and ∇2A−1
0 on the

Musielak–Orlicz–Hardy space Hϕ ,A0(Rn) was studied in [5].
Recall that the Musielak–Orlicz–Hardy space is a function space of Hardy-type

which uniûes the classical (Orlicz–)Hardy space and the weighted (Orlicz–)Hardy
space, in which the spatial and the time variables may not be separable (see, for ex-
ample, [11, 14, 23, 29]). We also point out that some special Musielak–Orlicz–Hardy
spaces naturally appear in many applications (see, for example, [22, 23]). Further-
more, the Musielak–Orlicz–Hardy spaces associated with operators generalize the
(Orlicz–)Hardy space and the weighted (Orlicz–)Hardy space associated with opera-
tors, which have attracted great interest in recent years. Such function spaces associ-
ated with operators play important roles in the study of the boundedness of singular
integrals whichmay have nonsmooth kernels and be beyond the scope of the classical
Calderón–Zygmund theory (see, for example, [3, 4, 8, 9, 15–18]).

Moreover, assume that there exist positive constants q ∈ (1,∞] and C ∈ (0,∞)

such that
0 ≤ V ∈ RHq(Rn

),
∣B∣ ∈ RHn/2(Rn

),

∣∇B∣ ≤ C[m( ⋅ , ∣B∣) ]3

(1.12)

or
0 ≤ V ∈ RHq(Rn

),

sup
x∈Q

∣B(x)∣ ≤ C 1
∣Q∣

∫
Q
V(y) dy,

sup
x∈Q

∣∇B(x)∣ ≤ C{ 1
∣Q∣

∫
Q
V(y) dy}

3/2
,

(1.13)
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where the suprema are taken over all Q ⊂ Rn , and ∣B∣ and ∣∇B∣ are as in (1.10). _e
boundedness of VA−1 and L2A−1 on Lp(Rn) with some p ∈ (1,∞) was studied in [1,
_eorems 1.8 and 1.11] and [2, _eorems 5.1 and 1.5], respectively, under assumptions
(1.12) and (1.13). As applications, the maximal inequality, associated with A, stating
that for all f ∈ C∞c (Rn),

(1.14) ∥L ⋅ L( f )∥ Lp(Rn)
+ ∥V f ∥Lp(Rn) ≤ C∥Af ∥Lp(Rn) ,

where C is a positive constant independent of f , was obtained therein for some p ∈

(1,∞), under either assumptions (1.12) or (1.13).
Let α ∈ (0,∞). For all x ∈ Rn , let ak(x) ∶= Qk(x) with k ∈ {1, . . . , n} and

V(x) ∶= ∣P(x)∣α , where Qk and P are polynomials onRn . _en (1.9), (1.12), and (1.13)
hold true for such B and V (see [20, Remark 1(4)] or [26, p. 820] for details and more
examples).

Let A and L be as in (1.3) and (1.11), respectively. _emain purpose of this article is
to study the boundedness of second-order Riesz transforms VA−1 and L2A−1 on the
Musielak–Orlicz–Hardy space Hϕ ,A(Rn) and some maximal inequalities associated
with A in the scale of Hϕ ,A(Rn), under assumption (1.12) or (1.13).

To state the main results of this article, we ûrst recall some necessary deûnitions
and notation. Recall that a function Φ∶ [0,∞) → [0,∞) is called an Orlicz function
if it is nondecreasing, Φ(0) = 0, Φ(t) > 0 for any t ∈ (0,∞), and limt→∞Φ(t) = ∞
(see, for example, [24, 25]). Diòerent from the classical case, the Orlicz functions
in this article may not be convex. Moreover, Φ is said to be of upper (resp. lower)
type p for some p ∈ (0,∞), if there exists a positive constant C such that for all s ∈
[1,∞) (resp. s ∈ [0, 1]) and t ∈ [0,∞), Φ(st) ≤ CspΦ(t). For a given function
ϕ∶Rn ×[0,∞) → [0,∞) such that for any given x ∈ Rn , ϕ(x , ⋅ ) is an Orlicz function,
ϕ is said to be of uniformly upper (resp. lower) type p for some p ∈ (0,∞) if there
exists a positive constant C such that for all x ∈ Rn , s ∈ [1,∞) (resp. s ∈ [0, 1]) and
t ∈ [0,∞), ϕ(x , st) ≤ Cspϕ(x , t). Let

(1.15) I(ϕ) ∶= inf{ p ∈ (0,∞) ∶ ϕ is of uniformly upper type p}

and

(1.16) i(ϕ) ∶= sup{ p ∈ (0,∞) ∶ ϕ is of uniformly lower type p} .

In what follows, I(ϕ) (resp. i(ϕ)) is called the uniformly critical upper (resp. lower)
type index of ϕ. Observe that I(ϕ) and i(ϕ)may not be attainable, namely, ϕ may not
be of uniformly upper (resp. lower) type I(ϕ) (resp. i(ϕ)) (see [3, 14, 23, 31] for some
examples). Moreover, it is easy to see that if ϕ is of uniformly upper type p1 ∈ (0,∞)

and of uniformly lower type p0 ∈ (0,∞), then p1 ≥ p0 and hence I(ϕ) ≥ i(ϕ).

Deûnition 1.1 Let ϕ∶Rn × [0,∞) → [0,∞) satisfy that x ↦ ϕ(x , t) is measurable
for all t ∈ [0,∞). _en ϕ is said to satisfy the uniform Muckenhoupt condition for
some q ∈ [1,∞), denoted by ϕ ∈ Aq(Rn), if for q ∈ (1,∞) we have

Aq(ϕ) ∶= sup
t∈(0,∞)

sup
B⊂Rn

1
∣B∣q ∫B

ϕ(x , t) dx{∫
B
[ϕ(y, t)]1−q dy}

q−1

< ∞,
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and for q = 1 we have

A1(ϕ) ∶= sup
t∈(0,∞)

sup
B⊂Rn

1
∣B∣ ∫B

ϕ(x , t) dx{ess sup
y∈B

[ϕ(y, t)]−1} < ∞.

Here the ûrst suprema are taken over all t ∈ (0,∞) and the second ones over all balls
B ⊂ Rn .

_e function ϕ is said to satisfy the uniform reverse Hölder condition for some
q ∈ (1,∞], denoted by ϕ ∈ RHq(Rn), if supt∈(0,∞)[ϕ( ⋅ , t)]RHq(Rn) < ∞, where
[ϕ( ⋅ , t)]RHq(Rn) for any given t ∈ (0,∞) is deûned as in (1.4) and (1.5) with w re-
placed by ϕ( ⋅ , t).

_e sets Ap(Rn) for p ∈ [1,∞) and RHq(Rn) for q ∈ (1,∞] were introduced in
[23] and [31], respectively. Let

A∞(Rn
) ∶= ⋃

q∈[1,∞)

Aq(Rn
).

_e critical indices q(ϕ) and r(ϕ) are deûned for ϕ ∈ A∞(Rn) by

q(ϕ) ∶= inf{q ∈ [1,∞) ∶ ϕ ∈ Aq(Rn
)} ,(1.17)

r(ϕ) ∶= sup{q ∈ (1,∞] ∶ ϕ ∈ RHq(Rn
)} .(1.18)

It is worth pointing that if q(ϕ) ∈ (1,∞), then ϕ /∈ Aq(ϕ)(Rn) and there exists
ϕ /∈ A1(Rn) such that q(ϕ) = 1 (see, for example, [19]). Similarly, if r(ϕ) ∈ (1,∞),
then ϕ /∈ RHr(ϕ)(Rn) and there exists ϕ /∈ RH∞(Rn) such that r(ϕ) = ∞ (see, for
example, [7]).

Now we recall the notion of growth functions from Ky [23].

Deûnition 1.2 A function ϕ∶Rn ×[0,∞) → [0,∞) is called a growth function if the
following hold true:
(i) ϕ is aMusielak–Orlicz function, namely,

(a) ϕ(x , ⋅ )∶ [0,∞) → [0,∞) is an Orlicz function for all x ∈ Rn ;
(b) ϕ( ⋅ , t) is a measurable function for all t ∈ [0,∞).

(ii) ϕ ∈ A∞(Rn).
(iii) _e function ϕ is of uniformly lower type p for some p ∈ (0, 1] and of uniformly

upper type 1.

For a Musielak–Orlicz function ϕ as in Deûnition 1.2, a measurable function f
on Rn is said to be in theMusielak–Orlicz space Lϕ(Rn) if ∫Rn ϕ(x , ∣ f (x)∣) dx < ∞.
Moreover, for any f ∈ Lϕ(Rn), the quasi-norm of f is deûned by

∥ f ∥Lϕ(Rn) ∶= inf{ λ ∈ (0,∞) ∶ ∫
Rn

ϕ(x , ∣ f (x)∣
λ

) dx ≤ 1} .

Clearly, ϕ(x , t) ∶= ω(x)Φ(t) is a growth function if ω ∈ A∞(Rn) and Φ is an
Orlicz function of lower type p for some p ∈ (0, 1] and of upper type 1. Here and in
what follows, Aq(Rn) with q ∈ [1,∞] denotes the class of Muckenhoupt weights (see,
for example, [13]). A typical example of such Orlicz functions Φ is Φ(t) ∶= tp , with
p ∈ (0, 1], for all t ∈ [0,∞) (see [14,31] for more examples of such Φ). Another typical
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example of a growth function is ϕ(x , t) ∶= t/( ln(e + ∣x∣) + ln(e + t)) for x ∈ Rn and
t ∈ [0,∞) (see [23] for the details).

Let A and ϕ be as in (1.3) and Deûnition 1.2, respectively. We point out that A is
a nonnegative self-adjoint operator in L2(Rn). Moreover, the Gaussian upper bound
estimate for the kernels of the semigroup {e−tA}t>0 (see Lemma 2.3) further implies
that the semigroup {e−tA}t>0 satisûes the reinforced (1,∞, 1) oò-diagonal estimates
(see [3, Assumption (B)]). _us, A is a nonnegative self-adjoint operator on L2(Rn)
satisfying the reinforced (1,∞, 1) oò-diagonal estimates. Nowwe recall theMusielak–
Orlicz–Hardy space Hϕ ,A(Rn) associated with A, introduced in [3].
For f ∈ L2(Rn) and x ∈ Rn , the Lusin area function SA( f )(x) associated with A is

deûned by

SA( f )(x) ∶= {∫
Γ(x)

∣ t2Ae−t2A
( f )(y)∣ 2 dy dt

tn+1 }

1/2

,

where Γ(x) ∶= {(y, t) ∈ Rn × (0,∞) ∶ ∣y − x∣ < t}. A function f ∈ L2(Rn) is
said to be in the set H̃ϕ ,A(Rn) if SA( f ) ∈ Lϕ(Rn); moreover, deûne ∥ f ∥Hϕ ,A(Rn) ∶=

∥SA( f )∥Lϕ(Rn). _e Musielak–Orlicz–Hardy space Hϕ ,A(Rn) is then deûned as the
completion of H̃ϕ ,A(Rn) with respect to the quasi-norm ∥ ⋅ ∥Hϕ ,A(Rn).

_e ûrst main result of this article is as follows.

_eorem 1.3 Let A and ϕ be as in (1.3) and Deûnition 1.2, respectively. Assume that
V and B satisfy (1.12) or (1.13). Let

(1.19) q+ ∈ (n/2,∞] ∩ (I(ϕ)[r(ϕ)]′ ,∞],

where q+, I(ϕ), and r(ϕ) are as in (1.7), (1.15), and (1.18), respectively, and [r(ϕ)]′ de-
notes the conjugate exponent of r(ϕ). _en the operators VA−1 and L2A−1 are bounded
from Hϕ ,A(Rn) to Lϕ(Rn), where L is as in (1.11).

Remark 1.4 (i) Assume that A and ϕ are as in _eorem 1.3. Let ϕ(x , t) ∶= tp for
all x ∈ Rn and t ∈ [0,∞), where p ∈ (0, 1]. In this case, Hϕ ,A(Rn) is just Hp

A(R
n) in

[10,18], and_eorem 1.3 says that if q+ ∈ (n/2,∞], thenVA−1 and L2A−1 are bounded
from Hp

A(R
n) to Lp(Rn), which are also new.

(ii) To show _eorem 1.3, we need to apply the atomic characterization of
Hϕ ,A(Rn) (see [3, _eorems 5.4 and 5.9]), the functional calculus A−1 = ∫

∞

0 e−tA dt,
some Sobolev type estimates for the heat kernel of A (see Proposition 2.2), and
the Lp(Rn)-boundedness of VA−1 and L2A−1 with p ∈ (1, q+) (see [1, _eorems
1.8 and 1.11] and [2, _eorems 1.5 and 5.1]). To apply the atomic characterization
of Hϕ ,A(Rn) in terms of (ϕ, q,M)A-atoms (see Deûnition 3.1), we need to restrict
q ∈ ([r(ϕ)]′I(ϕ),∞), and in order to use the Lp(Rn)-boundedness of VA−1 and
L2A−1 with p ∈ (1, q+), we need to require q < q+. Moreover, to apply Sobolev type
estimates for the heat kernel of A in Proposition 2.2, we need q+ ∈ (n/2,∞]. All these
lead to the restriction (1.19) in _eorem 1.3.

(iii) It is still unknown whether or not L2A−1 is bounded from Hϕ ,A(Rn) to
Hϕ ,A(Rn) or to the Musielak–Orlicz–Hardy space Hϕ(Rn) introduced by Ky [23]
(see [6, Remark 1.2(iii)] for some reasons).
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As a corollary of_eorem 1.3, we immediately have the followingmaximal inequal-
ity, which further develops (1.14) in the scale of Hϕ ,A(Rn).

Corollary 1.5 Let ϕ, A, L, and V be as in _eorem 1.3. _en there exists a positive
constant C such that for all f ∈ Hϕ ,A(Rn),

∥L2 f ∥Lϕ(Rn) + ∥V f ∥Lϕ(Rn) ≤ C∥Af ∥Hϕ ,A(Rn) .

_e next result gives another maximal inequality associated to A on Hϕ ,A(Rn),
obtained via ûrst establishing the boundedness of VA−1 on Hϕ ,A(Rn).

_eorem 1.6 Let ϕ, A, and L be as in Deûnition 1.2, (1.3), and (1.11), respectively.
Assume further that V and B are as in _eorem 1.3 with q+ satisfying (1.19) and
(1.20) n + 2 − n/q+ > nq(ϕ)/i(ϕ),
or that V and B satisfy (1.9) and
(1.21) n + 2 > nq(ϕ)/i(ϕ),
where q+, q(ϕ), and i(ϕ) are as in (1.7), (1.17), and (1.16), respectively. _en
(i) the operator VA−1 is bounded on Hϕ ,A(Rn);
(ii) there exists a positive constant C such that for all f ∈ Hϕ ,A(Rn),

∥L ⋅ L( f )∥Hϕ ,A(Rn)
+ ∥V f ∥Hϕ ,A(Rn) ≤ C∥Af ∥Hϕ ,A(Rn) .

We prove _eorem 1.6(i) by applying the atomic characterization of Hϕ ,A(Rn)
and the radial maximal function characterization associated with the heat semigroup
{e−tA}t>0 of Hϕ ,A(Rn) from [30,_eorem 1.6]. _eorem 1.6(ii) then follows from (i)
and the diòerential structure of A.

Remark 1.7 (i) Let ϕ(x , t) ∶= tp , with p ∈ ( n
n+2−n/q+ , 1], for all x ∈ Rn and

t ∈ [0,∞). In this case, _eorem 1.6 says that if q+ ∈ (n/2,∞], then VA−1 is bounded
on Hp

A(R
n) and there exists a positive constant C such that for all f ∈ Hp

A(R
n),

∥L ⋅ L( f )∥Hp
A(Rn)

+ ∥V f ∥Hp
A(Rn) ≤ C∥Af ∥Hp

A(Rn) ,

which are also new and the last inequality generalizes (1.14) to the scale of Hp
A(R

n).
(ii) To prove _eorem 1.6 via the radial maximal function characterization of

Hϕ ,A(Rn), it suõces to prove that for any (ϕ, q,M)A-atom α, the radial maximal
function of VA−1(α) is uniformly bounded in Lϕ(Rn) (see (3.11)). To this end, we
need the assumptions (1.20) when ∣B∣ and V are as in _eorem 1.3 (in this case, we
need to use the integral growth property of the potential V in Lemma 3.5) or (1.21)
when ∣B∣ and V satisfy (1.9).

_e layout of this article is as follows. In Section 2, we establish some useful esti-
mates for the heat kernels of A. _en, in Section 3, we give the proofs of_eorems 1.3
and 1.6.
Finally, we make some conventions on notation. _roughout the article, let N ∶=

{1, 2, . . . }. We denote by C or Ck with k ∈ N a positive constant that is independent of
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the main parameters but may vary from line to line. We also use C(γ ,β , . . . ) to denote a
positive constant depending on the indicated parameters γ, β, . . . . _e symbol A ≲ B
means that A ≤ CB. If A ≲ B and B ≲ A, then we write A ∼ B. Moreover, for each
ball B ∶= B(xB , rB) ⊂ Rn , with some xB ∈ Rn and rB ∈ (0,∞), and α ∈ (0,∞),
let αB ∶= B(xB , αrB). Finally, for q ∈ [1,∞], we denote by q′ its conjugate exponent,
namely, 1/q + 1/q′ = 1.

2 Estimates for Heat Kernels of A
In this section we state some Sobolev-type estimates for the heat kernels of A, which
are needed in the proofs of _eorems 1.3 and 1.6. To this end, we ûrst recall the fol-
lowing useful conclusions for the auxiliary function in (1.6), which is just [28, Lemma
1.4].

Lemma 2.1 Let 0 ≤ U ∈ RHq(Rn) with q ∈ [n/2,∞] and let m( ⋅ ,U) be as in (1.6).
_en there exist positive constants C1, C2, and k0 such that for all x , y ∈ Rn ,

C1m(x ,U)

[1 + ∣x − y∣m(x ,U)]k0/(k0+1) ≤ m(y,U) ≤ C2[1 + ∣x − y∣m(x ,U)]
k0m(x ,U).

Now we state the main results of this section, which play a key role in the proof of
_eorem 1.3.

Proposition 2.2 Let A be as in (1.3) with V and B satisfying (1.12) or (1.13), let L be
as in (1.11), and let {Kt}t>0 be the heat kernels of A. Assume that q+ ∈ (n/2,∞) with
q+ as in (1.7). _en, for all p ∈ [1, q+) and k ∈ Z+ ∶= N ∪ {0}, there exist positive
constants C(k ,p), ξ(k ,p) and c(k ,p), depending on k and p, such that for all t, s ∈ (0,∞)

and x ∈ Rn , we have

{∫
{y∈Rn ∶∣y−x ∣≥

√
s}
∣L2 ∂kKt(y, x)

∂tk
∣
p
dy}

1/p

≤
C(k ,p)

t1+n/(2p′)+k exp{−ξ(k ,p)
s
t
} exp{−c(k ,p)(1 + t[m(x ,V)]

2
)
δ}

and

{∫
{y∈Rn ∶∣y−x ∣≥

√
s}
∣V(y)∂

kKt(y, x)
∂tk

∣
p
dy}

1/p

(2.1)

≤
C(k ,p)

t1+n/(2p′)+k exp{−ξ(k ,p)
s
t
} exp{−c(k ,p)(1 + t[m(x ,V)]

2
)
δ} ;

here and herea�er, m( ⋅ ,V) is as in (1.6) with U replaced by V, and δ ∶= 1/[2(k0 + 1)]
with k0 as in Lemma 2.1.

_e proof of Proposition 2.2 is similar to that of [6, Proposition 2.2]. More pre-
cisely, replacing [6, Lemma 2.7] by Lemma 2.5 below and repeating the proof of [6,
Proposition 2.2], we can prove Proposition 2.2, the details being omitted.

Let A be as in (1.3) with 0 ≤ V ∈ RHq(Rn) for some q ∈ [n/2,∞). _en by an
argument similar to that used in the proof of [27, _eorem 1.9], we can prove the
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following Feòerman–Phong type inequality: there exists a positive constant C such
that for all u ∈ C1

c(Rn),

∫
Rn

∣m(x ,V)u(x)∣2 dx ≤ C[∫
Rn

∣Lu(x)∣2 dx + ∫
Rn

V(x)∣u(x)∣2 dx] .

_en replacing [20, Lemma 2] by this inequality and repeating the proof of [20, _e-
orem 1.1(b)], we obtain the following Gaussian upper bound estimates for the heat
kernels of A.

Lemma 2.3 Let A be as in (1.3) with V ∈ RHq(Rn) for some q ∈ [n/2,∞). Assume
that {Kt}t>0 are the heat kernels of A. _en there exist positive constants C3, C4, and
C5 such that for all t ∈ (0,∞) and x , y ∈ Rn ,

∣Kt(x , y)∣ ≤
C3

tn/2
exp{−C4(1 + t[m(x ,V)]

2
)
δ} exp{−C5

∣x − y∣2

t
} ,

where m( ⋅ ,V) and δ are as in Proposition 2.2.

Furthermore, replacing q ∶= 2p, [6, Lemma2.4] andm( ⋅ , ∣B∣+V) in the proof of [6,
Lemma 2.5] by q ∶= p/2+q+, Lemma 2.3, andm( ⋅ ,V), respectively, and repeating the
proof of [6, Lemma 2.5], we have the following Lemma 2.4, the details being omitted.

Lemma 2.4 Let A, V, B, L, q+, and {Kt}t>0 be as in Proposition 2.2. _en for all
p ∈ [1, 2q+), there exist positive constants α(p), C(p), and c(p), depending on p, such
that for all t ∈ (0,∞) and x ∈ Rn ,

{∫
Rn

∣LKt(y, x)∣
peα(p)

∣y−x∣2
t dy}

1/p
≤

C(p)

t1/2+n/(2p′) exp{−c(p)( 1 + t[m(x ,V)]
2)
δ
} ,

where m( ⋅ ,V) and δ are as in Proposition 2.2.

Lemma 2.5 Let A, V, L, Kt , q+, m( ⋅ ,V), and δ be as in Proposition 2.2. _en, for
all p ∈ [1, q+), there exist positive constants β(p), C(p) and c(p), depending on p, such
that for all t ∈ (0,∞) and x ∈ Rn ,

{∫
Rn

∣L2Kt(y, x)∣
peβ(p)

∣y−x∣2
t dy}

1/p
≤

C(p)

t1+n/(2p′) exp{−c(p)(1 + t[m(x ,V)]
2
)
δ}

and

{∫
Rn

∣V(y)Kt(y, x)∣
peβ(p)

∣y−x∣2
t dy}

1/p

≤
C(p)

t1+n/(2p′) exp{−c(p)(1 + t[m(x ,V)]
2
)
δ} .

Replacing [6, Lemma 2.5], 0 ≤ V ≲ [m( ⋅ , ∣B∣ + V)]2 and [6, Lemma 2.8] in the
proof of [6, Lemma 2.7] by Lemma 2.4, V ∈ RHq(Rn) for some q ∈ (1, q+), and
the following Lemma 2.6, which was established in [1, _eorems 1.8 and 1.11] and
[2, _eorems 1.5 and 5.1], respectively, and repeating the proof of [6, Lemma 2.7], we
can prove Lemma 2.5, the details being omitted.
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Lemma 2.6 Let A be as in (1.3), with V and B satisfying (1.12) or (1.13), and let L be
as in (1.11). Assume that q+ is as in (1.7). _en, for all p ∈ (1, q+), L2A−1 and VA−1 are
bounded on Lp(Rn).

3 Proofs of Theorems 1.3 and 1.6

In this section, we show_eorems 1.3 and 1.6. We begin with some necessary notions
and auxiliary conclusions. We ûrst recall the deûnition of (ϕ, q,M)A-atoms and the
atomic Musielak–Orlicz–Hardy space HM ,q ,s

ϕ ,A,at(R
n) introduced in [3, Deûnitions 5.2

and 5.8].

Deûnition 3.1 Let A and ϕ be as in (1.3) and Deûnition 1.2, respectively. Assume
that q, s ∈ (1,∞), M ∈ N and B ∶= B(xB , rB) ⊂ Rn for some xB ∈ Rn and rB ∈ (0,∞)

is a ball.
(i) A function α ∈ Lq(Rn) is called a (ϕ, q,M)A-atom associated with the ball B,

if there exists a function b ∈D(AM) such that
(a) α = AMb;
(b) for all j ∈ {0, 1, . . . ,M}, supp(A jb) ⊂ B;
(c) ∥(r2BA) jb∥Lq(Rn) ≤ (rB)2M ∣B∣1/q∥χB∥−1

Lϕ(Rn)
, where j ∈ {0, 1, . . . ,M}.

(ii) For f ∈ L2(Rn),

(3.1) f = ∑
j
λ jα j

is called an atomic (ϕ, q, s,M)A-representation of f if every α j is a (ϕ, q,M)A-atom
associated with some ball B j ⊂ Rn , the summation (3.1) converges in Ls(Rn), and
{λ j} j ⊂ C satisûes∑ j ϕ(B j , ∣λ j ∣∥χB j∥

−1
Lϕ(Rn)

) < ∞. Let

H̃M ,q ,s
ϕ ,A,at(R

n
) ∶= { f ∈ L2

(Rn
) ∶ f has an atomic (ϕ, q, s,M)A-representation}

with the quasi-norm

∥ f ∥HM ,q ,s
ϕ ,A,at(Rn)

∶= inf{Λ({λ jα j} j) ∶ ∑
j
λ jα j is a (ϕ, q, s,M)A-representation of f },

where the inûmum is taken over all the atomic (ϕ, q, s,M)A-representations of f as
above and

Λ({λ jα j} j) ∶= inf{ λ ∈ (0,∞) ∶ ∑
j
ϕ(B j ,

∣λ j ∣

λ∥χB j∥Lϕ(Rn)

) ≤ 1} .

_e atomic Musielak–Orlicz–Hardy space HM ,q ,s
ϕ ,A,at(R

n) is then deûned as the com-

pletion of the set H̃M ,q ,s
ϕ ,A,at(R

n) with respect to the quasi-norm ∥ ⋅ ∥HM ,q ,s
ϕ ,A,at(Rn)

.

_en we have the following atomic characterization of Hϕ ,A(Rn), which is just a
corollary of [3, _eorems 5.4 and 5.9].

Lemma 3.2 Let A and ϕ be as in (1.3) and Deûnition 1.2, respectively. Assume that
M ∈ N ∩ (nq(ϕ)/2i(ϕ),∞), s ∈ (1,∞) and q ∈ ([r(ϕ)]′I(ϕ),∞), where q(ϕ), i(ϕ),
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r(ϕ), and I(ϕ) are as in (1.17), (1.16), (1.18), and (1.15), respectively. _en the spaces
Hϕ ,A(Rn) and HM ,q ,s

ϕ ,A,at(R
n) coincide with equivalent quasi-norms.

Moreover, we also need some properties of ϕ in Deûnition 1.2. In what follows, for
any measurable subset E of Rn and t ∈ [0,∞), let ϕ(E , t) ∶= ∫E ϕ(x , t) dx . _en we
have the following properties for ϕ from [3, Lemma 2.5], based on the corresponding
results of [13, 23].

Lemma 3.3 Let ϕ be as in Deûnition 1.2.
(i) _ere exists a positive constant C such that for all (x , t j) ∈ Rn×[0,∞)with j ∈ N,

ϕ(x ,∑∞
j=1 t j) ≤ C∑

∞
j=1 ϕ(x , t j).

(ii) A∞(Rn) = ⋃p∈[1,∞)Ap(Rn) = ⋃q∈(1,∞]RHq(Rn).
(iii) If ϕ ∈ Ap(Rn) with p ∈ [1,∞), then there exists a positive constant C such that

for all balls B1 , B2 ⊂ Rn with B1 ⊂ B2 and t ∈ (0,∞),
ϕ(B2 , t)
ϕ(B1 , t)

≤ C[ ∣B2∣

∣B1∣
]

p
.

Now we prove_eorem 1.3 using Proposition 2.2 and Lemmas 3.2 and 3.3.

Proof of_eorem 1.3 Since the proof of_eorem 1.3 under assumption (1.13) is sim-
ilar to that under assumption (1.12), we only give the proof of _eorem 1.3 under as-
sumption (1.12).

We ûrst prove the boundedness of VA−1 from Hϕ ,A(Rn) to Lϕ(Rn). From the
assumption q+ > I(ϕ)[r(ϕ)]′, we deduce that there exists q ∈ (I(ϕ)[r(ϕ)]′ , q+). Let

s ∈ (1, q+), M ∈ N ∩ (
nq(ϕ)
2i(ϕ)

,∞) , and f ∈ H̃M ,q ,s
ϕ ,A,at(R

n
).

By this, we know that there exist {λ j} j ⊂ C and a sequence {α j} j of (ϕ, q,M)A-atoms,
associated with the balls {B j} j , such that

(3.2) f = ∑
j
λ jα j in Ls

(Rn
) and ∥ f ∥HM ,q ,s

ϕ ,A,at(Rn)
∼ Λ({λ jα j} j) .

By using (2.1), Lemma 2.6, A−1 = ∫
∞

0 e−tA dt, Lemma 3.3, and the uniformly upper
and the uniformly lower properties of ϕ, as in the proof of [6, (3.3)], we conclude that
for all λ ∈ C and (ϕ, q,M)A-atoms α associated with the ball B,

(3.3) ∫
Rn

ϕ(x , ∣VA−1
(λα)(x)∣) dx ≲ ϕ(B, ∣λ∣∥χB∥−1

Lϕ(Rn)) .

_en from (3.3), (3.2), and Lemmas 3.3(i) and 2.6, it follows that for all λ ∈ (0,∞),

∫
Rn

ϕ(x , ∣VA
−1( f )(x)∣

λ
) dx ≲ ∑

j
∫
Rn

ϕ(x ,
∣VA−1(λ jα j)(x)∣

λ
) dx

≲ ∑
j
ϕ(B j ,

∣λ j ∣

λ∥χB j∥Lϕ(Rn)

) ,

which, together with (3.2) again, implies that

∥VA−1
( f )∥Lϕ(Rn) ≲ ∥ f ∥HM ,q ,s

ϕ ,A,at(Rn)
.
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_is combined with the fact that H̃M ,q ,s
ϕ ,A,at(R

n) is dense in HM ,q ,s
ϕ ,A,at(R

n) and Lemma 3.2
further yields that VA−1 is bounded from Hϕ ,A(Rn) to Lϕ(Rn).

_e proof of the boundedness of L2A−1 from Hϕ ,A(Rn) to Lϕ(Rn) is similar to
that of the boundedness ofVA−1 fromHϕ ,A(Rn) to Lϕ(Rn), the details being omitted
here. _is concludes the proof of _eorem 1.3.

In order to prove_eorem 1.6, we need the radial maximal function characteriza-
tion of the spaceHϕ ,A(Rn), whichwas established in [30,_eorem 1.6]. We ûrst recall
the deûnition of the radial maximal function associated with A. For f ∈ L2(Rn) and
x ∈ Rn , the radial maximal functionRh( f ) of f , associated with {e−tA}t>0, is deûned
by setting Rh( f )(x) ∶= supt∈(0,∞) ∣e−tA( f )(x)∣. Let

H̃ϕ ,Rh(R
n
) ∶= { f ∈ L2

(Rn
) ∶ Rh( f ) ∈ Lϕ

(Rn
)}

equipped with the quasi-norm

∥ f ∥Hϕ ,Rh (R
n) ∶= ∥Rh( f )∥Lϕ(Rn) .

_en the space Hϕ ,Rh(Rn) is deûned as the completion of H̃ϕ ,Rh(Rn) with respect to
the quasi-norm ∥ ⋅ ∥Hϕ ,Rh (R

n).

Lemma 3.4 ([30]) Let A and ϕ be as in (1.3) and Deûnition 1.2, respectively. _en
the spaces Hϕ ,A(Rn) and Hϕ ,Rh(Rn) coincide with equivalent quasi-norms.

Furthermore, we also need the following estimate for the potential V , which was
established in [28, Lemma 1.2].

Lemma 3.5 Let V ∈ RHq0(Rn) with q0 ∈ [n/2,∞). _en there exists a positive
constant C such that for all 0 < r < R < ∞ and x ∈ Rn ,

1
rn−2 ∫B(x ,r)

V(y) dy ≤ C( R
r
)

n
q0
−2 1

Rn−2 ∫B(x ,R)
V(y) dy.

Moreover, if r ∶= [m(x ,V)]−1 with x ∈ Rn , then 1
rn−2 ∫B(x ,r) V(y) dy = 1.

Now we prove_eorem 1.6 using Lemmas 3.2–3.5.

Proof of_eorem 1.6
Step 1We prove_eorem 1.6 under the assumption that B andV are as in_eorem 1.3
with q+ satisfying (1.19) and (1.20).

We ûrst prove (i). From the assumption n + 2 − n/q+ > nq(ϕ)/i(ϕ), it follows
that there exist p0 ∈ (0, i(ϕ)), q̃ ∈ (q(ϕ),∞) and q1 ∈ (1, q+) such that n + 2 −
n/q1 > nq̃/p0, V ∈ RHq1(Rn), ϕ ∈ Aq̃(Rn) and ϕ is of uniformly lower type p0. Let
ε0 ∶= 2 − n/q1. _en

(3.4) n + ε0 > nq̃/p0 .

Let f ∈ H̃M ,q ,s
ϕ ,A,at(R

n) with

s ∈ (1, q+), M ∈ N ∩ (
nq(ϕ)
2i(ϕ)

,∞) , and q ∈ (max{I(ϕ)[r(ϕ)]′ , q′1},∞) .
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_en there exist {λ j} j ⊂ C and a sequence {α j} j of (ϕ, q,M)A-atoms, associated
with the balls {B j} j , such that (3.2) holds true.

Let λ ∈ C and α be a (ϕ, q,M)A-atom associated with the ball B ∶= B(xB , rB) for
some xB ∈ Rn and rB ∈ (0,∞). _en it follows from Deûnition 3.1 that there exists
b ∈ Lq(Rn) such that α = Ab, supp(b) ⊂ B and

(3.5) ∥b∥Lq(Rn) ≤ (rB)2
∣B∣1/q∥χB∥−1

Lϕ(Rn) .

Since, for all t ∈ (0,∞) and x ∈ Rn ,

(3.6) e−tA(VA−1
(λα))(x) = λ∫

B
Kt(x , y)(Vb)(y) dy

and, by Lemma 2.3, ∣Kt(x , y)∣ ≲ 1
tn/2 e

−C5 ∣x−y∣2
t , it follows that for all x ∈ 4B,

(3.7) Rh(VA−1
(λα))(x) ≲ ∣λ∣M(Vb)(x),

whereRh andM denote the radialmaximal function as in Lemma 3.4 and the classical
Hardy–Littlewood operator on Rn , respectively. Recall that for all f ∈ L1

loc(R
n) and

x ∈ Rn , M( f )(x) ∶= supB∋x
1
∣B∣ ∫B ∣ f (y)∣ dy, where the supremum is taken over all

balls B containing x. From the assumption I(ϕ)[r(ϕ)]′ < q+, it follows that there
exists q2 ∈ (I(ϕ)[r(ϕ)]′ , min{q, q+}), which further implies that there exists p1 ∈

(I(ϕ), 1] such that ϕ is of uniformly upper type p1 and ϕ ∈ RH(q2/p1)′(Rn). By this,
the uniformly upper type p1 property of ϕ, (3.7), the boundedness ofM on Lq2(Rn),
Lemma 2.6, ϕ ∈ RH(q2/p1)′(Rn), Hölder’s inequality, and Lemma 3.3(iii), we further
conclude that

∫
4B

ϕ(x ,Rh(VA−1
(λα))(x)) dx(3.8)

≲ ∫
4B

ϕ(x , ∣λ∣∥χB∥−1
Lϕ(Rn))[ 1 +M(Vb)(x)∥χB∥Lϕ(Rn)]

p1 dx

≲ ϕ(4B, ∣λ∣∥χB∥−1
Lϕ(Rn)) + ∥χB∥p1

Lϕ(Rn)

× ∥M(Vb)∥p1
Lq2 (Rn)

∥ϕ( ⋅ , ∣λ∣∥χB∥−1
Lϕ(Rn))∥ L(q2/p1)′(4B)

≲ ϕ(4B, ∣λ∣∥χB∥−1
Lϕ(Rn)) + ∥χB∥p1

Lϕ(Rn)
∥α∥p1

Lq2 (Rn)

× ∣4B∣−p1/q2ϕ(4B, ∣λ∣∥χB∥−1
Lϕ(Rn)) ≲ ϕ(B, ∣λ∣∥χB∥−1

Lϕ(Rn)) .

When x ∈ Rn∖(4B), we estimateRh(VA−1(λα))(x) by considering the following
two cases for rB .

Case 1 rB ∈ [{m(xB ,V)}−1 ,∞). In this case, we see that rBm(xB ,V) ≥ 1. From
this, (3.6), Lemmas 2.3, 2.1, and 2.6, the fact that for any y ∈ B and x ∈ S j(B) ∶=

(2 j+1B) ∖ (2 jB) with j ≥ 2, ∣x − y∣ ∼ 2 jrB , and Hölder’s inequality, we further deduce
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that for any t ∈ (0,∞), m ∈ N with m ≥ n/2, and x ∈ S j(B) with j ≥ 2,

∣ e−tA(VA−1
(λα))(x)∣(3.9)

≲
∣λ∣
tn/2 ∫B

e−C4{1+t[m(y ,V)]
2
}
δ
e−

C5 ∣x−y∣2
t ∣V(y)b(y)∣ dy

≲ t−n/2
[

t
22 j(rB)2 ]

m
( t[m(xB ,V)]

2)
n/2−m

× [rBm(xB ,V)]
2k0(m−n/2)

1+k0 ∣λ∣∣B∣∥χB∥−1
Lϕ(Rn)

≲ 2−2m j
[rBm(xB ,V)]

n−2m
1+k0 ∣λ∣∥χB∥−1

Lϕ(Rn) ≲ 2−2m j
∣λ∣∥χB∥−1

Lϕ(Rn) .

Case 2 rB ∈ (0, [m(xB ,V)]−1). In this case, by Hölder’s inequality, V ∈ RHq1(Rn),
q′1 < q, (3.5), and Lemma 3.5, we know that

∫
B
∣V(y)b(y)∣ dy ≤ ∥V∥Lq1 (B)∥b∥Lq′1 (B)

≲ ∣B∣−1/q′1[∫
B
V(y) dy](rB)2

∣B∣1/q
′
1∥χB∥−1

Lϕ(Rn)

≲ ∣B∣∥χB∥−1
Lϕ(Rn)[rBm(xB ,V)]

ε0 ,

which, combined with (3.6) and Lemmas 2.3 and 2.1, implies that for any t ∈ (0,∞)

and x ∈ S j(B) with j ≥ 2,

∣ e−tA(VA−1
(λα))(x)∣(3.10)

≲
∣λ∣
tn/2 ∫B

e−C4{1+t[m(y ,V)]
2
}
δ
e−

C5 ∣x−y∣2
t ∣V(y)b(y)∣ dy

≲ t−n/2
[

t
22 j(rB)2 ]

(n+ε0)/2
( t[m(xB ,V)]

2)
−ε0/2

× ∣λ∣∣B∣∥χB∥−1
Lϕ(B)[rBm(xB ,V)]

ε0 ≲ 2−(n+ε0) j
∣λ∣∥χB∥−1

Lϕ(Rn) .

_is, together with (3.9), yields that for any x ∈ S j(B) with j ≥ 2,

Rh(VA−1
(λα))(x) ≲ 2−(n+ε0) j

∣λ∣∥χB∥−1
Lϕ(Rn) ,

which, combined with the uniformly lower type p0 property of ϕ, ϕ ∈ Aq̃(Rn),
Lemma 3.3(iii), and (3.4), further implies that

∞

∑
j=2
∫

S j(B)
ϕ(x ,Rh(VA−1

(λα))(x)) dx

≲
∞

∑
j=2

2−(n+ε0)p0 j
∫

S j(B)
ϕ(x , ∣λ∣∥χB∥−1

Lϕ(Rn))dx

≲
∞

∑
j=2

2−(n+ε0−nq̃/p0)p0 jϕ(B, ∣λ∣∥χB∥−1
Lϕ(Rn)) ≲ ϕ(B, ∣λ∣∥χB∥−1

Lϕ(Rn)) .

From this and (3.8), we deduce that

(3.11) ∫
Rn

ϕ(x ,Rh(VA−1
(λα))(x)) dx ≲ ϕ(B, ∣λ∣∥χB∥−1

Lϕ(Rn)) .
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_us, by Lemma 3.3(i), (3.2), and (3.11), we conclude that for all λ ∈ (0,∞),

∫
Rn

ϕ(x , Rh(VA−1( f ))(x)
λ

) dx ≲ ∑
j
∫
Rn

ϕ(x ,
∣λ j ∣Rh(VA−1(α j))(x)

λ
) dx

≲ ∑
j
ϕ(B j ,

∣λ j ∣

λ∥χB∥Lϕ(Rn)

) ,

which, together with (3.2) again and Lemma 3.4, implies that

∥VA−1
( f )∥Hϕ ,A(Rn)

≲ ∥ f ∥HM ,q ,s
ϕ ,A,at(Rn)

.

_is, combined with the arbitrariness of f ∈ H̃M ,q ,s
ϕ ,A,at(R

n), the fact that H̃M ,q ,s
ϕ ,A,at(R

n)

is dense in HM ,q ,s
ϕ ,A,at(R

n), and Lemma 3.2, further yields that VA−1 is bounded on
Hϕ ,A(Rn), which proves (i) in this case.

Now we show (ii) by using (i). Let f ∈ Hϕ ,A(Rn) ∩ L2(Rn). _en by (1.3) we see
that

L ⋅ LA−1
( f ) = − f + VA−1

( f ).
_is, together with the boundedness obtained in (i), further implies that

∥L ⋅ LA−1
( f )∥Hϕ ,A(Rn)

≲ ∥ f ∥Hϕ ,A(Rn) + ∥VA−1
( f )∥Hϕ ,A(Rn)

≲ ∥ f ∥Hϕ ,A(Rn) .

From this and the fact that Hϕ ,A(Rn) ∩ L2(Rn) is dense in Hϕ ,A(Rn), we deduce
that for any f ∈ Hϕ ,A(Rn), ∥L ⋅ L( f )∥Hϕ ,A(Rn) + ∥V f ∥Hϕ ,A(Rn) ≲ ∥Af ∥Hϕ ,A(Rn), which
completes the proof of (ii) in this case.

Step 2 We prove _eorem 1.6 under the assumption that B and V satisfy (1.9) and
(1.21). In this case, similar to the proof in Step 1, it suõces to prove that for all λ ∈ C
and (ϕ, q,M)A-atoms α associated with some ball B ∶= B(xB , rB) for some xB ∈ Rn

and rB ∈ (0,∞), with q ∈ (I(ϕ)[r(ϕ)]′ ,∞) and M ∈ N ∩ (
nq(ϕ)
2i(ϕ) ,∞), (3.11) holds

true in this case.
By [20, _eorem 1(b)], we see that there exist positive constants C and c such that

for all t ∈ (0,∞) and x , y ∈ Rn ,

(3.12) ∣Kt(x , y)∣ ≲
1

tn/2
exp{−C(1 + t[m(x , ∣B∣ + V)]

2
)
δ} exp{−c ∣x − y∣2

t
} .

For any x ∈ 4B, it follows from (3.12) that (3.7) holds true in this case. Via this and
repeating the proof of (3.8), we know that (3.8) also holds true in this case.

When x ∈ Rn ∖ (4B), we consider the following two cases for rB .
Case 1 rB ∈ [{m(xB , ∣B∣ + V)}−1 ,∞). Similar to (3.9), we see that (3.9) holds true in
this case.

Case 2 rB ∈ (0, [m(xB , ∣B∣+V)]−1). In this case, by the assumption 0 ≤ V ≲ [m( ⋅ , ∣B∣+
V)]2, Lemma 2.1, (3.5), and Hölder’s inequality, we conclude that

∫
B
∣V(y)b(y)∣ dy ≲ [m(xB , ∣B∣ + V)]

2
(rB)2

∣B∣∥χB∥−1
Lϕ(Rn) .

From this, (3.12), and the fact that for any y ∈ B and x ∈ S j(B)with j ≥ 2, ∣x−y∣ ∼ 2 jrB ,
similar to (3.10), we deduce that for any t ∈ (0,∞) and x ∈ S j(B) with j ≥ 2,

∣ e−tA(VA−1
(λα))(x)∣ ≲ 2−(n+2) j

∣λ∣∥χB∥−1
Lϕ(Rn) .
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Via this estimate and (3.9), similar to the proof of Step 1, we complete the proof of this
case and hence_eorem 1.6.
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