AN INDUCTION THEOREM FOR UNITS OF *p*-ADIC GROUP RINGS

A. K. BHANDARI AND S. K. SEHGAL

ABSTRACT. Let G be a finite group and let C be the family of cyclic subgroups of G. We show that the normal subgroup H of $U = U(\mathbb{Z}_p G)$ generated by $U(\mathbb{Z}_p C), C \in C$, where \mathbb{Z}_p is the ring of p-adic integers, is of finite index in U.

1. Introduction. Let U(RG) be the group of units of the group ring RG of a finite group G over a commutative ring R. Recently Kleinert [3] has shown that, with a few restrictions on G, the normal subgroup of $U(\mathbb{Z}G)$ generated by the units of the integral group rings of cyclic subgroups of G is of finite index in $U(\mathbb{Z}G)$ (see also [7]). In this note we show that the corresponding result is true for the group rings of finite groups over \mathbb{Z}_p , the ring of p-adic integers, without any restriction on G. We prove

THEOREM 1.1. Let G be a finite group and let C be the family of cyclic subgroups of G. Then the normal subgroup H of $U = U(\mathbb{Z}_pG)$ generated by $U(\mathbb{Z}_pC), C \in C$ is of finite index in U.

The proof is based on the *p*-adic version of a theorem of Bass due to Lam, a theorem of Borel and some arguments of Kleinert.

There is no counterexample known to the global version of the theorem.

2. Notations and Preliminaries. Let \mathbb{Q}_p and \mathbb{Z}_p denote respectively the field and ring of *p*-adic integers. Let Λ be a fixed maximal order of $\mathbb{Q}_p G$ containing $\mathbb{Z}_p G$. From the semi-simplicity of $\mathbb{Q}_p G$ and [5, Corollary 17.4] it follows that

$$\Lambda \approx \prod_{i=1}^{l} M_{n_i}(\mathfrak{o}_i),$$

where o_i is the maximal \mathbb{Z}_p -order in a division \mathbb{Q}_p -algebra \mathcal{D}_i for which $\mathbb{Q}_p G \approx \prod_{i=1}^{t} M_{n_i}(\mathcal{D}_i)$. We put $\Lambda_i = M_{n_i}(o_i)$. Let K_i be the centre of \mathcal{D}_i and let R_i be the integers of K_i . Then R_i is the centre of Λ_i . Let Λ^* be the group of units of Λ and let γ be its group of central units. We have

$$\Lambda^* \approx \Lambda_1^* \times \Lambda_2^* \times \cdots \times \Lambda_t^*$$

$$\gamma \approx \gamma_1 \times \gamma_2 \times \cdots \times \gamma_t$$

This work is supported by NSERC Grant A-5300.

Received by the editors November 8, 1988, revised May 8, 1989.

AMS subject classification: 16A25, 16A26, 20C05.

[©] Canadian Mathematical Society 1991.

where γ_i is the centre of $\Lambda_i^* = GL_{n_i}(\mathfrak{o}_i)$ which is the group of units of $M_{n_i}(\mathfrak{o}_i)$. We denote by $SL_{n_i}(\mathfrak{o}_i)$ the subgroup of $GL_{n_i}(\mathfrak{o}_i)$ consisting of all elements having reduced norm 1. Finally, let π_i be the projection of $\mathbb{Q}_p G$ onto $M_{n_i}(\mathcal{D}_i)$.

We shall need a theorem of Borel which adapted to our situation reads as

THEOREM 2.1 [6, P. 523]. Let \mathcal{D} be a finite dimensional division algebra over a field F which is a finite extension of the p-adic field \mathbb{Q}_p . Then any non-central normal subgroup of an open (in the topology induced from the field) subgroup of $SL_n(\mathcal{D})$, $n \geq 2$, is open.

For a non-commutative finite dimensional division algebra \mathcal{D} over a *p*-adic field *F* of characteristic zero, the group $SL_1(\mathcal{D})$ is not almost simple. However, the Lie algebra associated to $SL_1(\mathcal{D})$ is

$$\mathfrak{sl}(\mathcal{D}) = \{ x \in \mathcal{D} | \text{ red. tr } (x) = 0 \},\$$

which is simple. Also, for fields of characteristic zero, the kernel of the Ad map is equal to the centre of $SL_1(\mathcal{D})$ ([1, p. 133]). Thus the proof of Borel's theorem, as given in [6], can be applied to $SL_1(\mathcal{D})$ to yield

THEOREM 2.2. Let \mathcal{D} be a non-commutative finite dimensional division algebra over a field F which is a finite extension of the p-adic field \mathbb{Q}_p . Then every non-central normal subgroup of an open subgroup of $SL_1(\mathcal{D})$ is open.

If \mathfrak{o} is the maximal order in \mathcal{D} , then the group $SL_n(\mathfrak{o}) = GL_n(\mathfrak{o}) \cap SL_n(\mathcal{D})$, $n \ge 1$, is a compact open subgroup of $SL_n(\mathcal{D})$. Hence every open subgroup of $SL_n(\mathfrak{o})$ is of finite index and from Theorem 2.1 and 2.2 we deduce

COROLLARY 2.3. Let \mathcal{D} be as in Theorem 2.1 (for $n \ge 2$) and as in Theorem 2.2 (for n = 1). Then every non-central normal subgroup of an open subgroup of $SL_n(\mathfrak{o})$, $n \ge 1$, is of finite index.

As the reduced norm embeds $GL_{n_i}/SL_{n_i}(\mathfrak{o}_i)\gamma_i$ into $R_i^*/R_i^{*\ell_i}$ where $\ell_i = n_i[D_i : K_i]$ and since $R_i^*/R_i^{*\ell_i}$ is finite [2, Section 15.5], it follows that $(GL_{n_i}(\mathfrak{o}_i) : \gamma_i SL_{n_i}(\mathfrak{o}_i)) < \infty$. Thus $(\Lambda^* : \gamma \prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i)) < \infty$.

We also have

LEMMA 2.4 [4, SECTION 4.2]. The images of $U(\mathbb{Z}_p C)$, $C \in C$, under the natural map $j: U(\mathbb{Z}_p G) \to K_1(\mathbb{Z}_p G)$ generate a subgroup of finite exponent.

Now, let $u \in \zeta = \zeta (U(\mathbb{Z}_p G))$, the centre of U. By Lemma 2.4 there is a power u^k and an $h \in H$ such that $j(u^k) = j(h)$ or $u^k h^{-1} \in \ker j$. Hence

is a commutator in $GL_n(\mathbb{Z}_p G)$ and it follows that $nr(\pi_i(u^k h^{-1})) = 1$ for all *i*. Since by [2, Section 15.5] ζ / ζ^k is finite, it follows that a subgroup $\zeta_H = \zeta^k \subseteq \zeta$ of finite index is contained in $H \cdot \prod_{i=1}^t SL_{n_i}(\mathfrak{o}_i)$. Also, since ζ centralizes *G*, it is contained in γ and $(\gamma : \zeta) < \infty$. Thus, we have the following diagram (where an *f* indicates that the appropriate piece is of finite index).

Since $(\prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i) : H \cap \prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i)) < \infty \Rightarrow (H \cdot \prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i) : H) < \infty$, therefore, we have

LEMMA 2.5. To show $(U : H) < \infty$, it suffices to show that $\left(\prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i) : H \cap \prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i)\right) < \infty$.

3. Proof of Theorem 1.1. We shall need the following

PROPOSITION 3.1. Let N be a normal subgroup of finite index in $SL_{n_i}(\mathfrak{o}_i)$, $n_i \ge 1$. Then $(SL_{n_i}(\mathfrak{o}_i) : [N,N]) < \infty$ and hence $(SL_{n_i}(\mathfrak{o}_i) : [SL_{n_i}(\mathfrak{o}_i),N]) < \infty$.

PROOF. We first consider the case when $n_i \ge 2$. Clearly [N, N] is non-central as it contains the non-diagonal matrix $\begin{bmatrix} 1 & q \\ 0 & 1 \end{bmatrix}, \begin{pmatrix} 1 & 0 \\ q & 1 \end{bmatrix}$ with $q = (SL_{n_i}(\mathfrak{o}_i) : N)$. Since [N, N] is normal in $SL_{n_i}(\mathfrak{o}_i)$, Corollary 2.3 yields the result.

We now consider the case when $n_i = 1$. We may clearly assume that \mathcal{D}_i is not commutative. We use the results of [6] in this case.

If $t_i = [\mathcal{D}_i : K_i]$, then $\zeta (SL_1(\mathcal{D}_i))$ is the group of t_i^{th} roots of 1 lying in K_i ([6, Theorem 7 (ii)]). Since N is of finite index, by [6, Theorem 7(ii), Theorems 15 and 20] it is not central and contains H_s for some s, where $H_s = \{x \in SL_1(\mathfrak{o}_i) | x \equiv 1(\mod \mathfrak{p}_i^s)\}$ with \mathfrak{p}_i being the maximal ideal of \mathfrak{o}_i . Since $\cap H_r = \{1\}$ ([6, p. 521]), by choosing s large enough we may assume that H_s does not contain any root of unity except 1 and that \mathfrak{p}_i^s is non-central. Thus the centrality of [N, N] will imply that H_s is abelian, which is impossible as $[1 + x\mathfrak{p}_i^s, 1 + \mathfrak{p}_i^s] \neq 1$ if $x \in \mathfrak{o}_i$ does not commute with \mathfrak{p}_i^s . The proof is now complete in view of Corollary 2.3.

The following proposition allows us to reduce the question to the simple components of $\mathbb{Q}_p G$.

PROPOSITION 3.2. If $H_i = \pi_i(H) \cap SL_{n_i}(\mathfrak{o}_i)$ is of finite index in $SL_{n_i}(\mathfrak{o}_i)$ for all *i*, then $H \cap (\prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i))$ is of finite index in $\prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i)$.

PROOF. Let $V = U \cap \prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i)$ where $U = U(\mathbb{Z}_p G)$. We have $H \cap \prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i) \triangleleft V < \prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i)$ and $\left(\prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i) : V\right) < \infty$. Let $\tilde{V} = \bigcap_{y \in \prod SL_{n_i}(\mathfrak{o}_i)} V^y$. Then \tilde{V} is a

normal subgroup of finite index in $\prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i)$. We put

$$\hat{V} = \bigoplus_{i} [\tilde{V}, SL_{n_i}(\mathfrak{o}_i)]$$

and note that $[\tilde{V}, SL_{n_i}(\mathfrak{o}_i)] = [\pi_i(\tilde{V}), SL_{n_i}(\mathfrak{o}_i)] \subseteq \tilde{V} \cap SL_{n_i}(\mathfrak{o}_i)$ and $\hat{V} = \bigoplus_i \pi_i(\tilde{V})$.

We shall prove that

- (i) $(\prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i) : \hat{V}) < \infty$ and
- (ii) $(\hat{V}:A) < \infty$ where $A = \hat{V} \cap H$.

In order to prove (i), it is enough to prove that $(SL_{n_i}(\mathfrak{o}_i) : \pi_i(\tilde{V}) < \infty)$ for all *i*. Now, $\pi_i(\tilde{V})$ is a normal subgroup of finite index in $SL_{n_i}(\mathfrak{o}_i)$; therefore, by Proposition 3.1,

¢

$$\left(SL_{n_i}(\mathfrak{o}_i): [\pi_i(\tilde{V}), SL_{n_i}(\mathfrak{o}_i)]\right) < \infty.$$

To prove (ii), we observe that *A* contains $\bigoplus_i [A, \pi_i(\tilde{V})]$. Therefore, it suffices to prove that $(\pi_i(\hat{V}) : [A, \pi_i(\hat{V})]) < \infty$ for all *i*. Writing $A_i = \pi_i(A)$ we have to show that $(\pi_i(\hat{V}) : [A_i, \pi_i(\hat{V})]) < \infty$.

Since, due to (i), $(H \cap \prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i) : A) < \infty$, we get that $(\pi(H \cap \prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i)) : A_i) < \infty$ and it follows that $(\pi_i(\hat{V}) \cap H_i : A_i) < \infty$ (as $\pi_i(\hat{V}) \cap H_i \subset \pi_i(H \cap \prod_{i=1}^{t} SL_{n_i}(\mathfrak{o}_i))$). Also, because of the hypothesis, $(\pi_i(\hat{V})H_i : H_i) = (\pi_i(\hat{V}) : \pi_i(\hat{V}) \cap H_i) < \infty$. Hence we get that $(\pi_i(\hat{V}) : A_i) < \infty$. Considering

$$\pi_i(\hat{V}) \supset A_i \supset [A_i, \pi_i(\hat{V})]$$

and factoring by $[A_i, \pi(\hat{V})]$, we apply a theorem of Schur ([8, p. 39]) to conclude that $([\pi_i(\hat{U}), \pi_i(\hat{V})] : [A_i, \pi_i(\hat{V})]) < \infty$. Moreover, by Proposition 3.1, we know that $(\pi_i(\hat{V}) : [\pi_i(\hat{V}), \pi_i(\hat{V})]) < \infty$. Hence $(\pi_i(\hat{V}) : [A_i, \pi_i(\hat{V})]) < \infty$, as desired.

PROOF OF THEOREM 1.1. In view of Lemma 2.5 and the above proposition, we need only to prove that $(SL_{n_i}(\mathfrak{o}_i) : H_i) < \infty$ for all *i*. In case $n_i = 1$ and the Wedderburn component \mathcal{D}_i is a field, then $SL_1(\mathcal{D}_i) = \{1\}$. Thus to show $(SL_{n_i}(\mathfrak{o}_i) : H_i) < \infty$ we may suppose that either $n_i \ge 2$ or the corresponding Wedderburn component is a non-commutative division ring \mathcal{D}_i .

 $H_i = \pi_i(H) \cap SL_{n_i}(\mathfrak{o}_i)$ is a normal subgroup of $\pi_i(U) \cap SL_{n_i}(\mathfrak{o}_i)$. We claim that H_i is non-central. Now, $\pi_i(G) \cap SL_{n_i}(\mathfrak{o}_i) \subset H_i$ and the group $nr(\pi_i(G))$ being a finite subgroup of K_i^* is cyclic. Thus, if H_i is central then $\pi_i(G)/\pi_i(G) \cap SL_{n_i}(\mathfrak{o}_i) \approx nr(\pi_i(G))$ would imply that $\pi_i(G)$ is abelian which is not possible (as $\pi_i(G)$ spans $M_{n_i}(\mathcal{D}_i)$ over K_i).

Next, we observe that $\pi(U) \cap SL_{n_i}(\mathfrak{o}_i)$ is open in $SL_{n_i}(\mathfrak{o}_i)$. To see this, let

$$J = \{ x \in \mathbb{Q} G \mid \Lambda x \subseteq \mathbb{Z}_p G \}$$

be the (right) conductor of $\mathbb{Z}_p G$ in Λ . Thus J is a 2-sided Λ -ideal contained in $\mathbb{Z}_p G$ and J splits into the direct sum $J = \bigoplus J_i$ ([5, p. 380]). Since $\pi_i(U) \cap SL_{n_i}(\mathfrak{o}_i)$ contains the subgroup $\{u \in SL_{n_i}(\mathfrak{o}_i) \mid u \equiv 1 \pmod{J_i}\}$, it is open. Hence, by Corollary 2.3, we get that $(SL_{n_i}(\mathfrak{o}_i) : H_i) < \infty$. This completes the proof of the theorem.

REFERENCES

1. A. Borel, Linear algebraic groups. W. A. Benjamin, Inc., New York, 1969.

2. H. Hasse, Number theory. Springer-Verlag, Berlin, 1980.

- 3. E. Kleinert, A theorem of units of integral group rings, J. Pure and Applied Algebra 49(1987), 161-171.
- **4.** T. Y. Lam, *Induction theorems for Grothendieck groups and Whitehead groups of finite groups*, Ann. Sci. École Norm. Sup. (4)1(1968), 91–148.
- 5. I. Reiner, Maximal orders. Academic Press, London, 1975.
- 6. C. Reihm, The norm I group of p-adic division algebra, Amer. J. Math. 92(1970), 499-523.
- 7. J. Ritter and S. K. Sehgal, *Certain normal subgroups of units in group rings*, J. Reine Angew. Math. 381(1987), 214–220.
- 8. S. K. Sehgal, Topics in group rings. Marcel-Dekker, N.Y., 1978.

Department of Mathematics Panjab University, Chandigarh India 160014

Department of Mathematics Faculty of Science University of Alberta Edmonton, Alberta T6G 2G1