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Abstract Let u(n) = f(gn), where g > 1 is integer and f(X) ∈ Z[X] is non-constant and has no
multiple roots. We use the theory of S-unit equations as well as bounds for character sums to obtain a
lower bound on the number of distinct fields among Q(
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1. Introduction

Given some fixed integer g > 1 and a non-constant polynomial f(X) ∈ Z[X] without
multiple roots, we consider the sequence u(n) = f(gn), n = 1, 2, . . . . It is clear that u(n)
has constant sign for large n. Thus, up to replacing f(X) by −f(X) and discarding a
few initial terms, we may assume that u(n) > 0 for every n.

Given a square-free integer s � 1 and two arbitrary integers M � 0 and N � 1, we
denote by Qu(s; M, N) the number of n ∈ {M + 1, . . . , M + N} for which Q(

√
u(n)) =

Q(
√

s). If f(0) = 0, then by setting h(X) = f(X)/X and v(n) = h(gn) we see easily
that Q(

√
u(n)) equals Q(

√
v(n)) or Q(

√
gv(n)) according to whether n is even or odd.

Thus, without loss of generality, we can assume that f(0) �= 0.
We note that the Shanks family of quadratic fields [14] corresponds to the sequence

u(n) = (2n + 3)2 − 8.

For various generalizations of this family, which are all of the form f(gn) with a poly-
nomial f(X) ∈ Z[X], see [13,15,16] and references therein. Despite the quite extensive
study of these fields, very little seems to be known about their discriminants.

Here, we use the theory of S-unit equations as well as bounds on character sums to
obtain non-trivial upper bounds on Qu(s; M, N). We also write

Qu(s) = lim
N→∞

Qu(s; 0, N) = #{n � 1 : Q(
√

u(n)) = Q(
√

s)}.

719

https://doi.org/10.1017/S001309150700123X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150700123X


720 F. Luca and I. E. Shparlinski

It follows easily from [4, Theorem 2] that Qu(s) is finite for every square-free number s.
In this paper, we are interested in finding bounds on Qu(s) and Qu(s; M, N) which are
independent of s.

In what follows, the implied constants in ‘O’, ‘�’ and ‘�’ may depend on the sequence
u as well as on other parameters, such as α. We recall that A = O(B), A � B and A � B

are equivalent to the inequality |A| � cB with some constant c > 0. For a positive number
x we write log x for the maximum between the natural logarithm of x and 1. Thus, we
always have log x � 1.

In the case when f(X) has degree 1 or 2, our result is very satisfying.

Theorem 1.1. If f(X) ∈ Z[X] is a polynomial of degree deg f � 2 with f(0) �= 0
having only simple roots, then

lim sup
s→∞

Qu(s) < ∞.

The proof of Theorem 1.1 uses results about S-unit equations. We suspect that the
conclusion of Theorem 1.1 remains true even for polynomials f(X) of degree 3 or more.
When the degree of f(X) is at least 5, then every solution of the equation u(n) = sy2 in
integers n � 1 and y leads to an integer solution (X, Y ) = (gn, y) of the equation f(X) =
sY 2. Since f(X) has no multiple roots, the latter equation represents an irreducible
curve of genus g > 1. The uniformity conjecture from [3] implies that the number of
such solutions is bounded by some number depending only on the degree of f(X), so, in
particular, it is independent not only of s but even of the polynomial f(X). Then the
case when f(X) is of degree 3 or 4 can be reduced to the case of a polynomial of a larger
degree by the following procedure. Let k � 2 be an integer. For i = 0, . . . , k − 1, set
hi(X) = f(giXk). Then hi(X) is a polynomial of degree k deg f > deg f and has only
simple roots because f(0) �= 0. Furthermore, f(gn) = hi(g�n/k�), where i = n − k�n/k�.
Now the uniformity conjecture applies again. So, we have the following conjecture.

Conjecture 1.2. For any polynomial f(X) ∈ Z[X] with f(0) �= 0 having only simple
roots we have

lim sup
s→∞

Qu(s) < ∞.

Our unconditional result when deg f � 3 is substantially weaker and depends on our
knowledge of the prime divisors of shifted primes. More precisely, let α > 1

2 be any real
number such that the inequality

#{� � z : � prime and P (� − 1) � �α} � z

log z

holds, where the implied constant might depend on α and P (k) stands for the largest
prime divisor of k.

By the work of Baker and Harman [1], it is known that we can take

α = 0.677. (1.1)

It is conjectured that α can be taken to be 1 − ε for any ε > 0. In particular, this holds
under the extended Riemann hypothesis (see [7,12]).

Using the square sieve of Heath-Brown [9], we obtain the following estimate.
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Theorem 1.3. Let u(n) = f(gn), where f(X) ∈ Z[X] is a fixed polynomial of degree
deg f � 3 with f(0) �= 0 having only simple roots. Then uniformly for square-free integers
s � 1 and arbitrary integers M � 0 and N � 2, we have

Qu(s; M, N) � Nϑ(log N)ρ,

where
ϑ =

3
2(1 + α)

and ρ =
4 + α

1 + α
.

Let Ru(M, N) be the number of distinct fields among Q(
√

u(n)), when n ∈ {M +
1, . . . , M + N}. Theorems 1.1 and 1.3 immediately give the lower bound

Ru(M, N) �
{

N if deg f � 2,

N1−ϑ(log N)−ρ if deg f � 3,

which is uniform in M .
Taking α as in (1.1) we get

ϑ � 0.895,

while assuming the extended Riemann hypothesis and taking α = 1 + o(1) gives

ϑ = 0.75 + o(1) as N → ∞.

We remark that Cutter et al . [5] have obtained an asymptotic formula for the number of
distinct fields among Q(

√
f(n)), for n = 1, . . . , N , with a given polynomial f(X) ∈ Z[X]

of degree at most 2. They also have an asymptotic formula when the polynomial f(X) is
of degree 3 and higher, but their proof in this case is conditional upon the abc conjecture.

2. S-unit equations

For the proof of Theorem 1.1, we need the following result on the finiteness of the number
of non-degenerate solutions of S-unit equations due to Evertse et al . [8].

Given non-zero complex numbers A1, . . . , AN , we consider the equation

N∑
i=1

Aixi = 1 (2.1)

in unknowns x = (x1, . . . , xN ) ∈ Γ . We say that a solution is non-degenerate if∑
i∈I

Aixi �= 0 for all non-empty sets I ⊂ {1, . . . , N}. (2.2)

Lemma 2.1. Let N � 1 and Γ be a finitely generated subgroup of (C∗)N of
rank r. Given the non-zero complex numbers A1, . . . , AN , equation (2.1) has at most
exp((6N)3N (r + 1)) non-degenerate solutions.

We note that in the case of N = 2 (which appears in the case of linear polynomials in
the proof of Theorem 1.1), one can use a stronger bound of Beukers and Schlickewei [2],
which leads to numerically stronger estimates.
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3. Proof of Theorem 1.1

We first consider the case when f(X) = aX + b with b �= 0 is linear. Since, as we have
remarked, it follows from [4, Theorem 2] that Qu(s) is finite for every square-free integer
s, it follows that we may assume that

Q(
√

s) �= Q, Q(
√

a), Q(
√

ag).

We further assume that n is even, since the case of odd n can be dealt with similarly. If
Q(

√
u(n)) = Q(

√
s), then u(n) = sy2 holds with some integer y. Thus,

(a1/2gn/2 − s1/2y)(a1/2gn/2 + s1/2) = −b. (3.1)

Let K = Q[
√

a,
√

s] and let OK be its ring of integers. Note that for d = [K : Q] we have
d = 2 or d = 4 according to whether or not a is a square. The relation (3.1) shows that
(a1/2gn/2 − s1/2y)OK is a principal ideal divisor of b. Since d � 4, each prime divisor of b

has at most four prime ideal divisors. Therefore, the number of principal ideal divisors of
b does not exceed τ(b)4, where τ(b) is the number of integer positive divisors of b. Let t

be the number of such ideals and let β1, . . . , βt ∈ OK be generators of these ideals. Thus,

a1/2gn/2 − s1/2y = βiζ

holds for some i = 1, . . . , t and some unit ζ in OK. Conjugating the above relation by an
element of the Galois group of K/Q which leaves a1/2 invariant but maps s1/2 to −s1/2

(which exists because of our hypothesis on s), we also get that

a1/2gn/2 + s1/2y = β′
iζ

′,

where β′
i and ζ ′ are conjugates of βi and ζ, respectively. Summing up the two relations

we arrive at
2a1/2gn/2 = βiζ + β′

iζ
′.

The above equation can be rewritten as

A1X1 + A2X2 = 1,

where A1 = βi(2a1/2)−1, A2 = β′
i(2a1/2)−1, X1 = ζg−n/2 and X2 = ζ ′g−n/2. This is an

equation of the form (2.1) whose solutions (X1, X2) obviously satisfy the non-degeneracy
condition (2.2). The indeterminates (X1, X2) belong to a subgroup of (C∗)2 of rank at
most 2(1+3) = 8 because the unit group of OK has rank at most 3. Thus, by Lemma 2.1,
there are at most exp(126 · 9) solutions (we note that in the case of equations with only
three units we can get a better numerical bound by using the estimate of [2]). Let us now
see that every solution determines n uniquely. Indeed, if X1 is known and X1 = ζgn/2,
then by computing norms over Q we get

NK/Q(X1) = NK/Q(ζ)NK/Q(gn/2) = gdn/2.

https://doi.org/10.1017/S001309150700123X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150700123X


On quadratic fields generated by the Shanks sequence 723

Thus, n is uniquely determined by X1. Therefore, the number of possibilities for n even
is at most τ(b)4 exp(126 · 9) = O(1), which completes the proof for the case of the linear
polynomial f(X).

When f(X) = aX2 + bX + c is quadratic, we replace f(X) by af(X) = (aX + b)2 −∆,
where ∆ = b2 − 4ac �= 0. Let v(n) = agn + b. Assuming that s �= 1, the relation
Q(

√
u(n)) = Q(

√
s) leads again to a solution (n, y) with positive integers n and y of the

equation u(n) = sy2. We rewrite this as

v(n)2 − sy2 = ∆,

and then further as
(v(n) − s1/2y)(v(n) + s1/2y) = ∆.

Writing K = Q(
√

s), the previous argument leads to a relation of the type

v(n) = ∆iζ + ∆′
iζ

′,

for some i = 1, . . . , t and ζ ∈ O∗
K, where now ∆1, . . . ,∆t are generators of all the possible

principal ideal divisors of ∆ in OK. Note that t � τ(∆)2. The above relation leads now
to the equation

A1X1 + A2X2 + A3X3 = 1, (3.2)

where A1 = −(a/b), A2 = ∆i/b, A3 = ∆′
i/b and X1 = gn, X2 = ζ, X3 = ζ ′. Therefore,

(X1, X2, X3) is in a subgroup of (C∗)3 of rank at most 3(1+1) = 6. If A1X1 = 1, then n is
uniquely determined. If A2X2 = 1, then ζ is uniquely determined, and therefore so is ζ ′.
Thus, v(n) = ∆iζ+∆′

iζ
′ is uniquely determined; therefore, n is uniquely determined. The

same argument applies when A3X3 = 1. All other solutions to equation (3.2) are non-
degenerate. It follows from Lemma 2.1 that there are at most exp(189 · 7) such solutions
(X1, X2, X3). It is clear that X1 determines n. This completes the proof when f(X) is
quadratic and thus completes the proof of the whole theorem.

4. Character sums

For the proof of Theorem 1.3, we need some bounds for character sums. For an odd
integer m, we use (k/m) to denote, as usual, the Jacobi symbol of k modulo m. For an
integer m coprime to g we write tm for the multiplicative order of g modulo m.

The following result generalizes those of [6,17], which apply only to linear polynomials.
In turn, it can also be extended in various directions. However, we choose to present it
in the simple special case which is needed for the purpose of this paper.

Lemma 4.1. Let f(X) ∈ Z[X] be a fixed polynomial of degree deg f � 2 without
multiple roots. For any primes � �= p such that t� > �1/2 and tp > p1/2, we have

M+N∑
n=M+1

(
f(gn)

�p

)
�

(
N

t�p
+ 1

)
t
1/2
�p (�p)1/4 log(�p).
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Proof. We assume that � and p are large enough, since otherwise the bound is trivial.
According to the general principle of reducing incomplete sums to complete ones, it is

enough to prove that, uniformly over all integers k, we have

t�p∑
n=1

(
f(gn)

�p

)
e

(
kn

�p

)
� t

1/2
�p (�p)1/4, (4.1)

where for a complex number z we set, as usual, e(z) = exp(2πiz) (see, for example, [10,
§ 12.2]).

We can now assume that
t�p � (�p)1/2, (4.2)

since otherwise the bound is trivial.
Using the periodicity property of gn, we may write

t�p∑
n=1

(
f(gn)

�p

)
e

(
kn

�p

)
=

1
t�p

t�p∑
m=1

t�p∑
n=1

(
f(gn+m)

�p

)
e

(
k(n + m)

�p

)

=
1
t�p

t�p∑
m=1

e

(
km

�p

) t�p∑
n=1

(
f(gn+m)

�p

)
e

(
kn

�p

)
.

Therefore,

∣∣∣∣
t�p∑

n=1

(
f(gn)

�p

)
e

(
kn

�p

)∣∣∣∣ � 1
t�p

t�p∑
m=1

∣∣∣∣
t�p∑

n=1

(
f(gmgn)

�p

)
e

(
kn

�p

)∣∣∣∣. (4.3)

Now, using the Cauchy inequality, we derive

( t�p∑
m=1

∣∣∣∣
t�p∑

n=1

(
f(gmgn)

�p

)
e

(
kn

�p

)∣∣∣∣
)2

� t�p

t�p∑
m=1

∣∣∣∣
t�p∑

n=1

(
f(gmgn)

�p

)
e

(
kn

�p

)∣∣∣∣
2

� t�p

�p∑
x=1

∣∣∣∣
t�p∑

n=1

(
f(gnx)

�p

)
e

(
kn

�p

)∣∣∣∣
2

= t�p

∣∣∣∣
t�p∑

n,m=1

e

(
k(n − m)

�p

)∣∣∣∣
∣∣∣∣

�p∑
x=1

(
f(gmx)f(gnx)

�p

)∣∣∣∣
� t2�p

t�p∑
n=1

∣∣∣∣
�p∑

x=1

(
f(x)f(gnx)

�p

)∣∣∣∣.
Using the multiplicativity property of complete sums (see, for example, [10, § 12.3]), we
write

�p∑
x=1

(
f(x)f(gnx)

�p

)
=

�∑
x=1

(
f(x)f(gnx)

�

) p∑
x=1

(
f(x)f(gnx)

p

)
. (4.4)
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For a fixed prime �, the Weil bound (see [10, Theorem 11.23]), implies that, unless the
polynomial Fn(X) = f(X)f(gnX) is a perfect square modulo �, we have

�∑
x=1

(
f(x)f(gnx)

�

)
� �1/2.

Since f(X) is without multiple roots if � is large enough, it follows that f(X) is not a
perfect square modulo �. Thus, Fn(X) = f(X)f(gnX) is a perfect square modulo � only
if f(X) and f(gnX) have a common root modulo �. In this case, we have

R(gn) ≡ 0 (mod �), (4.5)

where R(Y ) = ResX(f(X), f(XY )) ∈ Z[Y ] is the resultant with respect to X of f(X)
and f(XY ). It is clear that R(Y ) is a non-zero polynomial whose coefficients depend
only on the coefficients of the polynomial f(X). Thus, the congruence R(y) ≡ 0 (mod �)
has O(1) solutions in residue classes y modulo � once � is large. This clearly puts gn in
O(1) residue classes modulo �, and thus puts n into O(1) residue classes modulo t�. For
each such n, we estimate the corresponding character sum over u trivially as �.

Applying now the above argument to both the sums on the right-hand side in (4.4),
we get that

t�p∑
n=1

∣∣∣∣
�p∑

x=1

(
f(x)f(gnx)

�p

)∣∣∣∣ � t�p(�p)1/2 +
t�p
tp

�1/2p +
t�p
t�

�p1/2 + �p.

The assumptions that t� > �1/2 and tp > p1/2 imply that the first term dominates the
second and the third terms, while the assumption (4.2) implies that it also dominates
the last term. Thus,

t�p∑
m=1

∣∣∣∣
t�p∑

n=1

(
f(gmgn)

�p

)
e

(
an

�p

)∣∣∣∣ � t
3/2
�p (�p)1/4,

which, after substitution in inequality (4.3), implies inequality (4.1) and concludes the
proof. �

5. Some arithmetic functions

To be able to apply Lemma 4.1, we need to show that for many primes � the multiplicative
order of g modulo � is sufficiently large. We have the following result, which can be derived
in an identical way to [11, Lemma 20] using the concrete value of α given by (1.1).

Lemma 5.1. There exists a constant γ > 0, such that for at least γz/ log z primes
� � z, we have t� � �α.

We note that Lemma 5.1 implies that there exist constants c > 0 and C > 1 with the
property that there is a set Lz containing at least cz/ log z primes � ∈ [z, Cz] such that
t� � �α for all � ∈ Lz. We write ωz(k) for the number of prime factors � ∈ Lz of k.
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Lemma 5.2. The bound

M+N∑
n=M+1

ωz(u(n)) � Nz1−α

log z
+ z

holds uniformly over M � 0, N � 1 and z > 1.

Proof. We have

M+N∑
n=M+1

ωz(u(n)) �
M+N∑

n=M+1

∑
�∈Lz,
�|u(n)

1

=
∑
�∈Lz

M+N∑
n=M+1,

�|u(n)

1

�
∑
�∈Lz

(
N

t�
+ 1

)

� N

zα
#Lz + z

� Nz1−α

log z
+ z,

which concludes the proof. �

6. Proof of Theorem 1.3

We keep the previous notation. Let us fix some sufficiently large real z > 1. We note that
if k � 1 is a perfect square, then

∑
�∈Lz

(
k

�

)
� #Lz − ωz(k).

Let Nz be the set of integers n ∈ [M + 1, M + N ] with ωz(u(n)) � 1
2#Lz, and let Ez be

the set of remaining integers n ∈ [M + 1, M + N ].
By Lemma 5.2, we have

#Ez � Nz1−α/ log z + z
1
2#Lz

� Nz−α + log z. (6.1)

From now on, we look at n ∈ Nz for which Q(
√

u(n)) = Q(
√

s). For such a value of n, we
have that su(n) is a perfect square and that s | u(n). In particular, ωz(su(n)) = ωz(u(n)).
Thus, if for some n ∈ Nz we have Q(

√
u(n)) = Q(

√
s), then

∑
�∈Lz

(
su(n)

�

)
� #Lz − ωz(su(n)) = #Lz − ωz(u(n)) � 1

2#Lz.
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In particular,

( 1
2#Lz)2Qu(s; M, N) �

M+N∑
n=M+1

( ∑
�∈Lz

(
su(n)

�

))2

+ ( 1
2#Lz)2#Ez,

which we rewrite as

Qu(s; M, N) � z−2(log z)2
M+N∑

n=M+1

( ∑
�∈Lz

(
su(n)

�

))2

+ #Ez. (6.2)

Squaring out, changing the order of summation and separating the ‘diagonal term’
N#Lz corresponding to � = p, we see that

M+N∑
n=M+1

( ∑
�∈Lz

(
su(n)

�

))2

� N#Lz +
∑

�,p∈Lz,
� �=p

M+N∑
n=M+1

(
su(n)

�p

)
. (6.3)

The estimates (6.2) and (6.3) yield

Qu(s; M, N) � (log z)2

z2

(
N#Lz +

∑
�,p∈Lz,

� �=p

M+N∑
n=M+1

(
su(n)

�p

))
+ #Ez

� N log z

z
+ Nz−α + log z +

(log z)2

z2

∑
�,p∈Lz,

� �=p

M+N∑
n=M+1

(
su(n)

�p

)
. (6.4)

Applying Lemma 4.1 to the inner sum, we get

∑
�,p∈Lz,

� �=p

M+N∑
n=M+1

(
su(n)

�p

)
�

∑
�,p∈Lz,

� �=p

(
N

t�p
+ 1

)
t
1/2
�p (�p)1/4 log(�p)

� N(log z)
∑

�,p∈Lz,
� �=p

(�p)1/4

t
1/2
�p

+ z3/2(log z)(#Lz)2

� N(log z)
∑

�,p∈Lz,
� �=p

(gcd(� − 1, p − 1))1/2(�p)1/4

(t�tp)1/2 +
z7/2

log z
.

Therefore,

∑
�,p∈Lz,

� �=p

M+N∑
n=M+1

(
su(n)

�p

)
� Nz−α+1/2(log z)

∑
�,p∈Lz,

� �=p

(gcd(� − 1, p − 1))1/2 +
z7/2

log z
. (6.5)
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Furthermore,

∑
�,p∈Lz,

� �=p

(gcd(� − 1, p − 1))1/2 �
∑

1�d�Cz

d1/2
∑

p,�∈Lz,
d|�−1,
d|p−1

1 �
∑

1�d�Cz

d1/2
(

Cz

d

)2

� z2
∑

d�Cz

1
d3/2 � z2.

Substituting this bound in (6.5), we obtain

∑
�,p∈Lz,

� �=p

M+N∑
n=M+1

(
su(n)

�p

)
� Nz5/2−α log z +

z7/2

log z
.

Inserting the last estimate into (6.4), and ignoring the terms Nz−1 log z, Nz−α and log z,
which are dominated by others, we derive

Qu(s; M, N) � Nz1/2−α(log z)3 + z3/2 log z.

Choosing z = N1/(1+α)(log N)2/(1+α) yields the desired result.
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7. P. Erdős and R. Murty, On the order of a (mod p), in Proc. 5th Canadian Number
Theory Association Conf., pp. 87–97 (American Mathematical Society, Providence, RI,
1999).

8. J.-H. Evertse, H. P. Schlickewei and W. M. Schmidt, Linear equations in variables
which lie in a multiplicative group, Annals Math. 155 (2002), 807–836.

9. D. R. Heath-Brown, The square sieve and consecutive squarefree numbers, Math.
Annalen 266 (1984), 251–259.

10. H. Iwaniec and E. Kowalski, Analytic number theory (American Mathematical Society,
Providence, RI, 2004).

11. P. Kurlberg and C. Pomerance, On the period of the linear congruential and power
generators, Acta Arith. 119 (2005), 149–169.

12. F. Pappalardi, On the order of finitely generated subgroups of Q∗ (mod p) and divisors
of p − 1, J. Number Theory 57 (1996), 207–222.

https://doi.org/10.1017/S001309150700123X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150700123X


On quadratic fields generated by the Shanks sequence 729

13. R. D. Patterson, A. J. van der Poorten and H. C. Williams, Characterization of
a generalized Shanks sequence, Pac. J. Math. 230 (2007), 185–215.

14. D. Shanks, On Gausss class number problems, Math. Comp. 23 (1969), 151–163.
15. A. J. van der Poorten and H. C. Williams, On certain continued fraction expansions

of fixed period length, Acta Arith. 89 (1999), 23–35.
16. H. C. Williams, Some generalizations of the Sn sequence of Shanks, Acta Arith. 69

(1995), 199–215.
17. H. B. Yu, Estimates of character sums with exponential function, Acta Arith. 97 (2001),

211–218.

https://doi.org/10.1017/S001309150700123X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150700123X



