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ABSTRACT Modeling techniques for solar magnetic fields are dis
cussed. As an extension of the source surface model for large scale so
lar magnetic fields, a method based on the Green's function approach 
to the Laplace equation is proposed. In the force-free field modeling, 
a proper definition of the boundary condition is an important but 
still unresolved problem. A condition based on the continuity of the 
Maxwell stress is newly proposed. 

INTRODUCTION 

The magnetic field on the solar surface can be measured by using magnetographs. 
The magnetic field in prominences is measured by means of the Hanle effect 
(Leroy 1988). The field in the corona may be derived from radio observations 
(Dulk and McLean 1978). The latter two measurements are, however, not per
formed so frequently as compared to almost routine-based mapping of photo-
spheric magnetic fields by means of the magnetographs. Therefore an extrap
olation of magnetic fields into the chromosphere and the corona based on the 
measured photospheric magnetic fields provides a useful means to infer the field 
above the photosphere. 

The equation for the magnetic field is derived from the equation of motion 
in magnetohydrodynamics. For static equilibria we obtain 

-Vp + — (V x B) x B+pg = 0 . (1) 

Here p is the density, p is the pressure, B is the magnetic field, and g is the 
gravitational acceleration. In the solar corona, the pressure and the gravity 
forces can generally be neglected compared to the magnetic force. Therefore, we 
obtain the equation, 

(VxB)xB = 0. (2) 

The magnetic field determined from this equation is called the force-free field. 
The equation can also be written as 

V x B = aB , (3) 
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where a should be constant along the field line, 

JB-Va = 0 , (4) 

in order for B to be divergence-free. A particular case in which a is constant 
in space is called the constant-o force-free field, or linear force-free field. The 
equation can be reduced to the Helmholtz equation. In contrast, the case in 
which a varies in space cannot generally be reduced to a linear equation, and 
hence called non-linear force-free fields. 

The case of a — 0, namely, 

VxB = 0 (5) 

is the current-free field, or the potential field. The magnetic field is described in 
terms of a scalar potential ip, 

B = - V V , (6) 
and the potential should satisfy the Laplace equation, 

A^ = 0 . (7) 

POTENTIAL MAGNETIC FIELDS 

The methods to solve the equation for the potential magnetic field are fully 
developed, and are summarized in Sakurai (1989). There are two categories of 
methods. One is the Green's function method and the other is the harmonic 
expansion. 

In the Green's function methods, the observed magnetic field values are 
replaced with suitable distribution of magnetic sources, and the potential is 
represented as a superposition of the sources. Namely, 

lHr) = jG(r,r')Bb(r')dS', (8) 

where Bb is the boundary value of the magnetic field and dS' is the surface 
element at r'. The function G is called the Green's function. It is assumed that 
the sources only exist in the observed area, and therefore the method assumes 
that the region of interest is isolated magnetically. 

In the harmonic expansion methods, the potential is expanded in terms of 
Fourier series (planar case) or spherical harmonics (spherical case). The expan
sion coefficients are determined by using the observed magnetic fields. In Fourier 
expansions, the observed region is periodically duplicated in the solar surface. 
In order to avoid interference from these periodic extension of the observed data, 
one should supplement an area of vanishing magnetic field around the observed 
region. 

In the case of spherical harmonics expansion, usually the data are accumu
lated over one rotation of the sun as synoptic data. In such a global modeling, 
the effects of the solar wind is taken into account by using the so-called source 
surface approximation. 
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A MODIFICATION TO THE SOURCE SURFACE MODEL 

As the data have to be accumulated over one solar rotation, the conventional 
source surface model only deals with magnetic structures whose life time is as 
long as one month. On the other hand, there are some cases in which phenomena 
of shorter time scales have to be modeled. Poletto and Kopp (1988) tried to 
reproduce the magnetic structure after a flare by considering the flare model 
proposed by Kopp and Pneuman (1976). Namely, the late phase of a flare might 
be characterized by a magnetic configuration with partially open magnetic field 
lines. The open field lines gradually turn into a closed magnetic arcade via 
magnetic field line reconnection. The expected helmet streamer type magnetic 
configuration might be modeled in the framework of the source surface model. A 
major difference is that the location of the source surface is low, r = 1.1 — 1.3r0, 
whereas r ~ 2.5r0 in the conventional source surface model. Further, in order to 
accommodate a higher spatial resolution in the computation, Poletto and Kopp 
(1988) adopted an approach in which only data within a longitude span of 60 
degrees were retained and then periodically extended to the whole solar surface. 

Here we propose an alternative approach based on the Green's function 
method. The situation we consider is as follows. Instead of making a global 
magnetic field model by accumulating data over one solar rotation, we only 
work on a single magnetogram. The magnetic field distribution on the invisible 
solar hemisphere is assumed to be the mirror reflection of that of the visible 
hemisphere. Sakurai(1982) derived the Green's function in such a case, when 
the source surface is at infinity. The solution is 

G(r.r') = — + — 
K ' ' 2?r \R R, 

1 1 
2TT [R{R + IR) R.(R.+l-R.) 

1 R+ + IR. 
+ i ^ l 0 g R + l-R ' ( 9 ) 

R = r-r', R, = r-r'm, /i = i x ( n ' x i ) . 

Here a is the radius of the sun, I is the line-of-sight direction, and r't is the 
mirror-symmetric point of r located in the invisible hemisphere. 

On the other hand we can show that the potential 

Tfl I ~ -
F = log UR - I • R)(R. +1-R,) 

4xa I 
m' , R*+l-R> . . 

+ l o g ^ - ^ - z+- , (10) 
4™ & Ru + / . R u

 K ' 

. a - _ - -
m = — — m, R = r — r, i t , = r — rm, R^m = r — r t«, 

gives a vanishing line-of-sight component of the field on the sphere r = a. Here * 
denotes the symmetric reflection and j denotes the mirror inversion. Therefore 
we may seek for certain values of the monopole strength m and its location b, 
such that the sum G + F gives a resultant magnetic field which is nearly radial 
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• m at r = b 

source surface r = rs 

Fig.l. Source distribution for the Green's function described in the 
text. 

Fig.2. (a) Field lines of the Green's function when the source is at 
the center of the solar disk, (b) Same as (a), but when the source is 
30° away from the disk center. 
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on the surface r = r„. The function G + F thus obtained is regarded as the 
Green's function with the source surface effect being taken into account. 

Figure 1 explains the distribution of magnetic sources corresponding to 
G + F. Figure 2 shows the field lines of this Green's function for rs = 2a. In 
figure 2a the source is at the disk center, while in figure 2b the source is 30 
degrees away from the disk center. In both cases one can see that the field has 
no line-of-sight component on the solar surface (except at the location of the 
source itself), and the field is nearly radial on the source surface. 

Similar calculations were performed for various source surface radii and 
source locations. It was found that the location of the outer monopole is generally 
around r = 0.75r,/a. Therefore we assume that b = (3/4) r^/a, and the most 
suitable strength of the monopoles were calculated. As the source surface radius 
decreases, the deviation of the field vectors from the radial direction increases. 
For rs < 4/3a, the outer monopole comes inside the source surface and our 
scheme breaks down. 

FORCE-FREE MAGNETIC FIELDS: BOUNDARY CONDITIONS 

The equation for the force-free magnetic fields is generally non-linear, and no 
standard methods of solution exist. Several methods proposed so far were sum
marized in Sakurai (1989). 

Some of the methods proposed utilize the observed magnetic field vectors 
as the boundary condition. Here the problem arises in that the methods of 
solution assume that the force-free condition applies to the boundary as well, 
whereas in actuality the layer where the magnetic field vectors are measured (i.e. 
the photosphere) may not be force-free. 

Let us introduce two heights z — z\ and z — z2 in the solar atmosphere. 
Above z2 we assume that the field is force-free. The magnetic field measurements 
refer to the layer zlt where the force-free condition may be violated. The layer 
Zx < z < z2 is a transition layer from non-force-free to force-free states. The 
force-free magnetic field may be determined by specifying the 2-components of 
the magnetic field (5„) and the electric current density (jn). If the thickness of 
the transition layer (z2 — 2i) is small compared with the size of observational 
pixels, Bn{z\) ~ Ba(z2). This relation is derived from div B = 0 and from 
the assumption that the three components of B are of the same order in the 
transition layer. 

On the other hand one cannot deduce jn(zi) = ja(z2) from div j — 0. The 
reason is that, to connect the force-free layer z > z2 and the non-force-free layer 
z < Z\, one must have large horizontal currents in the transition layer. In the 
limit of infinitely thin transition layer (21 —+ z2), the layer would have a surface 
current. 

In order to look for the relation between jn(zi) and js{z2), we integrate 
equation (1) over the layer Zi < z < z2 and obtain 

o = -vhp + c J h 

/ Pdz, Jv- / jbdz . (11) 
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The subscript h denotes the horizontal component. This equation describes 
the continuity of the horizontal mechanical stress. By taking the curl of this 
equation, we arrive at 

n • curl (BnBh)\z=zi = n • curl (BBBh)\,=tl . (12) 

The vector n is the unit vector in the z-direction, and the subscript n denotes 
the normal component. This equation states that, even if the gravity and the 
pressure forces are present, the rotational component of the horizontal Maxwell 
stress should be continuous across the transition layer. Further, we may subtract 
the contribution from the potential field B^p, which is regarded constant in the 
transition layer Z\ < z < z2. Therefore we obtain 

n • curl [Bn(Bh - B h p ) ] | , = l i = n • curl [Bn(Bb - B h p ) ] | l = l j . (13) 

CONCLUDING REMARKS 

An interesting point concerning the boundary condition for the magnetic field 
modeling was recently raised by Wang and Sheeley (1992). The conventional 
source surface model is constructed in such a way that the calculated line-of-sight 
component of the field matches the observed line-of-sight component. The model 
does not reproduce the strength of the polar field, and a certain amount of polar 
magnetic flux is added to the model in rather ad hoc way. Wang and Sheeley 
(1992) assumed that the magnetic field is radial at the solar surface. Then 
one can easily convert the observed line-of-sight component of the magnetic field 
into the radial component, and the calculation is carried out to match this radial 
field. They found that this procedure gives several favorable aspects, including 
a correct reproduction of the polar field strength. 

The assumption that the magnetic field is radial at the solar surface, as was 
introduced by Wang and Sheeley (1992), is physically understood in terms of the 
effect of buoyancy force on magnetic flux tubes. If the radial field assumption 
turns out to be satisfied, the method described in section 3 can be reformulated 
by using the Green's function already presented by Sakurai(1982). On the other 
hand, observations by vector magnetographs show unambiguously the existence 
of transverse magnetic fields in active regions. Whether the field is close to 
radial or the field has significant transverse components depends on the field 
strength and the spatial scales that are under study. In active regions, the field 
is not necessarily radial. In global scales, the field can be approximately radial 
at the solar surface. If the spatial resolution in the source surface model calcu
lations increases in the future, one may find an intermediate situation in which 
neither the radial field approximation nor the transverse field measurements are 
applicable. Modeling techniques in such a case are not yet established. 
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