Canad. Math. Bull. Vol. 26 (3), 1983

ON THE IDEAL EQUATION $I(B \cap C) = IB \cap IC$

BY

D. D. ANDERSON

ABSTRACT. Let *R* be an integral domain with quotient field *K* and let *I* be a nonzero ideal of *R*. We show (1) that *I* is invertible if and only if $I(\bigcap_{\alpha} B_{\alpha}) = \bigcap_{\alpha} IB_{\alpha}$ for every nonempty collection $\{B_{\alpha}\}$ of ideals of *R* and (2) that *I* is flat if and only if $I(B \cap C) = IB \cap IC$ for each pair of ideals *B* and *C* of *R*.

Let *R* be an integral domain with quotient field *K* and let *I* be a nonzero ideal of *R*. We show (1) that *I* is invertible if and only if $I(\bigcap_{\alpha} B_{\alpha}) = \bigcap_{\alpha} IB_{\alpha}$ for every nonempty collection $\{B_{\alpha}\}$ of ideals of *R* and (2) that *I* is flat if and only if $I(B \cap C) = IB \cap IC$ for each pair of ideals *B* and *C* of *R*.

THEOREM 1. For a nonzero ideal I in an integral domain R, the following conditions are equivalent.

(1) $I(\bigcap_{\alpha} B_{\alpha}) = \bigcap_{\alpha} IB_{\alpha}$ for each nonempty collection $\{B_{\alpha}\}$ of ideals of R.

(2) $I(\bigcap_{\alpha} B_{\alpha}) = \bigcap_{\alpha} IB_{\alpha}$ for each nonempty collection $\{B_{\alpha}\}$ of fractional ideals of R.

(3) I is invertible.

(4) I is projective.

Proof. (1) \Rightarrow (2). We first show that (2) is true for a set $\{B_1, B_2\}$ of fractional ideals. There exists an $0 \neq r \in R$ with $rB_1, rB_2 \subseteq R$. Then

$$rI(B_1 \cap B_2) = I(r(B_1 \cap B_2)) = I(rB_1 \cap rB_2) = I(rB_1) \cap I(rB_2) = r(IB_1 \cap IB_2).$$

Hence $I(B_1 \cap B_2) = IB_1 \cap IB_2$. We now do the general case. Fix a $B_0 \in \{B_\alpha\}$ and choose $0 \neq r \in R$ with $rB_0 \subseteq R$. Then $r(B_0 \cap B_\alpha) \subseteq R$. Hence $rI(\bigcap_{\alpha} B_{\alpha}) = rI(\bigcap_{\alpha} (B_0 \cap B_{\alpha})) = I(\bigcap_{\alpha} r(B_0 \cap B_{\alpha})) = \bigcap_{\alpha} (Ir(B_0 \cap B_{\alpha})) = r\bigcap_{\alpha} (I(B_0 \cap B_{\alpha})) = r\bigcap_{\alpha} (IB_0 \cap B_{\alpha}) = r\bigcap_{\alpha} IB_{\alpha}$.

(2) \Rightarrow (3). $II^{-1} = I(\cap \{Ri^{-1} \mid 0 \neq i \in R\}) = \cap IRi^{-1} \supseteq \cap R = R$. Hence $II^{-1} = R$, so *I* is invertible.

 $(3) \Rightarrow (1). \text{ Clearly } I(\bigcap_{\alpha} B_{\alpha}) \subseteq \bigcap_{\alpha} IB_{\alpha}. \text{ But } I^{-1}(\bigcap_{\alpha} IB_{\alpha}) \subseteq I^{-1}IB_{\alpha} = B_{\alpha}, \text{ so that } I^{-1}(\bigcap_{\alpha} IB_{\alpha}) \subseteq \bigcap_{\alpha} B_{\alpha}. \text{ Hence } \bigcap_{\alpha} IB_{\alpha} \subseteq I(\bigcap_{\alpha} B_{\alpha}).$

The equivalence of (3) and (4) is well known.

Received by the editors March 19, 1982 and, in revised form, July 31, 1982 1980 Mathematics Subject Classification: Primary 13C11. Secondary 13G05. © 1983 Canadian Mathematical Society

D. D. ANDERSON

THEOREM 2. For an ideal I in the integral domain R, the following conditions are equivalent.

(1) $I(B \cap C) = IB \cap IC$ for ideals B and C of R.

(2) $I(B_1 \cap \cdots \cap B_n) = IB_1 \cap \cdots \cap IB_n$ for fractional ideals B_1, \ldots, B_n of R.

(3) I is a flat ideal of R.

Proof. (1) \Rightarrow (2). The proof of the implication (1) \Rightarrow (2) of Theorem 1 gives (2) for the case n = 2. The result then follows by induction.

(2) \Rightarrow (3). Let *J* be an ideal of *R* and $0 \neq a \in R$. Then $I(J:_R a) = I(Ja^{-1} \cap R) = IJa^{-1} \cap I = (IJ:_I a)$. It follows from [1, Exercise 22, page 47] that *I* is flat.

 $(3) \Rightarrow (1)$. $I(B \cap C) = I \otimes (B \cap C) = (I \otimes B) \cap (I \otimes C) = IB \cap IC$ with the proper identification ([1, Proposition 6, page 17]).

One can consider to what extent Theorem 1 and Theorem 2 remain true if R is allowed to have zero-divisors. If I is invertible, then we still have $I(\bigcap_{\alpha} B_{\alpha}) = \bigcap_{\alpha} IB_{\alpha}$ for any collection of R-submodules of the total quotient ring of R. (This is given in [2, Exercise 17, page 80].) Conversely, if I is generated by regular elements and $I(\bigcap_{\alpha} B_{\alpha}) = \bigcap_{\alpha} IB_{\alpha}$ for each collection of regular tractional ideals of R, the same proof shows that I is invertible. If I is flat, then the proof given in Theorem 2 shows that $I(B \cap C) = IB \cap IC$ for ideals B and C of R. However, if (R, M) is a quasi-local ring with $M^2 = 0$, then clearly $M(B \cap C) = MB \cap MC$ for all ideals B and C of R (in fact, for any collection of ideals), but such an M need not be flat. Theorem 1 may also be generalized in another direction. If P is a projective R-module, then $\bigcap I_{\alpha}P = (\bigcap I_{\alpha})P$ for any collection of ideals $\{I_{\alpha}\}$ of R.

REFERENCES

1. N. Bourbaki, *Commutative Algebra*, Addison-Wesley, Reading, Mass., 1972 2. R. Gilmer, *Multiplicative Ideal Theory*, Marcel Dekker, New York, 1972.

THE UNIVERSITY OF IOWA IOWA CITY, IOWA 52242

332