ON THE IDEAL EQUATION $I(B \cap C)=I B \cap I C$

BY
D. D. ANDERSON

Abstract

Let R be an integral domain with quotient field K and let I be a nonzero ideal of R. We show (1) that I is invertible if and only if $I\left(\bigcap_{\alpha} B_{\alpha}\right)=\bigcap_{\alpha} I B_{\alpha}$ for every nonempty collection $\left\{B_{\alpha}\right\}$ of ideals of R and (2) that I is flat if and only if $I(B \cap C)=I B \cap I C$ for each pair of ideals B and C of R.

Let R be an integral domain with quotient field K and let I be a nonzero ideal of R. We show (1) that I is invertible if and only if $I\left(\bigcap_{\alpha} B_{\alpha}\right)=\bigcap_{\alpha} I B_{\alpha}$ for every nonempty collection $\left\{B_{\alpha}\right\}$ of ideals of R and (2) that I is flat if and only if $I(B \cap C)=I B \cap I C$ for each pair of ideals B and C of R.

Theorem 1. For a nonzero ideal I in an integral domain R, the following conditions are equivalent.
(1) $I\left(\bigcap_{\alpha} B_{\alpha}\right)=\bigcap_{\alpha} I B_{\alpha}$ for each nonempty collection $\left\{B_{\alpha}\right\}$ of ideals of R.
(2) $I\left(\bigcap_{\alpha} B_{\alpha}\right)=\bigcap_{\alpha} I B_{\alpha}$ for each nonempty collection $\left\{B_{\alpha}\right\}$ of fractional ideals of R.
(3) I is invertible.
(4) I is projective.

Proof. (1) \Rightarrow (2). We first show that (2) is true for a set $\left\{B_{1}, B_{2}\right\}$ of fractional ideals. There exists an $0 \neq r \in R$ with $r B_{1}, r B_{2} \subseteq R$. Then

$$
r I\left(B_{1} \cap B_{2}\right)=I\left(r\left(B_{1} \cap B_{2}\right)\right)=I\left(r B_{1} \cap r B_{2}\right)=I\left(r B_{1}\right) \cap I\left(r B_{2}\right)=r\left(I B_{1} \cap I B_{2}\right) .
$$

Hence $I\left(B_{1} \cap B_{2}\right)=I B_{1} \cap I B_{2}$. We now do the general case. Fix a $B_{0} \in\left\{B_{\alpha}\right\}$ and choose $0 \neq r \in R$ with $r B_{0} \subseteq R$. Then $r\left(B_{0} \cap B_{\alpha}\right) \subseteq R$. Hence $r I\left(\bigcap_{\alpha} B_{\alpha}\right)=$ $r I\left(\bigcap_{\alpha}\left(B_{0} \cap B_{\alpha}\right)\right)=I\left(\bigcap_{\alpha} r\left(B_{0} \cap B_{\alpha}\right)\right)=\bigcap_{\alpha}\left(\operatorname{Ir}\left(B_{0} \cap B_{\alpha}\right)\right)=r \bigcap_{\alpha}\left(I\left(B_{0} \cap B_{\alpha}\right)\right)=$ $r \bigcap_{\alpha}\left(I B_{0} \cap I B_{\alpha}\right)=r \bigcap_{\alpha} I B_{\alpha}$. Thus $I\left(\bigcap_{\alpha} B_{\alpha}\right)=\bigcap_{\alpha} I B_{\alpha}$.
(2) \Rightarrow (3). $I I^{-1}=I\left(\cap\left\{R i^{-1} \mid 0 \neq i \in R\right\}\right)=\cap I R i^{-1} \supseteq \cap R=R$. Hence $I I^{-1}=R$, so I is invertible.
(3) \Rightarrow (1). Clearly $I\left(\bigcap_{\alpha} B_{\alpha}\right) \subseteq \bigcap_{\alpha} I B_{\alpha}$. But $I^{-1}\left(\bigcap_{\alpha} I B_{\alpha}\right) \subseteq I^{-1} I B_{\alpha}=B_{\alpha}$, so that $I^{-1}\left(\bigcap_{\alpha} I B_{\alpha}\right) \subseteq \bigcap_{\alpha} B_{\alpha}$. Hence $\bigcap_{\alpha} I B_{\alpha} \subseteq I\left(\bigcap_{\alpha} B_{\alpha}\right)$.

The equivalence of (3) and (4) is well known.

Received by the editors March 19, 1982 and, in revised form, July 31, 1982
1980 Mathematics Subject Classification: Primary 13C11. Secondary 13G05.
(C) 1983 Canadian Mathematical Society

Theorem 2. For an ideal I in the integral domain R, the following conditions are equivalent.
(1) $I(B \cap C)=I B \cap I C$ for ideals B and C of R.
(2) $I\left(B_{1} \cap \cdots \cap B_{n}\right)=I B_{1} \cap \cdots \cap I B_{n}$ for fractional ideals B_{1}, \ldots, B_{n} of R.
(3) I is a flat ideal of R.

Proof. (1) $\Rightarrow(2)$. The proof of the implication (1) $\Rightarrow(2)$ of Theorem 1 gives (2) for the case $n=2$. The result then follows by induction.
(2) \Rightarrow (3). Let J be an ideal of R and $0 \neq a \in R$. Then $I\left(J:_{R} a\right)=$ $I\left(J a^{-1} \cap R\right)=I J a^{-1} \cap I=\left(I J:{ }_{I} a\right)$. It follows from [1, Exercise 22, page 47] that I is flat.
(3) $\Rightarrow(1) . \quad I(B \cap C)=I \otimes(B \cap C)=(I \otimes B) \cap(I \otimes C)=I B \cap I C \quad$ with the proper identification ([1, Proposition 6, page 17]).

One can consider to what extent Theorem 1 and Theorem 2 remain true if R is allowed to have zero-divisors. If I is invertible, then we still have $I\left(\bigcap_{\alpha} B_{\alpha}\right)=$ $\bigcap_{\alpha} I B_{\alpha}$ for any collection of R-submodules of the total quotient ring of R. (This is given in [2, Exercise 17, page 80].) Conversely, if I is generated by regular elements and $I\left(\bigcap_{\alpha} B_{\alpha}\right)=\bigcap_{\alpha} I B_{\alpha}$ for each collection of regular rractional ideals of R, the same proof shows that I is invertible. If I is flat, then the proof given in Theorem 2 shows that $I(B \cap C)=I B \cap I C$ for ideals B and C of R. However, if (R, M) is a quasi-local ring with $M^{2}=0$, then clearly $M(B \cap C)=M B \cap M C$ for all ideals B and C of R (in fact, for any collection of ideals), but such an M need not be flat. Theorem 1 may also be generalized in another direction. If P is a projective R-module, then $\bigcap I_{\alpha} P=\left(\bigcap I_{\alpha}\right) P$ for any collection of ideals $\left\{I_{\alpha}\right\}$ of R.

References

1. N. Bourbaki, Commutative Algebra, Addison-Wesley, Reading, Mass., 1972
2. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
