# ON NONCOMMUTING SETS AND CENTRALISERS IN INFINITE GROUPS 

MOHAMMAD ZARRIN

(Received 13 April 2015; accepted 23 April 2015; first published online 8 July 2015)


#### Abstract

A subset $X$ of a group $G$ is a set of pairwise noncommuting elements if $a b \neq b a$ for any two distinct elements $a$ and $b$ in $X$. If $|X| \geq|Y|$ for any other set of pairwise noncommuting elements $Y$ in $G$, then $X$ is called a maximal subset of pairwise noncommuting elements and the cardinality of such a subset (if it exists) is denoted by $\omega(G)$. In this paper, among other things, we prove that, for each positive integer $n$, there are only finitely many groups $G$, up to isoclinism, with $\omega(G)=n$, and we obtain similar results for groups with exactly $n$ centralisers.


2010 Mathematics subject classification: primary 20D60; secondary 20F99.
Keywords and phrases: pairwise noncommuting elements of a group, $n$-centralisers.

## 1. Introduction and results

Let $G$ be a nonabelian group. We call a subset $X$ of $G$ a set of pairwise noncommuting elements if $a b \neq b a$ for any two distinct elements $a$ and $b$ in $X$. If $|X| \geq|Y|$ for any other set of pairwise noncommuting elements $Y$ in $G$, then $X$ is called a maximal subset of pairwise noncommuting elements, and the cardinality of such a subset (if it exists) is called the clique number of $G$, denoted by $\omega(G)$. By a famous result of Neumann [11] answering a question of Erdős, we know that the finiteness of $\omega(G)$ is equivalent to the finiteness of the factor group $G / Z(G)$, where $Z(G)$ is the centre of $G$. Pyber [12] showed that the size of $\omega(G)$ is related to the index of the centre of $G$ : there is a constant $c$ such that $[G: Z(G)] \leq c^{\omega(G)}$. The clique numbers of groups have been investigated by many authors (see, for example, $[2,6,8]$ ).

It is easy to see that if $H$ is an arbitrary abelian group and $G$ is a group with $\omega(G)=n$ then $\omega(G \times H)=n$. Therefore, there can be infinitely many groups $K$ with $\omega(K)=n$. In this paper, we first show that the clique numbers of any two isoclinic groups [10] are the same (Lemma 2.1). By using this result, we show that for each positive integer $n$ there are only finitely many groups $G$, up to isoclinism, with $\omega(G)=n$. We state our main results.

[^0]Theorem 1.1. Let $n$ be a positive integer and $G$ be an arbitrary group with $\omega(G)=n$.
(1) There are only finitely many groups $H$, up to isoclinism, with $\omega(H)=n$.
(2) There exists a finite group $K$ such that $K$ is isoclinic to $G$ and $\omega(K)=n$.

From this result, we deduce a sufficient condition for the solubility of a group in terms of its clique number.

Theorem 1.2. A group $G$ with $\omega(G) \leq 20$ is soluble and this estimate is sharp.
For any group $G$, let $\mathcal{C}(G)$ denote the set of centralisers of $G$. We say that a group $G$ has $n$ centralisers ( $G$ is a $C_{n}$-group) if $|C(G)|=n$. Finally, we obtain similar results for groups with a finite number $n$ of centralisers (Lemma 3.2 and Theorems 3.3-3.5).

## 2. Pairwise noncommuting elements

The groups $G$ and $H$ are said to be isoclinic if there are two isomorphisms $\varphi: G / Z(G) \rightarrow H / Z(H)$ and $\phi: G^{\prime} \rightarrow H^{\prime}$ such that if

$$
\varphi\left(g_{1} Z(G)\right)=h_{1} Z(H) \quad \text { and } \quad \varphi\left(g_{2} Z(G)\right)=h_{2} Z(H),
$$

with $g_{1}, g_{2} \in G, h_{1}, h_{2} \in H$, then

$$
\phi\left(\left[g_{1}, g_{2}\right]\right)=\left[h_{1}, h_{2}\right] .
$$

Isoclinism is an equivalence relation weaker than isomorphism and was introduced by Hall [10] to help classify groups. A stem group is defined as a group whose centre is contained inside its derived subgroup. It is known that every group is isoclinic to a stem group and if we restrict to finite groups, a stem group has the minimum order among all groups isoclinic to it (see [10] for more details).

To prove our main results, we need the following lemma.
Lemma 2.1. For every two isoclinic groups $G$ and $H$, we have $\omega(G)=\omega(H)$.
Proof. Suppose that $G$ and $H$ are two isoclinic groups. From Hall [10], there exist commutator maps

$$
\alpha: G / Z(G) \times G / Z(G) \longrightarrow G^{\prime}, \quad(x Z(G), y Z(G)) \mapsto([x, y])
$$

and

$$
\alpha^{\prime}: H / Z(H) \times H / Z(H) \longrightarrow H^{\prime}, \quad(x Z(H), y Z(H)) \mapsto([x, y])
$$

and isomorphisms $\beta: G / Z(G) \longrightarrow H / Z(H)$ and $\gamma: G^{\prime} \longrightarrow H^{\prime}$ such that

$$
\alpha^{\prime}(\beta \times \beta)=\gamma(\alpha)
$$

where

$$
\beta \times \beta: G / Z(G) \times G / Z(G) \longrightarrow H / Z(H) \times H / Z(H)
$$

Now assume that the set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a maximal subset of pairwise noncommuting elements of $G$. It follows that $x_{i} Z(G) \neq x_{j} Z(G)$ for all $1 \leq i<j \leq n$.

Therefore, there exist $n$ elements $y_{i} \in H \backslash Z(H)$ such that $\beta\left(x_{i} Z(G)\right)=y_{i} Z(H)$. To complete the proof it is enough to show that the set $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is a subset of pairwise noncommuting elements of $H$. Suppose, on the contrary, that there exist $y_{i}, y_{j} \in H$ for some $1 \leq i \neq j \leq n$, such that $\left[y_{i}, y_{j}\right]=1$. As mentioned above,

$$
\alpha^{\prime}(\beta \times \beta)\left(\left(x_{i} Z(G), x_{j} Z(G)\right)\right)=\gamma(\alpha)\left(x_{i} Z(G), x_{j} Z(G)\right)
$$

and so $\alpha^{\prime}\left(y_{i} Z(H), y_{j} Z(H)\right)=\gamma\left(\left[x_{i}, x_{j}\right]\right)$ and $1=\left[y_{i}, y_{j}\right]=\gamma\left(\left[x_{i}, x_{j}\right]\right)$. It follows that $\left[x_{i}, x_{j}\right]=1$, a contradiction. Thus $\omega(G)=|X|=|Y| \leq \omega(H)$ and so $\omega(G) \leq \omega(H)$. Similarly, $\omega(H) \leq \omega(G)$, and this completes the proof.

Proof of Theorem 1.1. (1) Assume that $G$ is a group with $\omega(G)=n$. From Pyber [12], there is a constant $c$ such that $[G: Z(G)] \leq c^{\omega(G)} \leq f(n)$. Therefore, by Schur's theorem, the derived subgroup $G^{\prime}$ is finite (in fact, $\left|G^{\prime}\right| \leq f(n)^{2 f(n)^{3}}$ ) and the number of isomorphism types of $G / Z(G)$ and $G^{\prime}$ is bounded above by a function of $n$. For every choice of $G / Z(G)$ and $G^{\prime}$ there are only finitely many commutator maps from $G / Z(G) \times G / Z(G)$ to $G^{\prime}$. It follows, in view of Lemma 2.1, that $G$ is determined by finitely many isoclinism types.
(2) Since $\omega(G)=n$, by Pyber [12], $G$ is a centre-by-finite group. On the other hand, according to the main theorem of Hall [10, page 135], there exists a group $K$ such that $G$ is isoclinic to $K$ and $Z(K) \subseteq[K, K]=K^{\prime}$. Since $G$ is isoclinic to $K$, it follows that $K$ is centre-by-finite and so, according to Schur's theorem, $K^{\prime}$ is finite. Therefore $Z(K)$ and $K / Z(K)$ are finite, so $K$ is finite, and so Lemma 2.1 completes the proof.

Proof of Theorem 1.2. Assume that $G$ is a group with $\omega(G) \leq 20$. According to Theorem 1.1, there exists a finite group $K$ such that $G$ is isoclinic to $K$ and $\omega(G)=$ $\omega(K)$. Thus, replacing $G$ by the factor group $G / Z(G)$, it can be assumed without loss of generality that $G$ is a finite group with $\omega(G) \leq 20$. But in this case the result follows from the main result of [9]. Note that the alternating group of degree five, $A_{5}$, is a group with $\omega\left(A_{5}\right)=21$ and so the estimate is sharp.

## 3. Groups with a finite number of centralisers

As mentioned in the introduction, there are interesting relations between centralisers and pairwise noncommuting elements. So we now consider groups with a finite number $n$ of centralisers ( $C_{n}$-groups). From the result of Neumann [11], the finiteness of $\omega(G)$ in $G$ is equivalent to the finiteness of the factor group $G / Z(G)$. Centralisers are subgroups containing the centre of the group, so from the finiteness of the factor group $G / Z(G)$ it follows that $G$ has a finite number of centralisers. Also, if $G$ has a finite number of centralisers, then it is easy to see that $\omega(G)$ is finite. These remarks give the following theorem.

Theorem 3.1. For any group $G$, the following statements are equivalent.
(1) G has finitely many centralisers.
(2) $G$ is a centre-by-finite group.
(3) G has finitely many pairwise noncommuting elements.

It is clear that a group is a $C_{1}$-group if and only if it is abelian. The class of $C_{n^{-}}$ groups was introduced by Belcastro and Sherman in [7] and investigated by many authors (see, for example, [1, 3, 4, 13, 14, 16]).

Since every group $G$ with a finite number of centralisers is centre-by-finite, by an argument similar to the one in the proof of Lemma 2.1, we have the following result.

Lemma 3.2. For every two isoclinic groups $G$ and $H,|C(G)|=|C(H)|$.
Proof. Let $\beta$ be the isomorphism $\beta: G / Z(G) \longrightarrow H / Z(H)$ and let $x$ be an element of $G$. There exists a subgroup $K$ of $H$ such that $\beta\left(C_{G}(x) / Z(G)\right)=K / H$. By an argument similar to the one in the proof of Lemma 2.1, there exists an element $y \in K$ such that $K=C_{H}(y)$ and $y Z(H)=\beta(x Z(G))$. The isomorphism $\beta$ induces a bijection between the subgroups of $G$ containing $Z(G)$ and the subgroups of $H$ containing $Z(H)$, and the result follows.

By an argument similar to the one in the proof of Theorem 1.1, we obtain the following result.

Theorem 3.3. Let $n$ be a positive integer and let $G$ be an arbitrary $C_{n}$-group.
(1) There are only finitely many groups $H$, up to isoclinism, with $|C(H)|=n$.
(2) There exists a finite group $K$ such that $K$ is isoclinic to $G$ and $|C(G)|=|C(K)|$.

For any group $G$, it is easy to see that if $x, y \in G$ and $x y \neq y x$, then $C_{G}(x) \neq C_{G}(y)$. From this, it follows easily that $1+\omega(G) \leq|C(G)|$ (note that $C_{G}(e)=G$, where $e$ is the identity of $G$ ). Thus, by using Theorem 1.2, we generalise [15, Theorem A].

Theorem 3.4. A group $G$ with $|C(G)| \leq 20$ is soluble and this estimate is sharp.
Finally, by using case (2) of Theorem 3.3, we generalise the main results of [1, 4, 5, 7] for infinite groups.

Theorem 3.5. Let $G$ be an arbitrary $C_{n}$-group.
(1) $G / Z(G) \cong C_{2} \times C_{2}$ if and only if $n=4$.
(2) $G / Z(G) \cong C_{3} \times C_{3}$ or $S_{3}$ if and only if $n=5$.
(3) $G / Z(G) \cong D_{8}, A_{4}, C_{2} \times C_{2} \times C_{2}$ or $C_{2} \times C_{2} \times C_{2} \times C_{2}$ whenever $n=6$.
(4) $G / Z(G) \cong C_{5} \times C_{5}, D_{10}$ or $\left\langle x, y \mid x^{5}=y^{4}=1, x^{y}=x^{3}\right\rangle$ if and only if $n=7$.
(5) $\quad G / Z(G) \cong C_{2} \times C_{2} \times C_{2}, A_{4}$ or $D_{12}$ whenever $n=8$.

Proof. It is enough to note that there exists a finite $C_{n}$-group $K$ such that $K$ is isoclinic to $G$ and hence $G / Z(G) \cong K / Z(K)$. So the statements in the theorem follow from the main results in $[1,4,5,7]$.

## References

[1] A. Abdollahi, S. M. J. Amiri and A. M. Hassanabadi, 'Groups with specific number of centralizers', Houston J. Math. 33 (2007), 43-57.
[2] A. Abdollahi, A. Azad, A. M. Hassanabadi and M. Zarrin, 'On the clique numbers of noncommuting graphs of certain groups', Algebra Colloq. 17 (2010), 611-620.
[3] S. M. J. Amiri, H. Madadi and H. Rostami, 'On 9-centralizer groups', J. Algebra Appl. 14(1) (2015), 1550003 (13 pages).
[4] A. R. Ashrafi, 'On finite groups with a given number of centralizers', Algebra Colloq. 7 (2000), 139-146.
[5] A. R. Ashrafi, 'Counting the centralizers of some finite groups', Korean J. Comput. Appl. Math. 7(1) (2000), 115-124.
[6] A. Ballester-Bolinches and J. Cossey, 'On non-commuting sets in finite soluble CC-groups', Publ. Mat. 56(2) (2012), 467-471.
[7] S. M. Belcastro and G. J. Sherman, 'Counting centralizers in finite groups', Math. Mag. 5 (1994), 111-114.
[8] A. Y. M. Chin, 'On non-commuting sets in an extraspecial p-group', J. Group Theory 8 (2005), 189-194.
[9] G. Endimioni, ‘Groupes finis satisfaisant la condition ( $N$; n)’, C. R. Acad. Sci. Paris Ser. I 319 (1994), 1245-1247; (in French).
[10] P. Hall, 'The classification of prime power groups', J. reine angew. Math. 182 (1940), 130-141.
[11] B. H. Neumann, 'A problem of Paul Erdős on groups', J. Aust. Math. Soc. Ser. A 21 (1976), 467-472.
[12] L. Pyber, 'The number of pairwise non-commuting elements and the index of the centre in a finite group', J. Lond. Math. Soc. (2) 35(2) (1987), 287-295.
[13] M. Zarrin, 'On element-centralizers in finite groups', Arch. Math. (Basel) 93 (2009), 497-503.
[14] M. Zarrin, 'Criteria for the solubility of finite groups by its centralizers', Arch. Math. (Basel) 96 (2011), 225-226.
[15] M. Zarrin, 'On solubility of groups with finitely many centralizers', Bull. Iranian Math. Soc. 39 (2013), 517-521.
[16] M. Zarrin, 'Derived length and centralizers of groups', J. Algebra Appl. 14(8) (2015), 1550133 (4 pages).

MOHAMMAD ZARRIN, Department of Mathematics,
University of Kurdistan, PO Box 416, Sanandaj, Iran
e-mail: m.zarrin@uok.ac.ir, zarrin@ipm.ir


[^0]:    (C) 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

