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In a recent note [1], M. R. Embry proved that if A is an 

operator on a Banach space then, under a certain condition on the 

spectrum of A, each operator commuting with A also commutes with 

A, where n is a fixed positive integer. It turns out that, when A 

is a finite matrix, Embry's conditions imply that A is a polynomial 

in A and hence plainly each operator commuting with A also commutes 

with A. Since A is a polynomial in A and since any matrix commu

ting with A commutes also with A , we see that for finite matrices 

Embry's problem is a special case of each of the following more general 

problems: 

I. Let A and B = f(A) be m x m matrices over a field 3, 

where f(x) is a polynomial over 3. Under what circumstances does a 

polynomial g(A) exist over 3 such that A = g(B)? 

II. Let A be an m x m matrix over 3. Characterize those 

matrices B over 3 such that the algebra of matrices over 3 

commuting with A coincides with the algebra of matrices over 3 

commuting with B. 

* 
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For finite matrices over 3, these two problems are equivalent 

and both will be solved here. Special cases of problem I are often 

encountered in the literature, for example, in the study of powers and 

roots of matrices. 

THEOREM 1. Let A be a square matrix over 3 and let B = f(A) 

where f(X) is a polynomial over 3 . Let m(x) be the minimal poly

nomial of A. Then a polynomial g(X) over ^ exists such that 

A = g(B) if, and only if, the following two conditions are satisfied: 

(i) f(X) is one to one on the roots of m(x); 

(ii) f'(a) f 0 whenever a is an root of m(x) of multiplicity 

> 1. Here f'(X) is the derivative of f(X). 

An equivalent formulation of condition (ii) is 

(m(X),m'(X),f'(X)) = 1. 

Proof. Suppose A = g(f(A)). Then the polynomial X - g(f(X)) 

must be divisible by m(X), and hence 

(1) X = g(f(X)) + G(X)m(X) , 

where G(X) is some polynomial. If a-, and a? are distinct zeros 

of m(X) and f(cu) = f 0 2) , we have c^ = gCfCa-^) = g(f(a2)) = a2> 

a contradiction. Therefore f is one to one on the zeros of m(x). 

Now let a be a multiple root of m(X). From (1) we get 

1 = g'(f(X))f'(X) + G'(x)m(x) + G(x)m'(x) 

and hence setting X = a yields 1 = gf(f(a))f'(a). Therefore 

f'(a) * 0. 

Suppose now that B = f(A) and that polynomial f(x) satisfies 
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conditions (i) and (ii). We construct a polynomial g(A) over the 

algebraic closure 3 of 3 such that A = g(B). Later we will get a 

polynomial g(A) over 3 , 

Let a,,...,a be the distinct roots of m(A) with multiplicity 

> 1 and let 3-,,...,3t be the distinct simple roots of m(A). Let 

F(X) = (A - c^) ... (A - ag) , 

F(A) = (A - £(ai)} ... (A - f(as)) , 

H(A) = (A - Bj) ... (A - 6t) . 

Since f(A) is one to one on the zeros of m(A), f(aj ,. . . ,f(a ), 

f(3,),...,f(3 ) are distinct, so that (by an interpolation formula) 

a polynomial p (A) exists such that 

p (f(a•)) - a., 1 < i < s , 
r o v v 1 1 — — ' 

P0(f(Bi)) = Bt, 1 £ i 1 t , 

Hence all of a,,...,a , 3-,,.-.,3t are zeros of the polynomial 

A - p (f(A)) and therefore 

A E Po(f(A)) (mod F(A)H(A)), 

We now construct by induction a sequence pn(A), p..(A),...,p (A),... 

of polynomials such that 

(2) A E pr(f(A)) (mod F(A)r+1H(A)) . 

Given p (A), we proceed to construct p . (A). We put 

(3) P r+1
( À ) = P r ( X ) + xC x)FC À) r + 1 • 
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Here x(X) is a polynomial to be determined shortly. Because of (2), 

(4) X = p ff(X)) + G(X)F(X) r + 1H(X) , 

where G(A) is some polynomial. Substituting (3) into (4), we get 

(5) X = Pr+1(f(X)) + F(X)
r+1 J G(X)H(X) - x(f(X)) (^[ff 1 

Observe that 

(6) 
F(f(X)) . * 

- T T x T - ^ 

f(A) - fCcu) 

A - a. 

Therefore F(f(A))/F(A) is a polynomial and F(f(A))/F(A)I + 0 
I ~ a j 

for j = 1, 2,...,s, since f(a.) î f(a.) if j i- i and f'(a.) t 0. 

Since f (a, ) , . . . ,f (a ) , f (3-, ) , • • • ,f (3f) are distinct, we may find a 

polynomial x(A) such that 

x(f(a.)) = G(A)H(A) 
F(f(A)) 

F(A) 

•Cr+1) 
i = 1, . . . , s , 

A=a . 
l 

x(f(3,)) = 0 , i = 1, 2,...,t. 

The expression in { } in (5) is now a polynomial vanishing 

when A is a1,. i , 3-,,--.,3t. Therefore this polynomial is di

visible by F(A)H(A). Hence 

r+2. 
Pr+1C^Cx) (

mod F ^ ) H0)) 

This completes the inductive step. 

r+lT Now, for sufficiently large r, F(A) H(A) is divisible by 

r+1 
m(A). For this large r, F(A) H(A) = 0. But then 
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A , Pr+1(f(A)) . 

Thus we have a polynomial g(x) over 3 such that A = g(B). 

But it is an elementary fact that if A is a polynomial in B, where 

the polynomial has coefficients in an extension field of 3, then A 

is also a polynomial in B where the polynomial has coefficients in 3 . 

The proof of Theorem 1 is now complete. 

THEOREM 2. Let A and B t̂e m x m matrices over 3 , and 

let C and D be_ n * n matrices over 3 . Suppose A and C have 

a common minimal polynomial m(x). Then the set of all m x n matrices 

^ o v e r 3 for which 

AX = XC (6) 

coincides with the set of all m x n matrices X over g for which 

BX = XD (7) 

if and only if: 

(i) B = f(A) and D - f(C) for some polynomial f(X) over 3 ; 

(ii) f(x) is one to one on the roots of m(x); 

(iii) f ' (a) 9E 0 for each nonsimple root a oj[ m(x). 

Proof. It was proved in [2, Theorem 1] that if A and C 

have a common minimal polynomial, and if BX = XD whenever AX = XC, 

then B = f(A) and D = f(C) for some polynomial f(x) over 3 . 

We claim that B = f(A) and D = f(C) must have the same minimal poly

nomial. This follows from the fact that the coincidence of the minimal 

polynomials of A and C forces the algebra of polynomials (over 3 ) 

in A to be isomorphic to the algebra of polynomials (over 3 ) in C. 
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In this algebra isomorphism B and D are isomorphic elements and 

hence must have the same minimal polynomial. Now it follows that we 

can reverse the argument in the first part of the proof and deduce from 

the implication BX = XD =» AX = XC that A = g(B) and C = g(D) for 

some polynomial g(X) over 3. Therefore A = g(f(A)) and C = g(f(C)), 

and hence by Theorem 1 f(X) must satisfy conditions (ii) and (iii). 

Suppose now that B = f(A) and D = f(C), where f(A) satis

fies conditions (ii) and (iii). In the proof of Theorem 1 polynomial 

r+1 
p (X) was obtained such that X ~ p (f(X)) (mod F(x) H(X)). For 

sufficiently large r we obtain A = p (f(A)) and C = p (f(C)). 

Thus A = g(B) and C = g(D), where g(X) = p + 1 0 ) . But it follows 

easily (see [2]) from B = f(A) and D r f(C) that AX = XC implies 

BX = XD; and similarly from A = g(B) and C = g(D) we see that 

BX = XD implies AX = XC. The proof is complete. 

When C = A and D = B Theorem 2 provides the solution of 

problem II. 

COROLLARY. Let A be an m x m matrix over 3 with minimal 

polynomial m(X). Let B be an m x m matrix over 3 . Then the 

algebra of matrices over 3 commuting with A coincides with the al

gebra of matrices over 3 commuting with B if and only if B = f(A), 

where f(X) is a polynomial satisfying the conditions (i) and (ii) of 

Theorem 1. 

As special cases, we obtain the following theorems bearing on 

Embry's result. 

THEOREM 3. Let n be a positive integer, n > 1, and let the 
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characteristic of 3 not divide n. Let A be an m x m matrix over 3 

with minimal polynomial m(A). Then the algebra of matrices over 3 

commuting with A coincides with the algebra of matrices over 3 

commuting with A if and only if: 

(i) when a is a nonzero eigenvalue of A, ç a is not an 

eigenvalue of A for each n root of unity ç ^ 1; 

(ii) jLf A is singular, A = 0 is a simple root of m(X) . 

THEOREM 4. Let p be the characteristic of 3 . The the ma

trix algebra over 3 commuting with A coincides with the matrix al

gebra over 3 commuting with A^ if and only if A is similar to a 

diagonal matrix. 
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