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KASPER K. S. ANDERSEN1, NATÀLIA CASTELLANA2, VINCENT FRANJOU3,
ALAIN JEANNERET4 AND JÉRÔME SCHERER5
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Introduction

The main theorem of Dwyer and Wilkerson in [13] states that the mod p cohomology of
the classifying space of a p-compact group is a finitely generated algebra. This generalizes
to p-compact groups the Evens–Venkov Theorem [14] on the cohomology of a finite
group G. There are, however, two main differences between these two results. Evens’s
statements allow a general base ring (any Noetherian ring is allowed) and they include
the case of general twisted coefficients (this is contrary to the early work by Golod [16] or
Venkov [25]) as follows: if M is Noetherian over a ring R, then H∗(G; M) is Noetherian
over H∗(G; R). Beautiful finite generation statements on cohomology have since been
proved in numerous situations. For statements as general as Evens’s, however, proofs
have been surprisingly elusive.
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14 K. K. S. Andersen and others

This paper is concerned with these generalizations for p-compact groups and p-local
finite groups, as defined by Broto, Levi and Oliver [9]. More generally, we ask when
Noetherianity of the mod p cohomology algebra H∗(Y ; Fp) of a space Y implies that the
cohomology with coefficients in a R[π1(Y )]-module M , H∗(Y ; M), is a Noetherian module
over the algebra H∗(Y ; R). Because the classifying space BX of a p-compact group is
p-complete by definition, we work over p-complete rings (for example, H∗((BS3)∧

p ; Z) is
not Noetherian).

Theorem 2.4. Let Y be a connected space with finite fundamental group. The graded
Z

∧
p -algebra H∗(Y ; Z∧

p ) is then Noetherian if and only if the graded Fp-algebra H∗(Y ; Fp)
is Noetherian and the torsion in H∗(Y ; Z∧

p ) is bounded.

Theorem 3.6. Let Y be a connected space such that π1Y is a finite p-group. Let M be
a Z

∧
p [π1Y ]-module that is finitely generated over Z

∧
p . If the graded Z

∧
p -algebra H∗(Y ; Z∧

p )
is Noetherian, then H∗(Y ; M) is Noetherian as a module over H∗(Y ; Z∧

p ).

This applies to p-compact group and to p-local finite groups to show that their p-
adic cohomology algebra is Noetherian (see Theorems 4.2 and 4.5). Note that our proof
makes no use of the recent classification of p-compact groups by Andersen and Grodal [3],
Andersen, Grodal, Møller and Viruel [4] and Møller [22]. Even in the case of a compact
Lie group G, our theorem provides a general finiteness theorem for the cohomology of BG

with twisted coefficients. One of the few explicit computations available in the literature
is for the case of O(n) and is due to Čadek [11] (see also [17]).

1. The cohomology as a graded module

Before considering the mod p or p-adic cohomology as an algebra, we first make explicit
the relationship between two standard milder finiteness assumptions. When the graded
vector space H∗(Y ; Fp) is of finite type, i.e. Hn(Y ; Fp) is a finite-dimensional vector space
in each degree n, is Hn(Y ; Z∧

p ) a finitely generated Z
∧
p -module in each degree n as well?

This is clearly a necessary condition for the cohomology algebra to be finitely generated.
We show that it holds when π1(Y ) is finite.

The main tool to relate the mod p cohomology to the p-adic cohomology is the universal
coefficient exact sequence (see, for example, [24, Theorem 5.5.10] for spaces and [1,
Part III, Proposition 6.6] for spectra)

0 → H∗(Y ; Z∧
p ) ⊗ Fp

ρ−→ H∗(Y ; Fp)
∂−→ Tor(H∗+1(Y ; Z∧

p ); Z/p) → 0, (1.1)

which holds, since Z
∧
p is a principal ideal domain and Z/p is a finitely generated

Z
∧
p -module.

Remark 1.1. The morphism ρ in (1.1) is a ring homomorphism that makes the middle
term H∗(Y ; Fp) an H∗(Y ; Z∧

p )⊗Fp-module. Evens observed in [15, p. 272] that ∂ is also a
homomorphism of H∗(Y ; Z∧

p ) ⊗ Fp-modules, where Tor(H∗(Y ; Z∧
p ); Z/p) has the natural

module structure that Evens introduced in [15, Lemma 2].
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Lemma 1.2. Let G be a finite p-group, let K be a field of characteristic p and let V

be a KG-module. If V G is a finite-dimensional K-vector space, then so is V .

Proof. Let n = dimK V G and let F = (KG)n be a free KG-module of rank n. Note
that dimK FG = n, so there is an isomorphism of KG-modules α : V G → FG. Since F

is an injective KG-module, α extends to a homomorphism α′ : V → F of KG-modules,
which we now prove is injective. Clearly, (kerα′)G = ker α′ ∩ V G = ker α = 0. Since
G is a finite p-group, it follows that kerα′ = 0. Hence V embeds in F , so V is finite
dimensional. �

Proposition 1.3. Let Y be a connected space with finite fundamental group. The
group Hn(Y ; Fp) is finite for every positive integer n if and only if the Z

∧
p -module

Hn(Y ; Z∧
p ) is finitely generated for every n. Under this condition, the Z

∧
p -module

Hn(Y ; M) is finitely generated for any n and every Z
∧
p [π1Y ]-module M that is finitely

generated over Z
∧
p .

Proof. If Hn(Y ; Z∧
p ) is a finitely generated Z

∧
p -module for any n, the universal coef-

ficient exact sequence (1.1) implies that Hn(Y ; Fp) is finite for any n.
Conversely, assume that Hn(Y ; Fp) is finite for every n. Since the fundamental

group of Y is finite, the space Y is p-good by [8, Proposition VII.5.1] and therefore
Hn(Y ∧

p ; Fp) ∼= Hn(Y ; Fp). Likewise, since cohomology with p-adic coefficients is repre-
sented by Eilenberg–MacLane spaces K(Z∧

p , n), which are p-complete, Hn(Y ∧
p ; Z∧

p ) ∼=
Hn(Y ; Z∧

p ) [8, Proposition II.2.8]. We may therefore assume that Y is p-complete and
that G = π1Y is a finite p-group (see [13, Proposition 11.14] or [7, § 5]).

If Y is 1-connected, then [2, Proposition 5.7] applies and Hn(Y ; Z∧
p ) is a finitely gen-

erated Z
∧
p -module for every n. For the general situation, let us consider the universal

cover fibration for Y , Ỹ → Y → BG. We prove by induction that Hn(Ỹ ; Fp) is finite
dimensional for any n. The induction starts with the trivial case n = 0. Assume thus
that Hm(Ỹ ; Fp) is finite for all m < n. Then, in the second page of the Serre spec-
tral sequence in mod p cohomology, all groups Ei,j

2 = Hi(BG, Hj(Ỹ ; Fp)) on the lines
j = 0, . . . , n − 1 are finite. As E0,n

∞ is finite as well, it follows that E0,n
2 = Hn(Ỹ ; Fp)G is

finite dimensional. Since G is a finite p-group, finiteness of Hn(Ỹ ; Fp)G implies finiteness
of Hn(Ỹ ; Fp) by Lemma 1.2.

We can now apply the 1-connected case to conclude that Hn(Ỹ ; Z∧
p ) is a finitely gen-

erated Z
∧
p -module for any n. The Evens–Venkov Theorem [14, Theorem 8.1] now shows

that the E2-term of the Serre spectral sequence with p-adic coefficients consists of finitely
generated Z

∧
p -modules. Therefore, Hn(Y ; Z∧

p ) must also consist of finitely generated Z
∧
p -

modules for any n.
The second part of the assertion now follows easily. The first part of the proposition

and the universal coefficient formula imply that Hn(Ỹ ; M) is a finitely generated Z
∧
p -

module for every n. We then use the Serre spectral sequence for cohomology with twisted
coefficients. The only reference we know is [21, Theorem 3.2], where the spectral sequence
is established equivariantly; we need the case of the trivial group action. �

https://doi.org/10.1017/S0013091512000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000193
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2. Cohomology with trivial coefficients

We now turn to finite generation of the cohomology algebras H∗(Y ; Z∧
p ) and H∗(Y ; Fp),

where trivial coefficients are understood. The universal coefficient theorem suggests that
control of torsion is the key of this case.

Let R be either the ring Z
∧
p or the field Fp, and note that both are Noetherian rings. The

cohomology H∗(Y ; R) of any connected space is a commutative graded algebra, which
is a Noetherian R-algebra if and only if it is finitely generated as an R-algebra [19,
Theorem 13.1].

Lemma 2.1. Let Y be a connected space. If the Z
∧
p -algebra H∗(Y ; Z∧

p ) is Noetherian,
then H∗(Y ; Fp) is a finitely generated module over the algebra H∗(Y ; Z∧

p ) ⊗ Fp.

Proof. The ideal Tor(H∗(Y ; Z∧
p ); Z/p) of elements annihilated by p is a finitely gen-

erated ideal of H∗(Y ; Z∧
p ) by assumption. It is therefore also finitely generated as an

H∗(Y ; Z∧
p ) ⊗ Fp-module. The conclusion follows from Remark 1.1 on the universal coef-

ficient exact sequence. �

To be able to compare Noetherianity of the mod p cohomology and the p-adic cohom-
ology, we need to analyse the p-torsion in H∗(Y ; Z∧

p ). Let us denote by TpH
∗(Y ; Z∧

p ) the
graded submodule of p-torsion elements. The key assumption in the main theorem of this
section is that the order of the p-torsion is bounded. This implies that ρ is ‘uniformly
power surjective’: a strong form of integrality.

Lemma 2.2. Let Y be a connected space and let d be an integer such that the p-
torsion TpH(Y ; Z∧

p ) is annihilated by pd. If u ∈ H∗(Y ; Fp), then upd

belongs to the image
of ρ : H∗(Y ; Z∧

p ) ⊗ Fp → H∗(Y ; Fp).

Proof. Following the elementary proof of [6, Lemma 4.4], we start with the observa-
tion that for any element x ∈ H∗(Y ; Z/pk) the pth power xp lies in the image of the reduc-
tion map H∗(Y ; Z/pk+1) → H∗(Y ; Z/pk). The argument is as follows. If p is odd and the
degree of x is odd, xp = 0 and the conclusion follows. Otherwise, δ(xp) = pδ(x)·xp−1 = 0,
because the Bockstein δ coming from the short exact sequence Z/p → Z/pk+1 → Z/pk

is a derivation with respect to the cup product pairing

H∗(Y ; Z/pk) ⊗ H∗(Y ; Z/p) → H∗(Y ; Z/p).

Therefore, upd

lies in the image of the reduction H∗(Y ; Z/pd+1) → H∗(Y ; Fp).
The diagram of short exact sequences

0 ��
Z

·pd

��

·pd+1
��
Z

�� Z/pd+1

����

�� 0

0 ��
Z

·p ��
Z

�� Z/p �� 0
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induces the commutative diagram of exact rows:

0 → Tor(H∗+1(Y ; Z∧
p ); Z/pd+1)

��

�� H∗+1(Y ; Z∧
p )

·pd

��

·pd+1
�� H∗+1(Y ; Z∧

p )

0 → Tor(H∗+1(Y ; Z∧
p ); Z/p) �� H∗+1(Y ; Z∧

p )
·p �� H∗+1(Y ; Z∧

p )

Since pd · TpH
∗(Y ; Z∧

p ) = 0, the left vertical morphism is zero. Consider now the two
universal coefficient sequences respectively relating the cohomology of Y with coefficients
in Fp and in Z/pd+1 to the cohomology of Y with coefficients in Z

∧
p :

0 → H∗(Y ; Z∧
p ) ⊗ Z/pd+1

��

�� H∗(Y ; Z/pd+1)

��

�� Tor(H∗+1(Y ; Z∧
p ); Z/pd+1) → 0

��
0 → H∗(Y ; Z∧

p ) ⊗ Fp
ρ �� H∗(Y ; Fp)

∂ �� Tor(H∗+1(Y ; Z∧
p ); Z/p) → 0

where the vertical morphisms are induced by the mod p reduction Z/pd+1 → Z/p. The
element upd

lies in the image of the mod p reduction and we have shown that the mor-
phism between the torsion groups on the right is zero. Therefore, ∂(upd

) = 0, which
implies that upd

is in Im ρ. �

Lemma 2.3. Let Y be a connected space. If the graded Fp-algebra H∗(Y ; Fp) is
Noetherian and if H∗(Y ; Z∧

p ) has bounded torsion, then H∗(Y ; Fp) is a finitely generated
module over H∗(Y ; Z∧

p ) ⊗ Fp.

Proof. This is clear since Lemma 2.2 implies that H∗(Y ; Fp) is integral over Im ρ.
Explicitly, let us choose homogeneous generators w1, . . . , wn of the graded algebra
H∗(Y ; Fp) and consider the finite set W of monomials of the form wr1

1 · · ·wrn
n with

0 � ri < pd. We show that the set W generates H∗(Y ; Fp) as a module over
H∗(Y ; Z∧

p ) ⊗ Fp. Consider any monomial m = ws1
1 · · ·wsn

n in H∗(Y ; Fp). Writing the
exponents si = ri + pdti with 0 � ri < pd, we express m = xpd · w for a monomial
w in W and a homogeneous element x. By Lemma 2.2, xpd

lifts to an element a in
H∗(Y ; Z∧

p ) ⊗ Fp and m = ρ(a) · w. �

Theorem 2.4. Let Y be a connected space with finite fundamental group. The graded
Z

∧
p -algebra H∗(Y ; Z∧

p ) is then Noetherian if and only if the graded Fp-algebra H∗(Y ; Fp)
is Noetherian and the torsion in H∗(Y ; Z∧

p ) is bounded.

Proof. Assume first that H∗(Y ; Z∧
p ) is a Noetherian Z

∧
p -algebra. By Lemma 2.1,

H∗(Y ; Fp) is a finitely generated module over H∗(Y ; Z∧
p ) ⊗ Fp. Since H∗(Y ; Z∧

p ) ⊗ Fp

is a Noetherian Fp-algebra, it follows from [5, Proposition 7.2] that H∗(Y ; Fp) is also a
Noetherian Fp-algebra. The torsion part TpH

∗(Y ; Z∧
p ) is an ideal of the Noetherian alge-

bra H∗(Y ; Z∧
p ) and hence is finitely generated. The order of the torsion is thus bounded

by the order of its generators.
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Suppose now that H∗(Y ; Fp) is a Noetherian Fp-algebra and that the torsion in
H∗(Y ; Z∧

p ) is bounded. Then, by Lemma 2.3, H∗(Y ; Fp) is a finitely generated module
over H∗(Y ; Z∧

p ) ⊗ Fp. As a consequence of the graded version of the so-called Eakin–
Nagata Theorem (see Proposition A 1), we infer that the graded subring H∗(Y ; Z∧

p )⊗Fp

of H∗(Y ; Fp) is also Noetherian. Since H∗(Y ; Fp) is finitely generated, Proposition 1.3
shows that Hn(Y ; Z∧

p ) is a finitely generated Z
∧
p -module, and is hence Hausdorff, in each

degree. Thus H∗(Y ; Z∧
p ) is a Noetherian Z

∧
p -algebra by Corollary A 3. �

We end this section with an example showing that Theorem 2.4 does not hold without
the condition on torsion.

Example 2.5. In [2] Aguadé, Broto and Notbohm constructed spaces Xk(r) that, for
any odd prime p with r|p − 1 and k � 0, satisfy

H∗(Xk(r); Fp) ∼= Fp[x2r] ⊗ E(β(k+1)x2r),

where β(k+1) denotes the Bockstein of order k + 1. Observe that H∗(Xk(r); Fp) is a
Noetherian Fp-algebra. The torsion of H∗(Xk(r); Z∧

p ) is unbounded by [2, Remark 5.8].
Theorem 2.4 shows that the algebra H∗(Xk(r); Z∧

p ) is not Noetherian.

3. Cohomology with twisted coefficients

In this section we work over a ring R that is either Z
∧
p or Fp. Let Y be a connected

space whose fundamental group is a finite p-group. Let M be an R[π1Y ]-module that
is a finitely generated R-module. We aim to show that the cohomology with twisted
coefficients H∗(Y ; M) is Noetherian as a module over H∗(Y ; R) if H∗(Y, R) is Noetherian.
We shall deal separately with the field of p elements and with the ring of p-adic integers.

We start with a standard Noetherianity result.

Lemma 3.1. Let R = Z
∧
p or Fp. Let Y be a space and let 0 → N → M → Q → 0 be a

short exact sequence of R[π1Y ]-modules. If both H∗(Y ; N) and H∗(Y ; Q) are Noetherian
modules over H∗(Y ; R), then so is H∗(Y ; M).

Proof. The long exact sequence in cohomology induced by the short exact sequence
of modules is one of H∗(Y ; R)-modules. It exhibits H∗(Y ; M) as an extension of a sub-
module of H∗(Y ; Q) by a quotient of H∗(Y ; N). �

3.1. The case of Fp-vector spaces

To prove the next result we follow Minh and Symonds’s approach for profinite groups
[20, Lemma 1].

Theorem 3.2. Let Y be a connected space such that π1Y is a finite p-group and let
M be a finite Fp[π1Y ]-module. If the graded Fp-algebra H∗(Y ; Fp) is Noetherian, then
H∗(Y ; M) is Noetherian as a module over H∗(Y ; Fp).

Proof. We use induction on dimFp M . Since G = π1(Y ) is a finite p-group, the invari-
ant submodule MG is not trivial when M is not trivial. The induction step follows by
applying Lemma 3.1 to the short exact sequence 0 → MG → M → M/MG → 0. �
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3.2. The case of Z
∧
p -modules

In this section we consider the cohomology with twisted coefficients H∗(Y ; M) of a
connected space Y , where M is a Z

∧
p [π1Y ]-module that is finitely generated over Z

∧
p . In

a first step, let M be a Z
∧
p [π1Y ]-module that is finite (meaning finite as a set).

Lemma 3.3. Let Y be a connected space such that π1Y is a finite p-group. Let M

be a Z
∧
p [π1Y ]-module that is finite. If the graded Z

∧
p -algebra H∗(Y ; Z∧

p ) is Noetherian,
then H∗(Y ; M) is Noetherian as a module over H∗(Y ; Z∧

p ).

Proof. The module M being finite, M is a finite abelian p-group. We perform an
induction on the exponent e of M . When e = 1, the module M has the structure of
an Fp-vector space. As H∗(Y ; Fp) is a Noetherian Fp-algebra by Theorem 2.4, we know
from Theorem 3.2 that H∗(Y ; M) is Noetherian as a module over H∗(Y ; Fp). The Noethe-
rian Z

∧
p -algebra H∗(Y ; Z∧

p ) acts on H∗(Y ; M) through H∗(Y ; Z∧
p ) ⊗ Fp. By Lemma 2.1,

H∗(Y ; Fp) is finitely generated as an H∗(Y ; Z∧
p )-module. Therefore, H∗(Y ; M) is a

Noetherian module over H∗(Y ; Z∧
p ).

Let us now assume that e > 1 and consider the short exact sequence

0 → Mp → M → Q → 0,

where Mp is the submodule of M consisting of elements of order 1 or p. The induction
step follows from Lemma 3.1. �

Remark 3.4. In the case of trivial coefficient modules our main tool was the universal
coefficient exact sequence, but this does not exist in general for twisted coefficients. One
basic counter-example is given by the module M = Fp[G] for a finite group G whose
order is divisible by p. Then H∗(BG; M) is zero in positive degrees and the universal
coefficient formula does not hold.

In a second step we consider cohomology with coefficients in a Z
∧
p [π1Y ]-module M ,

which is free of finite rank over Z
∧
p .

Lemma 3.5. Let Y be a connected space such that π1Y is a finite p-group. Let M be
a Z

∧
p [π1Y ]-module that is free of finite rank over Z

∧
p . If the graded Z

∧
p -algebra H∗(Y ; Z∧

p )
is Noetherian, then H∗(Y ; M) is Noetherian as a module over H∗(Y ; Z∧

p ).

Proof. The short exact sequence 0 → M
·p−→ M → M ⊗ Fp → 0 induces in cohom-

ology a long exact sequence of H∗(Y ; Z∧
p )-modules. We see that H∗(Y ; M) ⊗ Fp is

a sub-H∗(Y ; Z∧
p )-module of H∗(Y ; M ⊗ Fp). Since the action of H∗(Y ; Z∧

p ) on both
H∗(Y ; M ⊗ Fp) and H∗(Y ; M) ⊗ Fp factors through H∗(Y ; Z∧

p ) ⊗ Fp, it follows that
H∗(Y ; M) ⊗ Fp is a sub-H∗(Y ; Z∧

p ) ⊗ Fp-module of H∗(Y ; M ⊗ Fp).
This takes us back to the world of Fp-vector spaces. We know from Theorem 3.2

that H∗(Y ; M ⊗ Fp) is a Noetherian module over H∗(Y ; Fp), where H∗(Y ; Fp) is a
Noetherian algebra by Theorem 2.4. As this algebra is a finitely generated module over
H∗(Y ; Z∧

p ) ⊗ Fp by Lemma 2.1, we infer that H∗(Y ; M ⊗Fp) is a Noetherian module over
H∗(Y ; Z∧

p )⊗Fp. Therefore, H∗(Y ; M)⊗Fp is a Noetherian module over H∗(Y ; Z∧
p )⊗Fp as
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well, and since H∗(Y ; Z∧
p ) acts on H∗(Y ; M)⊗Fp via H∗(Y ; Z∧

p )⊗Fp, it is a Noetherian
module over H∗(Y ; Z∧

p ).
Set A∗ = H∗(Y ; Z∧

p ) and N∗ = H∗(Y ; M). Both are finitely generated Z
∧
p -modules

in each degree by Proposition 1.3 and are thus also Hausdorff and complete. We then
conclude by applying Proposition A 2. �

We now prove our main theorem.

Theorem 3.6. Let Y be a connected space such that π1Y is a finite p-group. Let
M be a Z

∧
p [π1Y ]-module that is finitely generated over Z

∧
p . If the graded Z

∧
p -algebra

H∗(Y ; Z∧
p ) is Noetherian, then H∗(Y ; M) is Noetherian as a module over H∗(Y ; Z∧

p ).

Proof. Let TM be the torsion submodule of M and consider the short exact sequence
of Z

∧
p [π1Y ]-modules 0 → TM → M → Q → 0. We know from Lemma 3.3 that

H∗(Y ; TM) is a Noetherian H∗(Y ; Z∧
p )-module and from Lemma 3.5 that H∗(Y ; Q)

is as well. We conclude by using Lemma 3.1. �

Remark 3.7. Our main theorem assumes only that the fundamental group is a finite p-
group. One could try to relax this assumption with transfer arguments, requiring a version
of the transfer with twisted coefficients. However, recent work of Levi and Ragnarsson
[18, Proposition 3.1], in the context of p-local finite group theory, provides an example
showing that such a transfer might not have, in general, the properties we need when the
fundamental group of the space is not a p-group.

4. The case of p-compact groups and p-local finite groups

We arrive at the promised application to p-compact groups and p-local finite groups.
By definition, a p-compact group is a mod p finite loop space X = ΩBX, where the
‘classifying space’ BX is p-complete [13].

Lemma 4.1. Let X be a p-compact group. Then the p-torsion in H∗(BX; Z∧
p ) is

bounded.

Proof. By [13, Proposition 9.9], any p-compact group admits a maximal toral p-
compact subgroup S such that ι : BS → BX is a monomorphism and the Euler charac-
teristic χ of the homotopy fibre is prime to p (see [13, proof of Theorem 2.4, p. 431]).
The Euler characteristic is the alternating sum of the ranks of the Fp-homology groups.
Dwyer constructed a transfer map τ : Σ∞BX → Σ∞BS in [12] such that ι ◦ τ induces
multiplication by χ on mod p cohomology. This is an isomorphism, so that the homotopy
cofibre C of ι ◦ τ has trivial mod p cohomology.

Moreover, both BX and BS have finite mod p cohomology in each degree and finite
fundamental group [13, Lemma 2.1]. Proposition 1.3 applies, so, in any degree, the p-
adic cohomology modules of BX and BS are finitely generated over Z

∧
p . The long exact

sequence in cohomology associated to a cofibration then shows that the Z
∧
p -modules

Hn(C; Z∧
p ) are finitely generated for all n. Since H∗(C; Fp) is trivial, it follows from the
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universal coefficient exact sequence (1.1) that H∗(C; Z∧
p ) ⊗ Fp is trivial as well. We con-

clude, by the Nakayama Lemma, that H∗(C; Z∧
p ) is trivial, i.e. ι◦τ also induces an isomor-

phism in cohomology with p-adic coefficients. Therefore, ι∗ : H∗(BX; Z∧
p ) → H∗(BS; Z∧

p )
is a monomorphism. It is thus sufficient to show that H∗(BS; Z∧

p ) has bounded torsion.
Now, a toral p-compact group S can be constructed, up to p-completion, as an extension

of a finite p-group P and a discrete torus H =
⊕

Zp∞ . The fibration

BH∧
p � K

( ⊕
Z

∧
p , 2

)
→ BS → BP

yields a finite covering BH∧
p → BS, and a classical transfer argument then shows

that multiplication by |P | on H∗(BS; Z∧
p ) factors through the torsion-free module

H∗(BH∧
p ; Z∧

p ). �

Theorem 4.2. Let X be a p-compact group, let M be a finite Fp[π1BX]-module, and
let N be a Z

∧
p [π1BX]-module that is finitely generated over Z

∧
p . Then

(1) the Z
∧
p -algebra H∗(BX; Z∧

p ) is Noetherian;

(2) the module H∗(BX; M) is Noetherian over H∗(BX; Fp);

(3) the module H∗(BX; N) is Noetherian over H∗(BX; Z∧
p ).

Proof. The main theorem of Dwyer and Wilkerson [13, Theorem 2.4] asserts that
H∗(BX; Fp) is Noetherian. Lemma 4.1 allows us to apply our Theorem 2.4 to prove the
first claim. The second claim then follows from Theorem 3.2 because π1BX is a finite
p-group [13, Lemma 2.1]. Finally, Theorem 3.6 implies the third claim. �

Remark 4.3. Let us consider the case of BO(n) at the prime 2 (the fundamental group
is cyclic of order 2). Brown made an explicit computation of the integral cohomology
in [10], proving that the square of any even Stiefel–Whitney class w2

2i belongs to the image
of ρ, and the technique we use in Lemma 2.3 is somewhat inspired by his computations.
Even though the relations in the mod p cohomology of an arbitrary p-compact group
(one which is not p-torsion free) make it difficult to exhibit explicit generators for the
p-adic cohomology, Theorem 4.2 (1) gains qualitative control over it.

As for twisted coefficients, let Z
∨ be a free abelian group of rank 1, endowed with the

sign action of the fundamental group C2. In [11, Theorem 1] Čadek exhibits an explicit
finite set of generators of H∗(BO(n); Z∨) as a module over H∗(BO(n); Z). This is one
of the few available explicit computations illustrating our results.

In [9] Broto, Levi and Oliver defined the concept of a p-local finite group. It consists
of a triple (S, F ,L) where S is a finite p-group and F and L are two categories whose
objects are subgroups of S. The category F models abstract conjugacy relations among
the subgroups of S, and L is an extension of F with enough information to define a
classifying space |L|∧p that behaves like the p-completed classifying space of a finite group.
In fact, to any finite group G corresponds a p-local finite group with |L|∧p � (BG)∧

p , but
there are also other ‘exotic’ p-local finite groups.
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Lemma 4.4. Let (S, F ,L) be a p-local finite group. The p-torsion in H∗(|L|∧p ; Z∧
p ) is

then bounded.

Proof. In [9, p. 815] Broto, Levi and Oliver show, following an idea due to Linckel-
mann and Webb (see also [23]), that the suspension spectrum Σ∞(|L|∧p ) is a retract of
Σ∞BS. Since the order of S annihilates all cohomology groups of BS, the same holds
for H∗(|L|∧p ; Z∧

p ). �

Theorem 4.5. Let (S, F ,L) be a p-local finite group, let M be a finite Fp[π1(|L|∧p )]-
module, and let N be a Z

∧
p [π1(|L|∧p )]-module that is finitely generated over Z

∧
p . Then

(1) the Z
∧
p -algebra H∗(|L|∧p ; Z∧

p ) is Noetherian;

(2) the module H∗(|L|∧p ; M) is Noetherian over H∗(|L|∧p ; Fp);

(3) the module H∗(|L|∧p ; N) is Noetherian over H∗(|L|∧p ; Z∧
p ).

Proof. We follow the same steps we took for p-compact groups in Theorem 4.2. The
first ingredient is the stable elements theorem [9, Theorem B], which also shows that
H∗(|L|∧p ; Fp) is Noetherian. We just proved that the torsion in H∗(|L|∧p ; Z∧

p ) is bounded.
Moreover, the fundamental group of |L|∧p is a finite p-group by [9, Proposition 1.12]. �

Appendix A

This short appendix deals with Noetherianity in the graded case over the p-adics. We
start, however, with a more general result that is probably well known to the experts:
the graded Eakin–Nagata Theorem. The non-graded version can be found, for example,
in [19, Theorem 3.7 (i)].

Proposition A 1. Let A∗ be a graded subring of B∗. Assume that B∗ is Noetherian
as a ring and finitely generated as an A∗-module. Then A∗ is also a Noetherian ring.

Proof. By [19, Theorem 13.1], B0 is Noetherian and B∗ is a finitely generated
B0-algebra. Moreover, B0 is a finitely generated A0-module and therefore B∗ is a finitely
generated A0-algebra. Also, A0 is Noetherian by the classical Eakin–Nagata Theorem [19,
Theorem 3.7 (i)]. Applying [5, Proposition 7.8] to the inclusions A0 ⊂ A∗ ⊂ B∗, we obtain
that A∗ is a finitely generated A0-algebra. Again by [19, Theorem 13.1], A∗ is a Noethe-
rian ring. �

The following technical proposition allows us to deduce Noetherianity over the p-adics
from the Noetherianity of the mod p reduction.

Proposition A 2. Let A∗ be a graded Z
∧
p -algebra such that in each degree Ak is

complete for the p-adic topology. Let N∗ be a graded A∗-module such that for all k, Nk

is Hausdorff for the p-adic topology. If N∗ ⊗Fp is a Noetherian A∗-module, then so is N∗.
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Proof. Let us choose homogeneous elements ν1, . . . , νt ∈ N∗ such that ν1⊗1, . . . , νt⊗1
generate N∗⊗Fp as an A∗-module. We claim that ν1, . . . , νt generate N∗ as an A∗-module.
Given n ∈ N∗ we may write n ⊗ 1 =

∑
a0

i (νi ⊗ 1) for some a0
i ∈ A∗. Define n0 =

∑
a0

i νi

and notice that n − n0 ∈ pN∗. Thus, there exists an element m1 ∈ N∗, homogeneous
of degree at most deg n, such that n − n0 = pm1. We iterate the procedure and find
elements a1

i ∈ A∗ such that m1 ⊗ 1 =
∑

a1
i (νi ⊗ 1). We define

n1 = n0 + p
∑

a1
i νi =

∑
(a0

i + pa1
i )νi.

In this way we construct, for any i, Cauchy sequences of coefficients (a0
i +pa1

i +· · ·+pkak
i )k

in A∗. By completeness this sequence converges to some ai ∈ A∗. Since N∗ is Hausdorff,
the element

∑
aiνi is equal to n. �

In the following corollary, the assumption that A∗ be connected, i.e. A0 = Z
∧
p , is

important.

Corollary A 3. Let A∗ be a graded connected Hausdorff Z
∧
p -algebra. If A∗ ⊗ Fp is a

Noetherian Fp-algebra, then A∗ is a Noetherian Z
∧
p -algebra.

Proof. Since Z
∧
p is Noetherian and A∗ is connected, A∗ is a Noetherian Z

∧
p -algebra if

and only if A∗ is a finitely generated Z
∧
p -algebra [19, Theorem 13.1]. Note that A∗ ⊗ Fp

is also a Noetherian Z
∧
p -algebra via the mod p reduction Z

∧
p → Fp. Let us choose homo-

geneous elements γ1, . . . , γn ∈ A∗ such that γ1 ⊗ 1, . . . , γn ⊗ 1 generate A∗ ⊗ Fp as a
Z

∧
p -algebra. For a fixed k � 0, Ak ⊗ Fp is generated as a Z

∧
p -module by the monomi-

als (γ1 ⊗ 1)e1 · · · (γn ⊗ 1)en with
∑n

i=1 |γi|ei = k. Since Ak is a Hausdorff Z
∧
p -module,

the proof of Proposition A 2 shows that Ak is generated by the monomials γe1
1 · · · γen

n

with
∑n

i=1 |γi|ei = k. This shows that A∗ is generated as a Z
∧
p -algebra by the elements

γ1, . . . , γn ∈ A∗, and therefore A∗ is a Noetherian Z
∧
p -algebra. �

Note added in proof

The first part of the statement in Proposition 1.3 is true without the finiteness assump-
tion on π1Y . Indeed, if the mod p cohomology is degree-wise finite, then the integral
cohomology Hn(Y ; Z∧

p ) is equal to the limit limk Hn(Y ; Z/pk), and hence is complete.
This implies that the finiteness assumption on the fundamental group is not needed in
Theorem 2.4.

Bill Dwyer pointed out that the second part of Proposition 1.3 is true under the
alternative assumption that π1Y is q-divisible for q 	= p, in particular, as soon as Y is
p-complete. Indeed, this hypothesis ensures that π1Y acts as a p-group on a finite vector
space. As a consequence, Theorem 3.6 holds true with this weaker hypothesis.
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