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SPECIAL (p;7) RADICALS

J. D. McKNIGHT, JR. AND GARY L. MUSSER

1. Introduction. In [3], the study of (p;¢) radicals was initiated. In this
paper, the integral polynomials p (x) and ¢(x) which determine the Jacobson
radical are characterized and the Jacobson radical is shown to be the only
semiprime (p;q) radical for which all fields are semisimple. Also, it is observed
that the prime, nil, and Brown-McCoy radicals are not (p;¢) radicals. To show
that the semiprime (p;q) radicals are special and that they can be determined
by subclasses of the class of primitive rings, a classification theorem for
(p;q)-regular primitive rings is given. Finally, it is shown that the collection of
semiprime (p;g) radicals and the collection of semiprime (p;l) radicals
coincide.

2. Preliminaries. Let p(x) and g(x) be integral polynomials and R be an
associative ring. An element » € R is (p;q)-regular if r € p(r)Rq(r), and R is a
(p;q)-regular ring if every element of R is (p;q)-regular. In [3], it is shown that
every associative ring R contains a largest (p;q)-regular ideal (p (x)Rq(x)) and
that the function which assigns the ideal (p (x)Rq(x)) to the ring R is a radical
function in the sense of Amitsur and Kurosh. Moreover, A. H. Ortiz has shown
(see [3]) that a (p;q) radical is semiprime (contains the prime radical) if and
only if the constant terms of p (x) and ¢(x) are ==1; the Jacobson radical J(R)
is the semiprime (p;q) radical given by ((x + 1)R). It is easy to see that all
semiprime (p;q¢) radicals are hereditary [3] and, hence, supernilpotent. We
shall study the collection of semiprime (p;¢) radicals in this paper.

The word primitive unmodified means right primitive; R-module means
right R-module.

3. The Jacobson radical. To begin the characterization of the Jacobson
radical in the collection of all semiprime (p;q) radicals, we prove that J(R)
is the smallest such radical.

LEmma 1. If p(0) = 1, then ((x + 1)R) = ((x + 1)p(x)R) for all rings R.

Proof. That ((x + 1)p(x)R) C ((x 4+ 1)R) is obvious. Now, if 7 € ((x + 1)R)
and p(x) = f (x) + 1, where f (x) has x as a factor, then f (r) € ((x + 1)R)
and, hence, f (r) € (f () + 1)R. By [3, Lemma 4], we see that R = p(r)R, or
(r + 1)R = (r + 1)p(r)R. Therefore, ((x + 1)R) C ((x + 1)p(x)R).
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LemMA 2. If p(0) = 1, then ((x + 1)R) C (p(x)R) for all rings R.
Proof. By [3, Theorem 3] and Lemma 1, we know that

(e + DR)YN (p)R) = ((x + Dp(x)R) = ((x + 1)R)
for all rings R. Hence, ((x 4+ 1)R) C (p(x)R).

Similarly, we can show that ((x + 1)R) C (Rq(x)) for all rings R whenever
q(0) = 1.

TuEOREM 3. If (p;q) is a semiprime radical, then J(R) C (p(x)Rq(x)) for
all rings R.

Proof. J(R) = ((x + DR) S (p)R) M (Rg(x)) = (p(x)Rq(x)).

COROLLARY 4. Any radical containing the prime radical and properly contained
in the Jacobson radical is not a (p;q) radical.

We first characterize the Jacobson radical in the collection of semiprime
(p;1) radicals; the characterization of J(R) in the collection of semiprime
(p;q) radicals is a consequence of this result and Corollary 16.

THEOREM 5. If p(0) = == 1, then the following are equivalent:

1) (p(x)R) = J(R) for all rings R.

2) (p(x)F) = (0) for all fields F.

B) px) = (ax + 1)p'(x), where a # 0 and, for each prime divisor m of a,
there is an integer n such that m divides p (n).

Proof. That (1) implies (2) is obvious.

To prove that (2) implies (3), we note that since (p(x)Q) = (0), where Q
is the field of rational numbers, p (x) has a linear factor over Q (hence, over
the integers); therefore, p(x) = (ax + 1)p’ (x) for some nonzero integer ¢ and
integral polynomial p’(x). Now, if m is any prime dividing @, then since
(p(x)R) = (0) for R = GF(m), there is an integer # such that m divides p (n).

To prove that (3) implies (1), we first note that if ¢« = =1, the result is
obvious from Lemma 1. If ¢ ## =1, assume that (3) holds and that

J(S) C (p(x)S) (strict containment)

for some ring S. Then (px)T) =7 and J(T) = (0) for the ring
T = (p(x)S)/J(S) = (0). Since J(T') = (0), the ring 7" is a subdirect sum
of primitive rings 7. Because the projection map 7" — 7T is an epimorphism,
we know that (p(x)7s) = 1. Since 1 is a primitive ring, it is a dense ring of
linear transformations on a vector space V' over a division ring D. In the
polynomial p(x) = (ax + 1)p'(x), if a is nonzero in D, then for each nonzero
v in V there exists ¢ in 7 such that vt = v(—a)~! 5 0. Since (p(x)1s) = T,
we see that ¢t = p(¢)t' for some ¢ in T, so vt = vp(t)t = v(at + 1)p' () =
(avt + v)p’ (t)f' = 0, which is a contradiction. Now, suppose that m is zero
in D for some prime divisor m of a. Then for the number # of the hypothesis
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there exists an s in 7T such that vs = v # 0; moreover, vs* = vn*, for
k=1,2,...,since s is a linear transformation. As before, we may find some
s"in T for which vs = vp(s)s’ = vp(n)s’ = 0, which is a contradiction. Hence,
(px)R) = J(R) for all rings R.

4. The main theorem.
THEOREM 6. If R is a (p;1)-regular primitive ring, where
px) =14 awx+ ...+ anx™,

then either (1) R is a dense ring of linear transformations on a vector space V over a
division ring D of characteristic ¢, where ¢ divides a; 1 = 1,2,...,m, or (2) R
is a complete ring of n x n matrices over a division ring, where n < m and for
each r in R, the matrix p(r) is nonsingular. Conversely, if either (1') R is a ring
of linear transformations on a vector space over a division ring of characteristic c,
where ¢ divides a;, 1 =1, 2,...,m, or (2') R is a complete ring of n xn
matrices over o diwvision ring and p(r) is nonsingular for each v in R, then R 1is
(p;1)-regular.

Proof. Suppose that R is a (p;1)-regular primitive ring. Then R is a dense
ring of linear transformations on a vector space 1" over a division ring D. If
the characteristic of D does not divide a;, 2 = 1, 2, ..., m, then there is a
largest positive integer £ + 1 such that a1 % 0in D. If V has & + 1 linearly
independent elements vy, vy, . . ., ¥, then by the density of R there exists an 7
in R such that

Yoy = U1, V1 = U2y . o ooy U1V = Ui, Ut = — (l/dk+1) @o+ a1+ ...+ W)

Since R is (p;l1)-regular, » € p(r)R and 0 5 v; = vor = vep(r)s = 0-s = 0.
Therefore, there are at most & linearly independent elements of 7 and R is a
complete ring of # x # matrices over a division ring, where #» =< k. Since
r € p(r)R for all » in R, [3, Lemma 4] implies that R = p ()R and, hence,

= p(r)s for some s in R. Conversely, if (1’) holds, then » = p(r)r for all » in
R, and if (2’) holds, 1 = p(r)s, which implies that » = p(r)sr.

If M is a faithful irreducible R-module for the primitive ring R and if I is a
nonzero ideal of R, then M is also a faithful irreducible I-module. R and I are
dense rings of linear transformations on M regarded, respectively, as a vector
space over the commuting ring Cr(M) and as a vector space over C;(M).
Evidently, Cr(M) C C;(M), so the characteristics of Cz(M) and C;(M) are
the same. Thus, we can prove the following.

LEMMA 7. If R is a primitive ring and p(0) = =1, then R is (p;1)-regular or
(p;1)-semisimple.

Proof. Suppose that I = (p(x)R) and that I is not zero. Since R is primitive,
R is a dense ring of linear transformations on a vector space V over a division
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ring D. Also, I is a dense ring of linear transformations on V over a division
ring D’ whose characteristic is the same as the characteristic of D. Since I is
(p;1)-regular, Theorem 6 shows that either (1) the common characteristic of D
and D’ divides the nonconstant coefficients of p(x), or (2) I is a complete
ring of # x #n matrices over D’. If (1) holds, then by Theorem 6 (1’), the ring
R is (p;1)-regular. If (2) holds, then I has a unity and, hence, R = I® J for
some ideal J of R. However, since R is prime and IJ = (0), it follows that
J = (0). Therefore, I = R.

THEOREM 8. If p(0) = 1, then (p(x)R) = Nal{Pex: Py is primitive and R/P,
is (p;1)-semisimple}.

Proof. Since

[ ®)R) + Pa]/Pa = (p(x)R)/[(p (®)R) N Pd],

the ring [(p(x)R) + P,]/P. is both (p;1)-semisimple and (p;l1)-regular;
hence, (p(x)R) C P,. Therefore, (p(x)R) € N.P.. Now, suppose that
r ¢ (p(x)R) and that p(x) = 1 + awx + ...+ a,x™ Then (r), the two-sided
ideal generated by 7, is not (p;1)-regular. Hence, there is an s in (r) such that
s € p(s)R. By Zorn’s Lemma, there exists a modular right ideal M, maximal
with respect to containing p(s)R and not containing s, where the modular
element is ais + a2 + ...+ ans™ Moreover, M, is a maximal modular
right ideal in R; for, if I is a right ideal of R and I properly contains M, then
the statements s € I, p(s)R C I, and »(0) = 1 imply that R = I. Now, M,
contains the primitive ideal Py, = (M,:R), where

(Mg:R) = {r:7r € Rand Rr C M,}.

Since R/P; is a primitive ring, by Lemma 7 it is either (p;l)-regular or
(p;1)-semisimple. If R/P, is (p;l)-regular, then s + P, € p(s + P,)(R/Py),
or s — p(s)t € P, for some ¢ in R. This last relation and the fact that
p(s)R C M, imply that s € M, which is a contradiction. Therefore, R/P; is
(p;1)-semisimple; moreover, 7 is not contained in P, since s ¢ P,. Hence,
7 @ Na{Pa: P, is primitive and R/P, is (p;1)-semisimple}.

5. Special (p;q) radicals. A class M of rings is special if M satisfies the
three conditions (Andrunakievic [1]):
S1: Every ring in I is a prime ring.
S52: Every nonzero ideal of a ring in I is a ring in .
S3: If I'is a ring of M and I is an ideal of a ring R, then R/I* is a ring of IN,
where I* is the two-sided annihilator of 1.

Our use of the following formulation in the proof of Theorem 10 was
suggested by E. H. Connell.

LEMMA 9. 4 class M of rings is special if and only if I satisfies S1, S2 and
S8 If I € M and I is a large ideal of a ring R, then R € M. (I is a large ideal
of Rif I M J £ (0) for all nonzero ideals J of R).
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TuEOREM 10. If M 25 a special class of rings and p is a hereditary radical, then
the class W of rings of M that are p-semisimple is a special class.

Proof. It is immediate that S1 and S2 hold. To prove S3’, let I be a ring in N
and I be a large ideal of R. Since I € % € M and I is a special class, we have
R € M. Since [ is a large ideal of R and I M pR = pI = (0), we conclude that
pR = (0). Thus, R € .

COROLLARY 11. If p(0) = 1, then the class N of all (p;1)-semisimple primitive
rings is a special class.

Proof. In Theorem 10, let I be the class of primitive rings.

If 9 is a class of rings, we denote by Gm the upper radical determined by
M [2, p. 6]; if M is a special class, then the radical ©m is called a special radical.
Combining Theorem 8 and Corollary 11 we obtain a principal result.

THEOREM 12. If p(0) = = 1, then (p;1) s a special radical.

Proof. Let M = {R:R is a (p;1)-semisimple primitive ring}. Then by
[2, p. 139, Lemma 80], we conclude that &m (R) = Nafl,: R/I, € M} =
Nails: I, is a primitive ideal and R/, is (p;1)-semisimple} = (p(x)R) for
all rings R.

CorOLLARY 13. If p(0)q(0) = == 1, then (p;q) is a special radical; in fact, a
special class for which (p;q) is the upper radical is the union of the class of
(p;1)-semisimple right-primitive rings and the class of (1;q)-semisimple
left-primitive rings.

Proof. Since (p;1) is a special radical and, as interchanging right and left
primitivity in previous reasoning shows, so is (1;¢), by [4, Lemma 6] and
[3, Theorem 3], we have [(»;1) A (I;)](R) = (Pp(x)R) N (Rg(x)) =
(p(x)Rq(x)) = (p;q)(R). Therefore, by [4, Proposition 11] we have
(p;q) = Smyn, where M = {R: Risa (p;1)-semisimple right-primitive ring}
and N = {R: Ris a (1;q)-semisimple left-primitive ring}.

COROLLARY 14. If (p;q) = (p'iq’) on all right- and left-primitive rings, then
(psq) = (2'5q') on all rings.

Proof. If (p';¢'") £ (p;q), then we may assume that there is a ring R # (0)
such that R is (p’;¢’)-radical and (p;q)-semisimple. By [2, Lemma 80], R is a
subdirect sum of rings R, in I U N, where I and N are the classes defined
in the proof immediately above. Since R projects onto R, each R, is
(p';q")-radical, but being a member of MM \U N, itis (p;q)-semisimple and either
right or left primitive.

The next theorem is based on a conjecture of David M. Morris. It is
important here because it provides a simple method for completing the desired
characterization of J(R). It also eliminates the need to use more than one kind
of primitivity in discussing (p;¢)-radical rings.
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TueOREM 15. If p(0) = £ 1, then (p(x)R) = (Rp(x)) for all rings R.

Proof. Let R be a right-primitive ring. If R is (p;1)-regular, then Theorem
6 applies. If (1) of Theorem 6 holds, then clearly » € Rp(r) for all r in R. If (2)
holds and r € R, then r = p(r)s for some s in (p(x)R). But r = p(r)~ 1
p(r)r = p(r)~rp(r) = sp(r); hence, R is (1;p)-regular. If, on the other hand,
the right-primitive ring R is (1;p)-regular, it is a subdirect sum of left-primitive
rings R., each of which is (1;p)-regular. Moreover, if R is represented faithfully
as a ring of linear transformations on a vector space (a right R-module) over
a division ring D, and if each R, is represented correspondingly (for a left
R.-module) over a division ring D,, then the characteristics of D and D, are
the same. Consequently, we can obtain a coordinatewise computation, based
on the analogue of Theorem 6 for (1;p)-regular left-primitive rings R,, like the
computation just displayed; for, alternative (1) of the analogue is valid for all
R, or (2) is valid for all R,. Therefore, we can conclude that R is (p;1)-regular.

That the (p;1)-regular and (1;p)-regular left-primitive rings are the same,
follows in like manner. Applying Corollary 14, we see that (p;1) = (1;p).

CoroLLARY 16. If p(0) = &1 and ¢q0) = =1, then (p(x)Rq(x)) =
(P (x)g(x)R).

Proof. By [3, Theorem 3], we find that

(P ®)Rq(x)) = (p(x)R) N (Rg(x)) = (p)R) N (g)R) = (p(x)g(x)R).

Thus, since we can reduce the semiprime (p;g) radicals to semiprime (p;1)
radicals, we finally have the result sought from the outset.

TueoreMm 17. If p(0) = &= 1 and q(0) = & 1, then the following are
equivalent.
(1) (p(x)Rg(x)) = J(R) for all rings R.
(2) (p(x)Fq(x)) = (0) for all fields F.
B) px) = (ax + 1)p'(x) or g(x) = (ax + 1)¢' (x), where a % 0 and, for
each prime divisor m of a, there is an integer n such that m divides p (n)q(n).

Proof. This is immediate from Theorem 5 and Corollary 16.

CoroLLARY 18. (D. M Morris). If the leading and consiant coefficients of
p(x) and q(x) are £ 1, then (p(x)Rq(x)) = J(R) +f and only if (x £ 1)
divides p(x) or (x = 1) divides q(x).

COROLLARY 19. Any radical which properly contains the Jacobson radical and
which is zero on oll fields is not a (p;q) radical; hence, the Brown-McCoy radical
is not a (p;q) radical.

It is also interesting to notice that if (p;q) is a semiprime radical and
(p(x)Rq(x)) is contained between J(R) and the Brown-McCoy radical G(R)
of R, for all rings R, then (p(x)Rq(x)) = J(R) since J(F) = G(F) = 0 for
all fields F. Hence, J (R) is the only semiprime (p;q) radical that coincides with
the nil radical on rings with D.C.C. on left ideals [2, p. 43, Theorem 13].
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