
Can. J. Math., Vol. XXIV, No. 1,1972, pp. 38-44 

SPECIAL (p;q) RADICALS 

j . D. MCKNIGHT, JR. AND GARY L. MUSSER 

1. Introduction. In [3], the study of (p;q) radicals was initiated. In this 
paper, the integral polynomials p(x) and q(x) which determine the Jacobson 
radical are characterized and the Jacobson radical is shown to be the only 
semiprime (p',q) radical for which all fields are semisimple. Also, it is observed 
that the prime, nil, and Brown-McCoy radicals are not (p;q) radicals. To show 
that the semiprime (p;q) radicals are special and that they can be determined 
by subclasses of the class of primitive rings, a classification theorem for 
(p;q)-regular primitive rings is given. Finally, it is shown that the collection of 
semiprime (p\q) radicals and the collection of semiprime (p\l) radicals 
coincide. 

2. Preliminaries. Let p(x) and q(x) be integral polynomials and R be an 
associative ring. An element r Ç R is (p;q)-regular if r G p(r)Rq(r), and R is a 
(p;q)-regular ring if every element of R is (p;q)-regular. In [3], it is shown that 
every associative ring R contains a largest (p\q)-regular ideal (p(x)Rq(x)) and 
that the function which assigns the ideal (p(x)Rq(x)) to the ring R is a radical 
function in the sense of Amitsur and Kurosh. Moreover, A. H. Ortiz has shown 
(see [3]) that a (p;q) radical is semiprime (contains the prime radical) if and 
only if the constant terms of p(x) and q(x) are ± 1 ; the Jacobson radical J(R) 
is the semiprime (p',q) radical given by ((x + 1)R)- It is easy to see that all 
semiprime (p',q) radicals are hereditary [3] and, hence, supernilpotent. We 
shall study the collection of semiprime (p;q) radicals in this paper. 

The word primitive unmodified means right primitive; R-module means 
right R-module. 

3. The Jacobson radical. To begin the characterization of the Jacobson 
radical in the collection of all semiprime (p;q) radicals, we prove that J(R) 
is the smallest such radical. 

LEMMA 1. If p(0) = 1, then ((x + 1)R) = ((x + l)p(x)R) for all rings R. 

Proof. That ((x + l)p(x)R) Q((x+1)R) is obvious. Now, if r G ((x + 1)R) 
and p(x) = / (x) + 1, where / (x) has x as a factor, t h e n / (r) Ç ((x + l)R) 
and, hence,/ (r) 6 (/ (r) + 1)R. By [3, Lemma 4], we see that R = p(r)R, or 
(r + \)R = (r + l)p(r)R. Therefore, ((x + 1)R) ÇZ ((* + l)p(x)R). 
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LEMMA 2. Ifp(0) = 1, then ((x + 1)20 ç (p(x)R) for ail rings R. 

Proof. By [3, Theorem 3] and Lemma 1, we know that 

((* + 1)10 r\ (p(x)R) = ((x + l)p(x)R) = ((x + 1)2?) 

for all rings 2?. Hence, ((x + 1)R) Ç (p(x)R). 

Similarly, we can show that ((# + 1)20 Q (Rq(x)) for all rings R whenever 
2(0) = I-

THEOREM 3. If (p;q) is a semiprime radical, then J(R) Q (p(x)Rq(x)) for 
all rings R. 

Proof. J(R) = ((x + 1)20 Q (P(x)R) ^ (Rq(x)) = (p(x)Rq(x)). 

COROLLARY 4. Any radical containing the prime radical and properly contained 
in the Jacob son radical is not a (p;q) radical. 

We first characterize the Jacobson radical in the collection of semiprime 
(p;l) radicals; the characterization of J{R) in the collection of semiprime 
(p;q) radicals is a consequence of this result and Corollary 16. 

THEOREM 5. If p(0) = ± 1, then the following are equivalent: 
(1) (p(x)R) = J(R) for all rings R. 
(2) (p(x)F) = (0)for all fields F. 
(3) p(x) = (ax + l)p'(x), where a ^ 0 and, for each prime divisor m of a, 

there is an integer n such that m divides pin). 

Proof. That (1) implies (2) is obvious. 
To prove that (2) implies (3), we note that since (p(x)Q) = (0), where 0 

is the field of rational numbers, p(x) has a linear factor over 0 (hence, over 
the integers); therefore, p(x) = (ax + l)p'(x) for some nonzero integer a and 
integral polynomial pf(x). Now, if m is any prime dividing a, then since 
(p(x)R) = (0) for R = GF(m), there is an integer n such that m divides p(n). 

To prove that (3) implies (1), we first note that if a = ± 1 , the result is 
obvious from Lemma 1. If a ^ ± 1 , assume that (3) holds and that 

J(S) C (p(x)S) (strict containment) 

for some ring S. Then (p(x)T) = T and J(T) = (0) for the ring 
T = (p(x)S)/J(S) 9^ (0). Since J(T) = (0), the ring T is a subdirect sum 
of primitive rings T$. Because the projection map T —> 7^ is an epimorphism, 
we know that (p(x)Tp) = Tp. Since T$ is a primitive ring, it is a dense ring of 
linear transformations on a vector space V over a division ring D. In the 
polynomial p(x) = (ax + l)p'(x), if a is nonzero in D, then for each nonzero 
z/in F there exists t in T such that vt = v( — a)~l ^ 0. Since (p(x)Tp) = Tp, 
we see that t = p(t)tr for some t' in Tp, so vt = vp(t)t' = v(at + l)p''(t)tf = 
(avt + v)p' (t)tf = 0, which is a contradiction. Now, suppose that m is zero 
in D for some prime divisor m of a. Then for the number n of the hypothesis 
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there exists an 5 in T$ such that vs = vn ^ 0; moreover, vsk = vnk, for 
& = 1, 2, . . . , since s is a linear transformation. As before, we may find some 
sf in T$ for which vs = vp(s)s' = vp(n)sf = 0, which is a contradiction. Hence, 
(p(x)R) = / ( # ) for all rings i?. 

4. The main theorem. 

THEOREM 6. If R is a (p-,1)-regular primitive ring, where 

p(x) = 1 + axx + . . . + amxm, 

then either (1) R is a dense ring of linear transformations on a vector space V over a 
division ring D of characteristic c, where c divides au i = 1, 2, . . . , m, or (2) R 
is a complete ring ofnxn matrices over a division ring, where n < m and for 
each r in R, the matrix p(r) is nonsingular. Conversely, if either (Y) R is a ring 
of linear transformations on a vector space over a division ring of characteristic c, 
where c divides au i = 1, 2, . . . , m, or (2') R is a complete ring ofnxn 
matrices over a division ring and p(r) is nonsingular for each r in R, then R is 
{p'X)-regular. 

Proof. Suppose that R is a (£;l)-regular primitive ring. Then R is a dense 
ring of linear transformations on a vector space V over a division ring D. If 
the characteristic of D does not divide au i = 1, 2, . . . , m, then there is a 
largest positive integer k + 1 such that ak+1 ^ 0 in D. If V has k + 1 linearly 
independent elements v0, v1} . . . , vk, then by the density of R there exists an r 
in R such that 

v0r = vi, vxr = v2l . . . . , fl*_ir = vk, vkr = — (l/ak+1)(v0 + a&i + . . . + akvk). 

Since R is (p'X)-regular, r G p(r)R and 0 ^ Vi = v0r = v0p(r)s = 0-s = 0. 
Therefore, there are at most k linearly independent elements of V and R is a 
complete ring of n x n matrices over a division ring, where n ^ k. Since 
r 6 p(r)R for all r in R, [3, Lemma 4] implies that R = p(r)R and, hence, 
1 = p(r)s for some s in R. Conversely, if (V) holds, then r = p(r)r for all r in 
R, and if (2') holds, 1 = p(r)s, which implies that r = p(r)sr. 

If M is a faithful irreducible i^-module for the primitive ring R and if / is a 
nonzero ideal of R, then M is also a faithful irreducible /-module. R and I are 
dense rings of linear transformations on M regarded, respectively, as a vector 
space over the commuting ring CR(M) and as a vector space over Cj(M). 
Evidently, CR(M) C d(M), so the characteristics of CR(M) and C7(7kT) are 
the same. Thus, we can prove the following. 

LEMMA 7. If R is a primitive ring and p(0) = ± 1 , then R is (p'X-regular or 
(p'X-semisimple. 

Proof. Suppose that I = (p (x)R) and that / is not zero. Since R is primitive, 
R is a dense ring of linear transformations on a vector space V over a division 
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ring D. Also, / is a dense ring of linear transformations on V over a division 
ring D' whose characteristic is the same as the characteristic of D. Since / is 
(p;l)-regular, Theorem 6 shows that either (1) the common characteristic of D 
and D' divides the nonconstant coefficients of p(x), or (2) / is a complete 
ring of n x n matrices over Df. If (1) holds, then by Theorem 6 (1')» the ring 
R is (£;l)-regular. If (2) holds, then / has a unity and, hence, R = I© J for 
some ideal / of R. However, since R is prime and I J = (0), it follows that 
/ = (0). Therefore, I = R. 

THEOREM 8. If p(0) = 1, then (p(x)R) = na{Pa : P« is primitive and R/Pa 

is (p;l)-semisimple). 

Proof. Since 

[(p(x)R) + Pa]/Pa ^ (p(x)R)/[(p(x)R) H P J , 

the ring [(p(x)R) + Pa]/Pa is both (£;l)-semisimple and (p;l)-regular; 
hence, (p(x)R) Ç Pa. Therefore, (p(x)R) C P\aPa. Now, suppose that 
r (? (p(x)R) and that p(x) = 1 + a,\x + . . . + GW£m. Then (r), the two-sided 
ideal generated by r, is not (p;l)-regular. Hence, there is an 5 in (r) such that 
5 (? p(s)R. By Zorn's Lemma, there exists a modular right ideal Ms, maximal 
with respect to containing p{s)R and not containing s, where the modular 
element is a±s + a2s

2 + . . . + amsm. Moreover, Ms is a maximal modular 
right ideal in P ; for, if / is a right ideal of R and / properly contains Ms, then 
the statements s £ I, p(s)R C I, and p(0) = 1 imply that R = I. Now, Ms 

contains the primitive ideal Ps = (MS:R), where 

(MS:R) = {r: r e R and Rr C Ms}. 

Since R/Ps is a primitive ring, by Lemma 7 it is either (£;l)-regular or 
(p;l)-semisimple. If R/Ps is 0;l)-regular, then s + Ps £ pis + PS)(R/Ps), 
or s — p(s)t £ Psi for some 2 in P . This last relation and the fact that 
p(s)R C M, imply that 5 £ M"5, which is a contradiction. Therefore, R/Ps is 
(/?;1)-semisimple; moreover, r is not contained in Ps since s (? P s . Hence, 
r € Pla{P«: P« is primitive and R/Pa is (^;l)-semisimplej. 

5. Special (p ;q) radicals. A class 93? of rings is special if 93? satisfies the 
three conditions (Andrunakievic [1]): 

51: Every ring in 93? is a prime ring. 
52: Every nonzero ideal of a ring in 93? is a ring in 93?. 
53: If / is a ring of 93? and / is an ideal of a ring P , then R/I* is a ring of 93?, 

where /* is the two-sided annihilator of / . 

Our use of the following formulation in the proof of Theorem 10 was 
suggested by E. H. Connell. 

LEMMA 9. A class 93? of rings is special if and only if 9)? satisfies 51, 52 and 
53' : / / / G 93? and I is a large ideal of a ring P , then R £ 93?. (/ is a large ideal 
of R if I r\ J 7e (0) for all nonzero ideals J of R). 
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THEOREM 10. If 3)1 is a special class of rings and p is a hereditary radical, then 
the class 31 of rings of 3)1 that are p-semisimple is a special class. 

Proof. It is immediate that 51 and 52 hold. To prove 53' , let / be a ring in 31 
and / be a large ideal of R. Since / £ 31 ̂  3)1 and 3)1 is a special class, we have 
R G 3)1. Since / is a large ideal of R and I C\ pR = pi = (0), we conclude that 
PR = (0). Thus, R e 31. 

COROLLARY 11. If p(0) = 1, then the class 31 of all (p;l)-semisimple primitive 
rings is a special class. 

Proof. In Theorem 10, let 3JI be the class of primitive rings. 

If 3JI is a class of rings, we denote by ©arc the upper radical determined by 
3)1 [2, p. 6] ; if 3)1 is a special class, then the radical ©2ft is called a special radical. 
Combining Theorem 8 and Corollary 11 we obtain a principal result. 

THEOREM 12. If p(0) = ± 1, then (p',1) is a special radical. 

Proof. Let 3)1 = {R:R is a (^;l)-semisimple primitive ring}. Then by 
[2, p. 139, Lemma 80], we conclude that © ^ (R) = na{Ia: R/L G 3)1} = 
Da{Ia'- Ia is a primitive ideal and R/Ia is (^>;l)-semisimple} = (p(x)R) for 
all rings R. 

COROLLARY 13. If p(0)q(0) = ± 1, then (p;q) is a special radical; in fact, a 
special class for which (p;q) is the upper radical is the union of the class of 
(p',1)-semisimple right-primitive rings and the class of (l;q)-semisimple 
left-primitive rings. 

Proof. Since (p;l) is a special radical and, as interchanging right and left 
primitivity in previous reasoning shows, so is (l;g), by [4, Lemma 6] and 
[3, Theorem 3], we have [(p;l) A (l;q)](R) = (p(x)R) H (Rq(x)) = 
(p(x)Rq(x)) = (p;q)(R). Therefore, by [4, Proposition 11] we have 
(PiQ.) = ©s^u^i where 3)1 = {R: R is a (£;l)-semisimple right-primitive ring} 
and 31 = {R: R is a (l;g)-semisimple left-primitive ring}. 

COROLLARY 14. If (p;q) = (pf',q') on all right- and left-primitive rings, then 
(P'JQ.) = (P''#') on aM rings-

Proof. If (pr',qr) ^ (P',q), then we may assume that there is a ring R ^ (0) 
such that R is {pf ',q')-radical and (£;g)-semisimple. By [2, Lemma 80], R is a 
subdirect sum of rings Ra in 331 \J 31, where 3)1 and 31 are the classes denned 
in the proof immediately above. Since R projects onto Ra, each Ra is 
(p' jg')-radical, but being a member of 3)1 ^J 31, it is (p ;g)-semisimple and either 
right or left primitive. 

The next theorem is based on a conjecture of David M. Morris. It is 
important here because it provides a simple method for completing the desired 
characterization of J(R). It also eliminates the need to use more than one kind 
of primitivity in discussing (p;q)-radical rings. 
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THEOREM 15. If p(0) = =t 1, then (p(x)R) = (Rp(x)) for ail rings R. 

Proof. Let R be a right-primitive ring. If R is (£;l)-regular, then Theorem 
6 applies. If (1) of Theorem 6 holds, then clearly r G Rp(r) for all r in R. If (2) 
holds and r G R, then r = p(r)s for some 5 in (p(x)R). But r = p(r)~l-
p(r)r = p(r)~xrp(r) = sp(r); hence, R is (l;p)-regular. If, on the other hand, 
the right-primitive ring R is (1 ;p)-regular, it is a subdirect sum of left-primitive 
rings Ra, each of which is (1 ;p)-regular. Moreover, if R is represented faithfully 
as a ring of linear transformations on a vector space (a right i^-module) over 
a division ring D, and if each Ra is represented correspondingly (for a left 
i?a-module) over a division ring Da, then the characteristics of D and Da are 
the same. Consequently, we can obtain a coordinate wise computation, based 
on the analogue of Theorem 6 for (l;^>)-regular left-primitive rings Ra, like the 
computation just displayed; for, alternative (1) of the analogue is valid for all 
Ra or (2) is valid for all Ra. Therefore, we can conclude that R is (p;l)-regular. 

That the (£;l)-regular and (l;£)-regular left-primitive rings are the same, 
follows in like manner. Applying Corollary 14, we see that (p;l) = (1#) . 

COROLLARY 16. If p(0) = d= 1 and q(0) = ± 1, then (p(x)Rq(x)) = 
(p(x)q(x)R). 

Proof. By [3, Theorem 3], we find that 
(p(x)Rq(x)) = (p(x)R)r\ (Rq(x)) = (p(x)R) H (q(x)R) = (p(x)q(x)R). 

Thus, since we can reduce the semiprime (p\q) radicals to semiprime (p\l) 
radicals, we finally have the result sought from the outset. 

THEOREM 17. / / p(0) = ± 1 and g(0) = ± 1, then the following are 
equivalent. 

(1) (p(x)Rq(x)) = J(R) for all rings R. 
(2) (p(x)Fq(x)) = (0) for all fields F'. 
(3) p(x) = (ax + \)pr(x) or q(x) = (ax + l)q'(x), where a ^ 0 and, for 

each prime divisor m of a, there is an integer n such that m divides p(n)q(n). 

Proof. This is immediate from Theorem 5 and Corollary 16. 

COROLLARY 18. (D. M Morris). If the leading and constant coefficients of 
p(x) and q(x) are ± 1, then (p(x)Rq(x)) = J(R) if and only if ( x ± 1) 
divides p(x) or (x ± 1) divides q(x). 

COROLLARY 19. Any radical which properly contains the Jacobson radical and 
which is zero on all fields is not a (p',q) radical; hence, the Brown-McCoy radical 
is not a (p\q) radical. 

It is also interesting to notice that if (p;q) is a semiprime radical and 
(p(x)Rq(x)) is contained between J(R) and the Brown-McCoy radical G(R) 
of R, for all rings R, then (p(x)Rq(x)) = J(R) since J(F) = G(F) = 0 for 
all fields F. Hence, J(R) is the only semiprime (p;q) radical that coincides with 
the nil radical on rings with D.C.C. on left ideals [2, p. 43, Theorem 13]. 
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