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Interfacial stability is important for many processes involving heat and mass transfer
across two immiscible phases. For the evaporation of a binary solution with one
component more volatile than the other, gradients in surface tension can arise. These
gradients can ultimately destabilize the liquid–gas interface. We study the evaporation
of an ethanol–water solution, for which ethanol is more volatile. The solution is
contained in a horizontal Hele-Shaw cell which is open from one end to allow for
evaporation into air. A Marangoni instability is then triggered at the liquid–air interface.
We study the temporal evolution of the instability through its effects on the bulk
of the liquid. More specifically, the growth of convective cells is measured with
confocal microscopy and the velocity field with microparticle image velocimetry. The
results of numerical simulations based on quasi-two-dimensional equations satisfactorily
compare with the experimental observations, even without consideration of evaporative
cooling, although this cooling can play an extra role in experiments. Furthermore, a
linear stability analysis applied to a simplified version of the quasi-two-dimensional
equations showed reasonably good agreement with the results from simulations at
early times, when the instability has just been triggered and before coarsening.
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In particular, we find a critical Marangoni number below which a regime of stability is
predicted.

Key words: Marangoni convection, Hele-Shaw flows

1. Introduction

The stability of an interface is important for processes where mass or heat transfer between
two phases take place, e.g. drying of paint, coating, distillation, absorption and extraction.
In the particular case of a Marangoni instability, variations of temperature or concentration
along the interface give rise to surface tension gradients that trigger convection. The study
of interfacial instability goes back to the pioneering work of Bénard (1901). Although in
that work natural convection was considered to be the cause of the instability, Pearson
(1958) showed by means of linear stability analysis that some of the observations could
be explained by gradients in surface tension caused by variations in temperature (thermal
Marangoni instability). Soon after, Sternling & Scriven (1959) showed, by a linear stability
analysis too, that the same effect could be driven by gradients of concentration (solutal
Marangoni instability).

Since then, a large body of studies has extended and generalized the works by
Sternling & Scriven (1959), for example, to three dimensions with deformable interfaces
(Scriven & Sternling 1964; Hennenberg, Sørensen & Sanfeld 1977) and gravity waves
(Smith 1966). Also the effects of chemical reactions (Ruckenstein & Berbente 1964),
finite domains (Reichenbach & Linde 1981), finite domains with binary mixtures and
the Soret effect (Bergeon et al. 1998) and modified geometries (such as spherically
symmetric (Sørensen 1980)) have been considered. Exponential concentration profiles
and surfactant accumulation at the interface were studied by Sørensen et al. (1977)
and Sørensen, Hennenberg & Hansen (1978). More recently, Bratsun & De Wit (2004)
studied the instability between two liquids inside a Hele-Shaw cell where a chemical
reaction takes place at the interface. Picardo, Radhakrishna & Pushpavanam (2016)
considered the case of evaporation coupled with a Poiseuille flow, and Machrafi et al.
(2010) looked at the stability of an evaporating ethanol–water mixture in two dimensions
taking evaporative cooling and the Soret effect into account. This list is by no means
extensive, the reviews by Levich & Krylov (1969), Sanfeld & Steinchen (1984) and
Kovalchuk & Vollhardt (2006) present a more comprehensive overview, including cases
where heat transfer is also considered. We refer to the reviews of Linde, Schwarzenberger
& Eckert (2013) and Schwarzenberger et al. (2014) for further experimental and numerical
work.

While a considerable part of the experimental work has focused on extended interfaces
(Zhang, Oron & Behringer 2011; Linde et al. 2013), there has also been quite some
work on binary systems confined within a Hele-Shaw cell. Employing this kind of
cell has the advantage that it allows us to have visual access to the effects that the
instability has in the bulk of the two phases. Furthermore, the system can be considered as
quasi-two-dimensional (quasi-2-D). Many of the papers that make use of a Hele-Shaw cell
have focused on liquid–liquid interfaces where chemical reactions take place, including
experimental (Eckert, Acker & Shi 2004; Shi & Eckert 2006, 2007, 2008; Eckert et al.
2012; Schwarzenberger, Eckert & Odenbach 2012), numerical (Grahn 2006; Mokbel et al.
2017) and theoretical (Bratsun & De Wit 2004) approaches. In particular, Köllner et al.
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Marangoni instability triggered by selective evaporation

(2015) performed both experiments and numerical simulations, showing good qualitative
agreement between them, though the Marangoni rolls in experiments grew faster than in
simulations.

Following the criteria established by Sternling & Scriven (1959), Linde, Pfaff &
Zirkel (1964) studied the stability of liquid–gas interfaces of binary systems, where
either selective evaporation or adsorption triggered a Marangoni instability. Linde et al.
(1964) pointed out that both thermal and solutal instabilities were at play simultaneously.
By looking at the evaporation of pure liquids to isolate the thermal instability, they
observed that the flow was weaker than when the solutal Marangoni instability was also
present. In this way they were able to suggest that solutal Marangoni was the strongest
mechanism. However, in that paper, the quantitative description of the phenomena was
limited.

More generally, great efforts have been devoted to the understanding of the
physicochemical hydrodynamics of multicomponent systems (Levich 1962), especially
of multicomponent droplets, due to their importance in many fields such as chemical
diagnosis, inkjet printing or nanotechnology, to mention a few. For a recent review on
this subject we refer to Lohse & Zhang (2020). In many of these systems, mass transfer
through interfaces causes gradients in chemical concentration that in turn result in a
Marangoni flow. Such a flow can then lead to quite rich phenomena; for example, it
can participate in the segregation of evaporating binary droplets (Li et al. 2018), make
a droplet inside a bath jump against the pull of gravity (Li et al. 2019b, 2021), and more
generally cause the self-propulsion of droplets (Izri et al. 2014; Maass et al. 2016; Lohse
& Zhang 2020). These Marangoni flows can also assist the emulsification of evaporating
ternary droplets (Tan et al. 2016, 2017), or drive the so-called Marangoni bursting (Keiser
et al. 2017). In some cases Marangoni forces compete with gravity, leading to unexpected
flow directions inside evaporating sessile and pendant droplets (Li et al. 2019a; Diddens,
Li & Lohse 2021). Clearly, these phenomena are closely connected with the presence
of instabilities at interfaces where mass transfer and evaporative cooling take place.
However, the three-dimensional (3-D) shape of the droplet which changes in time makes
the geometry complicated. Therefore, the Hele-Shaw geometry is a good candidate to
further understand the Marangoni convection present when selective evaporation takes
place. Moreover, the very common use of microfluidic devices in research nowadays
makes it important to understand the influence that the confinement has on the Marangoni
convection. Indeed, Marangoni flow in microfluidic devices can be used to enhance mixing
(Michelin et al. 2020).

The aim of this work is to revisit one of the systems studied by Linde et al. (1964),
namely a binary solution of ethanol–water confined by a Hele-Shaw cell evaporating into
air. In particular, we study the evolution of the instability in time by means of confocal
microscopy and microparticle image velocimetry (μPIV) (§ 2). In § 3, this system is
modelled and numerical simulations of the model equations are performed. This model is
quasi-2-D and takes into account the drag caused by the walls of the cell (Bizon et al. 1997;
Bratsun & De Wit 2004; Köllner et al. 2015). The simulation results are able to reproduce
our experimental observations quite well, even though we do not consider the effects of
evaporative cooling. In § 4, inspired by a previous work (Chen et al. 2021), we present
a linear stability analysis of a simplified version of the quasi-2-D model equations. We
compare the results of the linear stability analysis with those from numerical simulations
at early times, showing not perfect, but close agreement. Finally, in § 5 we conclude and
give an outlook on future work with ternary systems.
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Figure 1. Sketch of the experimental set-up from (a) frontal, (b) bottom and (c) side views. The main
component was a microfluidic chip made of an edged silicon wafer and a glass plate for observation. The
gap between both plates was 20 μm. To maintain a homogeneous gap, a matrix of pillars was placed between
the wafer and the glass, represented as thin vertical lines in panel (a) and as circles in panel (b) (not to scale).
Additionally, two walls divided the cell in three different parts. At the back of the chip a channel of 50 μm in
depth was used to continuously refill the cell and compensate for mass loses due to evaporation. As depicted
in panel (a), the whole chip was surrounded by a chamber where the humidity was monitored and controlled
with a flow of dry and humid nitrogen. In panel (b), the gap region is represented in grey and the red rectangle
indicates the region of observation. In panel (c), the meniscus is drawn (solid green line) to indicate a slightly
wetting liquid. The dimensions are not to scale for better visualization. The silicon wafer is 400 μm thick
without edging and the glass plate is 500 μm thick. The holder cap was approximately 170 μm above the chip.

2. Experimental methods and results

2.1. Materials and methods

2.1.1. Design of Hele-Shaw cell
A microfluidic chip (Beijing First Mems Co., Ltd) was used as a Hele-Shaw cell. In
figure 1(a) a cross-section of the chip is shown. The black region was made of an edged
silicon wafer, while the light blue plate was made of glass to allow for optical visualization.
The gap between the two plates was of 20 μm and kept constant by means of a series
of pillars depicted as thin vertical lines in figure 1(a). Further details can be seen in
Appendix A.1. At the back of the chip (right-hand edge in figure 1b,c), a channel 50 μm in
depth was used to fill the chip with the binary liquid. Three sides of the chip were closed
and one was open to allow for evaporation (left-hand side in figure 1b,c). The surface of
the chip was made hydrophobic as described in Appendix A.2.

2.1.2. Experimental set-up
We visualized the evaporation process at a region around the open edge (red square in
figure 1b) with a confocal microscope (Nikon Confocal Microscopes A1 system). As
opposed to the liquid, the gas phase was not contained by the Hele-Shaw cell; instead it
was a 3-D volume of approximately 3000 cm3. This volume was created by covering part
of the microscope with plastic wrap (see supplementary material available at https://doi.
org/10.1017/jfm.2021.555). The relative humidity (RH) in this chamber was maintained
within a desired range using a negative feedback. Every time the RH was outside the
desired range, a flow of either humid or dry nitrogen was gently blown in. As long as the
RH was within the range, the nitrogen flow was turned off. Humidity and temperature
sensors (HIH6130, Honeywell) were used to monitor these two quantities. The readings
were taken with an Arduino board (Arduino Nano) which also controlled the valves of
the humid and dry nitrogen, accordingly. The range over which there was no flow was
either 50 ± 1 % or 51 ± 1 %, depending on the RH in the room. This resulted in an overall
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Marangoni instability triggered by selective evaporation

range between 48 %–52 % for all our experiments. Examples of the time series of the
RH in the chamber and extra details on the chamber can be found in the supplementary
material.

In the case of the temperature of the air in the chamber, we only measured it during
each experiment, but did not control it. Due to the heating caused by the electronics,
the temperature was constantly rising at approximately 2 K h−1. In the majority of our
experiments the focus was on the first 100 s, during which the variations in temperature
stayed within 0.3 K. The initial temperature of different experiments ranged from 294 to
298 K, with the majority starting at approximately 297 K. We did not observe a strong
effect on the main evolution of the instability and the velocity field. Examples of the
temperature time series can be found in the supplementary material.

We assumed that at the beginning of each experiment the concentration of ethanol in
the gas phase was negligible. We did not introduce ethanol into the chamber intentionally
besides that coming from evaporation of the liquid inside the cell. Between each
experiment, the chamber was opened to change the chip, allowing the ethanol that had
evaporated during the experiment to escape.

In each experiment, the solution was delivered from a syringe connected through a
capillary tube to the back channel of the chip (see figure 1b). The flow rate was controlled
with a motorized syringe pump (Harvard Instruments, PHD 2000). In each experiment
the chip was filled within a minute at a rate of 15 μl min−1. After the chip was filled,
we had a delay of approximately 30 s to 60 s before a replenishing flow was started to
compensate the mass loss due to evaporation. This flow was kept constant throughout the
rest of the experiment (the direction of the flow is depicted with blue arrows in figure 1b).
Despite the hydrophobicity of the chip, the ethanol–water mixture slightly wets the chip.
The contact angle with the glass wall is within 75◦ to 80◦ and 75◦ to 95◦ with the silicon
wall (see the supplementary material for more details on the estimations of the contact
angle). Therefore, as long as there was liquid at the back channel, the Hele-Shaw cell
would remain filled. The replenishing flow would then prevent the back channel from
emptying. We found the right volumetric flow by slightly underfilling the chip such that a
meniscus was visible at the back channel (figure 1b). A volumetric flux of approximately
0.43 μl min−1 kept the meniscus stationary. In experiments with dye, we used a slightly
larger flow, 0.5 μl min−1, which resulted in the chip eventually getting fully filled.
However, there was no noticeable overflow at the observation region. Furthermore, the
edge of the chip helped to keep the interface pinned. The pressure at the inlet of the chip
was estimated to be approximately 19 Pa higher than at the evaporating edge. This pressure
is smaller than the pressure drop across the meniscus at the evaporating edge (102 to 103

Pa), in accordance with no overflow (see the supplementary materials for details on the
calculation of the pressure drop).

We used rhodamine 6G (SigmaAldrich, dye content 99 %) and 1 μm particles
(FluoSpheres, carboxilate modified, Life Technologies) for visualization and for μPIV
(30 f.p.s.), respectively. Further details on the μPIV experiments can be found in
Appendix A.3.

After each experiment the chip was cleaned by immersing it in a bath of acetone,
isopropyl alcohol and ethanol, sequentially. In-between each bath we used a flow of
nitrogen for drying.

The solutions were made at a 50 wt% ratio between Milli-Q water (produced by a
Reference A+ system (Merck Millipore) at 18.2 M� cm (at 25 ◦C)) and ethanol (Boom;
100 %(v/v), technical grade), prepared by measuring the mass of each component using a
balance (Secura 224-1S, Sartorius). The solution was not degassed before experiments.
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Figure 2. (a) Snapshots taken at the region marked with a red square in figure 1(b) at three different times.
The snapshots show an evaporating 50 wt% ethanol–water solution dyed with rhodamine 6G (see movie 1 of
the supplementary material for the whole time evolution). The dye accumulates in regions shaped as arches
that grow and merge with each other over time. We have added the time td0 because the solution can start to
evaporate even before it reaches the edge. The vertical white dashed lines indicate the position of the edge of
the chip and the interface between air and liquid. (b) Height zd

F of the arches (see last subpanel of panel (a) for
definition) as a function of time. Different independent realizations of the experiment are shown in grey, while
a single case is highlighted in red. The black dashed line corresponds to the power law zd

F ∝ (td)0.50±0.04. All
the realizations were fitted omitting the data for which td < 1 s. Inset: same plot, but with linear axes.

2.2. Evolution of the instability from the interface into the cell
In one set of our experiments, we dyed the ethanol–water solutions with a trace amount
of rhodamine 6G (R6G). As evaporation takes place, non-volatile R6G accumulates close
to the edge, resulting in brighter regions, as can be seen in figure 2(a) (these snapshots
were taken at the region marked with a red square in figure 1b). These regions are shaped
as arches of approximately the same size, suggesting the presence of an instability (Linde
et al. 1964; Köllner et al. 2015). If this were not the case, we would expect the accumulation
of R6G to be distributed uniformly all along the edge (white vertical dashed line), but not
in specific regions.

Over time, the arches grow and merge with each other as seen in figure 2(a), where their
number has gone from three to one over a few seconds. This kind of coarsening behaviour
is expected for Marangoni instabilities (Schwarzenberger et al. 2014). Such a phenomenon
was also observed in evaporation experiments inside a Hele-Shaw cell by Linde et al.
(1964).

We measured the distance zd
F(t) that the accumulated dye penetrated towards the inside

of the cell as a function of time (see the third subpanel of figure 2a for an example of
zd

F). Here the superscript d indicates a dimensional quantity. To measure zd
F, we took the

vertical average of the intensity field, resulting in an intensity profile as a function of zd.
Then we took the derivative of this profile with respect to zd. Finally, we looked for the
distance from the edge where the derivative was zero within noise level and we assigned
this value to zd

F. This process was then repeated for every time frame.
In figure 2(b), we show some examples of zd

F(t) on a double logarithmic scale. A
close inspection of the plots shows that during a merging event zd

F accelerates and then
slows down. However, as an overall trend, zd

F grows effectively as a power law. Fourteen
independent runs were fitted to ∝ (td)α . An average exponent of α = 0.50 ± 0.04 suggests
that zd

F effectively grows in a diffusive-like manner. A similar behaviour has been observed
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Figure 3. Long-time flow dynamics for the same experiment as in figure 2. In panel (a) we highlight how
the dye flows back at the centre of an arch in a meandering way (marked with a white arrow). In panel (b)
secondary arches are clearly visible. They last for just a few seconds and travel towards the tip of the principal
arch. For these two images we adjusted the contrast for visibility. In panel (c) the arches have grown to a size
comparable to the width of the central part of the chip marked by the red rectangle in panel (d). The semiarch
visible in the first subpanel of (c) is in contact with the upper wall. The white dashed line indicates the edge of
the chip. The images in panel (c) were made by stitching smaller pictures (taken over 20 s).

in liquid–liquid systems with Marangoni instabilities (Köllner et al. 2015). Figure 2(b)
includes cases with two different mass fractions of R6G: 10−4 and 10−5. There are no
considerable changes in the exponent (see the supplementary material for a plot with all
cases).

We defined the time td = 0 s to be the moment at which the solution reached the edge
within our field of view. Although evaporation can take place while the chip gets filled,
we expect its effect to be negligible as long as the liquid is far away from the edge.
Nevertheless, it can trigger the instability already some time before the liquid reaches
the edge. For the fits, data for which td < 1 s was omitted to minimize the effects of our
uncertainty on the initial time. The rest of the time series was included in the fit.

As the arches get bigger, interesting phenomena take place inside them. We show
in figure 3(a) how the dye flowed back into the chip in a meandering way, and in
figure 3(b) short-lived secondary arches. The latter travelled towards the tips of the arches
in a few seconds while changing in size, as also observed by Linde et al. (1964) and
Schwarzenberger et al. (2012). In movie 2 of the supplementary material the secondary
arches are clearly visible for a case where the liquid was seeded with tracer particles.

Eventually, the lateral size of the arches becomes comparable to the width of the central
part of the chip, as shown in the first subpanel of figure 3(c). The area shown corresponds
to the red square in the sketch of figure 3(d). We did not observe arches spanning over
this whole area. Instead the arches eventually start to reduce in size (second subpanel
of figure 3c), sometimes causing the remaining ones to start travelling along the edge.
Overall, after 10–25 min the instability fades away and the dye is swept to the interface
(third subpanel of figure 3c). Then a narrow bright stripe parallel to the edge forms,
suggesting that the gradient of surface tension is not strong enough to drive the flow
anymore.
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A possible reason for the instability stopping is a reduced evaporation of ethanol. Indeed,
after taking the chip out from the chamber, we observed that the instability can start
again. Therefore, as the chip was moved to an environment without any ethanol vapour,
evaporation of ethanol can be restarted and the instability triggered again.

2.3. Visualization of the bulk flow by μPIV
To visualize the flow caused by the instability, the solution was seeded with 1 μm
fluorescent particles at a very small volume fraction. In figure 4(a) we show the streak
lines made by the particles over a period of 1 s around 1.63 s after the solution reached
the edge. Clearly shown in this figure, the arches are the result of advected dye (a typical
movie can be seen in movie 2 of the supplementary material).

The direction of the flow can be read from figure 4(b) where we have plotted the
corresponding normalized velocity vector field (averaged over 30 frames of a single
experiment). The colour code in this image corresponds to the horizontal component of the
velocity, while the vertical component and the magnitude can be seen in the supplementary
material. We did not measure the velocity close to the edge for two reasons. One is the
‘shadow’ caused by the edge of the glass plate. The other is the limited frame rate of the
confocal system used for imaging, while closer to the edge the flow becomes too fast.

We would expect the flow to be as depicted in figure 4(c), where the velocity at the
interface is directed towards the centre of the arches. Then the fluid recirculates back to the
tips of the arches. This kind of flows is typical for Marangoni-driven systems (Linde et al.
1964; Shi & Eckert 2006; Schwarzenberger et al. 2014; Köllner et al. 2015). Therefore, we
can conclude that the flow changes direction at a distance smaller than the closest distance
to the edge at which we can still see particles (∼50 μm from figure 4a).

The effect of the interfacial flow is quite dramatic as can be seen from figure 4(d), where
we show the mean velocity profiles (averaged over 30 frames and along the x-direction)
for different times. From these plots we can see the huge difference in velocities close
to the edge as compared with far away, going from some hundreds to approximately
20 μm s−1. In particular, this decay of the velocity seems to occur exponentially as can
be seen from the approximately linear character of the velocity profiles when plotted in a
semilogarithmic scale. With ongoing time the slopes get smaller and their extension larger,
as result of the continuous growth of the arches. In fact the slope did not change as much
at longer times, reflecting the square root dependence on time that we measured for zd

F. At
longer times the arches are bigger than our field of view, so the profiles were obtained as an
average over a fraction of an arch. Additionally, for the yellow curves we have masked the
region inside the arch as the density of particles was too high for a correct measurement
of the velocity (an example of a frame with the mask can be found in the supplementary
material).

With the measured velocity we can now calculate a Péclet number, Pe = UdLd/Dd
R6G,

with Ud and Ld the typical velocity and length of the flow, and Dd
R6G the diffusion

coefficient of R6G in ethanol (Dd
R6G = 2.9 × 10−10 m2 s−1 (Hansen, Zhu & Harris 1998)).

For the typical velocity we can consider the maximum velocity inside the rolls (that
we can measure) which is of the order of 10−4–10−3 m s−1. The typical size of the
arches is of the order of 10−4–10−3 m. This results in a range of Pe ∼ 10–103, clearly
meaning that advection overcomes diffusion. Therefore, the dyed arches should result
from the Marangoni rolls. As a last note, if we take the velocity far away from the arches
(∼20 μm s−1) as the typical velocity caused by evaporation and the size of the arches just
after the stability is over, namely approximately 2 mm, then we obtain Pe ∼ 100. The dye
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Figure 4. Flow characterization while the instability is active. (a) Streak lines formed by tracer particles
obtained by averaging the intensity of 31 frames, allowing to see the same arches as with dye. As before
the white dashed line indicates the edge. (b) The μPIV measurement averaged over 1 s around td = 1.63 s
after the solution reached the edge. The measurement was taken inside the white square marked in panel (a).
The colour code shows the horizontal component uz of the velocity to highlight the periodicity of the flow.
The arrows were normalized to clearly show the direction (the vertical component and the total magnitude are
shown in the supplementary material). The black dotted line indicates the position of the edge. (c) Sketch of
the flow around and inside the arches. The gradient in concentration of ethanol produces a gradient in surface
tension that drives a flow at the interface, resulting in convective rolls which cause the arch-like shape. (d)
Profiles of the velocity magnitude at different times in a semilogarithmic scale. The profiles were obtained as a
spatial average over the x-direction of the velocity fields. Different symbols represent different realizations to
show reproducibility. One of the blue lines corresponds to the case at t = 1.63 s shown in panel (b). All cases
where obtained from velocity fields averaged over 1 s around the time indicated by the legend.

should indeed accumulate very close to the edge as advection overcomes the diffusion of
the dye.

3. Model equations and their numerical simulations

3.1. Model equations
In the following, the governing equations modelling the evaporation of a confined
ethanol–water solution into humid air as used for numerical simulations are described.
A schematic of the simulated system confined by two walls is shown in figure 5.
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Figure 5. Schematic of the numerical simulation. (a) The small distance δd between the plates of the
Hele-Shaw cell allows for the assumption of a parabolic flow profile in y-direction, which effectively reduces
the problem to two spatial dimensions (x, z). (b) Sketch of considered domains, fields and boundary conditions.

The equations are made non-dimensional by using the distance between plates δd as
a length scale, the initial mass density of the liquid ρd

0 as a mass per volume scale,
and the initial kinematic viscosity νd

0 = μd
0/ρ

d
0 to construct the viscous time scale

(δd)2/νd
0 . Therefore, the non-dimensional space coordinates, time and velocities are

given by r = rd/δd, t = tdνd
0/(δd)2 and v = vdδd/νd

0 , respectively. Due to the presence
of a binary solution in the liquid phase, the mass density ρ = ρd/ρd

0 , the dynamic
viscosity μ = μd/μd

0, the diffusion coefficient D = Dd/νd
0 and the surface tension γ =

γ d(ce)/(dγ d
0 /dce) of the liquid are dependent on the local ethanol mass fraction ce(r, t).

The surface tension is made non-dimensional using its derivative with respect to the mass
fraction at t = 0. It is the derivative and not the absolute value of the surface tension what
determines the strength of the tangential stress. The non-dimensional mass transfer rate is
given by jα = jdαδd/(νd

0ρd
0 ) for α = e, w. As mentioned before, we use the superscript d in

case we want to make reference to a dimensional variable. The subscript 0 indicates the
value of a quantity at t = 0.

This gives rise to the 3-D Navier–Stokes equations with varying density and viscosity

∂tρ + ∇ · (ρv) = 0, (3.1)

ρ (∂tv + v · ∇v) = −∇p + ∇ · [μ (∇v + ∇vt)] , (3.2)

along with the convection–diffusion equation of the ethanol mass fraction ce with the
composition-dependent diffusivity D,

ρ (∂tce + v · ∇ce) = ∇ · (ρD∇ce) . (3.3)

In the above equations we have neglected the effects of gravity, given the small distance
between the plates δd (20 μm), which is the relevant length for gravity in a horizontally
oriented cell. In particular if we calculate the Galilei number Ga = g(δd)3(ρd

0/μd
0)

2 and
the Archimedes number Ar = g(δd)3ρd

0	ρd
0/(μd

0)
2 based on the acceleration of gravity g,

the plate distance, the density difference between pure ethanol and water (208.5 kg m−3

at 293.15 K and 211.6 kg m−3 at 298.15 K), the dynamic viscosity (2.7 mPas at 293.15
K and 2.3 mPas at 298.15 K) and the density (914 kg m−3 at 293.15 K and 910 kg m−3
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at 298.15 K) at 50 wt%, we obtain Ga ∼ 0.01 and Ar = 0.002–0.003. In both cases, their
magnitude is much smaller than one, meaning that we can neglect gravity effects (Yu et al.
2015; Li et al. 2019a).

As schematically depicted in figure 5(a), the 3-D flow inside the cell is strongly confined
in the y-direction and enclosed by no-slip boundary conditions at the top and bottom plate.
To the lowest non-trivial order compatible with these boundary conditions, a parabolic
velocity distribution in y-direction can hence be assumed, i.e. v(x, y, z, t) = f ( y)u(x, z, t)
with f ( y) = (by)(1 − y) (see figure 5a). The 2-D velocity u is defined in the (x, z)-plane,
i.e. u · ey = 0, and the constant b is set to b = 6 in the numerics so that the lateral velocity
u coincides with the height average of the 3-D velocity v. With these assumptions, the 3-D
Navier–Stokes equations (3.2) are simplified to two dimensions, resulting in a factor 6/5
for the nonlinearity and a drag term −12μu stemming from the shear of the parabolic flow
profile (Bizon et al. 1997; Bratsun & De Wit 2004)

∂tρ + ∇‖ · (ρu) = 0, (3.4)

ρ
(
∂tu + 6

5 u · ∇‖u
)

= −∇‖p + ∇‖ · [μ (∇‖u + ∇‖ut)]− 12μu. (3.5)

Here, ∇‖ = (∂x, ∂z) is the 2-D nabla operator. The liquid properties ρ, μ and D
are still allowed to depend on the local ethanol mass fraction, which is now also
considered in its 2-D height-averaged projection, i.e. ce(x, z, t), which is subject to the
2-D convection–diffusion equation

ρ
(
∂tce + u · ∇‖ce

) = ∇‖ · (ρD∇‖ce
)
. (3.6)

Considering only the 2-D projection of the concentration field ce does not take into account
diffusion processes in y-direction, which can, in cooperation with the parabolic flow
profile, contribute to an effectively enhanced projected 2-D diffusivity (cf. Taylor–Aris
dispersion). However, due to the non-trivial and time-dependent flow, this effect cannot be
taken into account within this model.

The gas phase is modelled as a mixture of air, ethanol and water, for which we assume
quasi-stationary vapour diffusion, i.e. we only consider the Laplace equations

∇2cg
e = 0 and ∇2cg

w = 0 (3.7a,b)

for the vapour mass fractions cg
e and cg

w of ethanol and water, respectively. The superscript
g indicates the gas phase. Then the mass fraction of air is given by cg

a = 1 − cg
e − cg

w.
The assumption of a quasi-stationary model has been validated previously for evaporating
ethanol–water sessile droplets. In particular, the consideration of convection (Diddens
et al. 2017b) or the full diffusion equation (Diddens et al. 2017a) in the gas phase resulted
in negligible differences in the evaporation rates or tangential velocities at the surface of
the droplets. Given that the velocities in our experiments are smaller or of the same order
as in the droplet case, we have decided to follow the same approach.

Opposed to the experimental set-up, the gas phase in the numerics is considered in a 2-D
projection as well. To mimic the evaporation in a 3-D space, the length of the gas domain
in z-direction is adjusted until the typical evaporation velocity matches the experimentally
observed one.

The boundary conditions for the velocity and for ce are shown in figure 5(b), namely
an open stress-free inflow at the liquid boundary far away from the liquid–gas interface
and no-slip boundary conditions at the sidewalls. Alternatively, when only a section of
the cell with some distance to the sidewalls is of interest, periodic boundary conditions
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in the x-direction can be used (if so, this will be mentioned in the text). At the liquid–gas
interface, ethanol and water evaporate with local non-dimensional mass transfer rates je
and jw, respectively. These, together with the assumption of a static interface, yield the
kinematic boundary condition

ρuz = − (je + jw) , (3.8)

where we have neglected the solubility of air in the binary solution, such that the air flux
at the interface is zero. The negative sign arises because we have defined the fluxes as
positive when directed away from the liquid.

Due to the small viscosity ratio of the gas phase with respect to the liquid phase, the
varying interfacial tension induces a Marangoni shear stress only on the liquid phase, i.e.

μ (∂zux + ∂xuz) = Mas

Sc
dγ

dce
∂xce, (3.9)

where we have introduced the solutal Marangoni number (Machrafi et al. 2010)

Mas = − δd

μd
0Dd

0

dγ d
0

dce
(3.10)

and the Schmidt number

Sc = νd
0

Dd
0
, (3.11)

with Dd
0 the diffusion coefficient of the liquid at time zero.

In the following section, for linear stability analysis we will introduce linear mass
fraction profiles close to the edge, with slope E. Therefore, a characteristic change in
mass fraction 	cδ = Edδd = E over a distance equal to δd is obtained. Then a ‘modified’
Marangoni number (Machrafi et al. 2010)

Ma∗
s = Mas	cδ = −(δd)2Ed

μd
0Dd

0

dγ d
0

dce
(3.12)

can be introduced, which determines the stability of system. Notice that dispersion can
result in an enhanced effective diffusion coefficient, and reduce the value of the Marangoni
number. But as mentioned before, the determination of this effect is not trivial for our flow.

Due to the preferential evaporation of ethanol, the convection–diffusion equation (3.6)
is subject to the boundary condition

ρD∂zce = ((1 − ce)je − cejw). (3.13)

The far-field boundary condition of the gas composition is set to that of ambient air, plus
an optional RH. At the liquid–gas interface, vapour–liquid equilibrium is imposed, i.e.

cg
e = cg,VLE

e (ce) and cg
w = cg,VLE

w (ce), (3.14a,b)

where the equilibrium is calculated by Raoult’s law generalized by activity coefficients,
i.e.

cg,VLE
α (ce) = Aα(ce)nα(ce)

pd
α,sat(T)Md

α

RdTdρg,d . (3.15)

Here, Aα are the activity coefficients, nα the liquid mole fractions, Md
α the molar masses,

and pd
α,sat the saturation pressures of the pure components, whereas Rd is the universal gas
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constant, Td is the temperature of the system and ρg,d is the density of the gas. Notice that
the equilibrium mass fraction changes in time through nα(ce(z = 0, x, t)) and Aα(ce(z =
0, x, t)). The evaporation rates are finally given by the diffusive vapour flux at the interface,
i.e.

je = ρgDg
e∂zcg

e/Sc and jw = ρgDg
w∂zcg

w/Sc, (3.16a,b)

where ρg = ρg,d/ρd
0 and Dg

α = Dg,d
α /Dd

0 are the gas to liquid density and diffusivity ratios.
As we mentioned in the introduction, we do not consider thermal effects, which in

the experiments can take place by means of evaporative cooling. In order to justify this
assumption we refer to Linde et al. (1964) and Machrafi et al. (2010), who found that
the solutal effect is dominant. In particular, Machrafi et al. (2010) showed that the ratio
between solutal and thermal Marangoni numbers is large for their ethanol–water solutions.
We can obtain the same ratio in our case considering the thermal Marangoni number as

Math = δd	Td

μd
0Dd

0,T

dγ0

dTd , (3.17)

where Td is the temperature, 	Td is a characteristic temperature change along the interface
and Dd

0,T is the thermal diffusion coefficient. The specific values used are shown in table 1.
We do not have the values of the characteristic temperature change, but when assuming

the range is between 1 K and even as unrealistically high as 10 K, the ratio Ma∗
s /Math ∼

103–104. Therefore, the solutal Marangoni effect is much stronger than the thermal one.
This is consistent with the case of evaporating sessile ethanol–water droplets, where
thermal Marangoni effects could be neglected as long as the ethanol has not yet fully
evaporated (Diddens et al. 2017b).

3.2. Numerical simulation implementation
For the numerical simulation we used a finite element method implemented on the basis
of the finite element package oomph-lib (Heil & Hazel 2006). The liquid in the Hele-Shaw
cell and the adjacent gas domain are discretized by a rectangular mesh, using triangular
Taylor–Hood elements for the degrees of freedom of the velocity and pressure space and
linear shape function for the composition in both domains. The composition dependence
of the liquid and gas properties are obtained by models or fits of experimental data
(see Diddens et al. (2017b) for details). The general numerical technique is described
in more detail and compared with various experiments in, for example, Diddens et al.
(2017b), Diddens (2017) and Li et al. (2019a,b). In the present case, however, the method
is generalized by considering the drag term in the momentum equation (3.5).

In all simulations the number of triangular elements was the highest close to the
interface and then reduced continuously the farther away from the interface. More details
on the meshes used for different simulations can be find in the supplementary material.

For the simulation used for comparison with experiments (§ 3.3) the domain size was
selected to be the same as the observation area in experiments in the vertical direction. This
was already quite demanding computationally, so we used a reduced resolution such that
the simulation time would not be exceedingly long. However, this came at the price that the
boundary condition (3.13) was not fully satisfied due to the steep gradient at the edge which
could not be captured by our linear elements. Nonetheless, we were able to observe a good
agreement with experiments. More details can be seen in the supplementary material. In
the case of simulations used for comparison with linear stability analysis, we made use
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Figure 6. (a) Ethanol mass fraction field on the liquid phase ce obtained from a simulation with periodic
boundary conditions. The times are the same as in figure 2(a). The normalized velocity vector field is plotted
on top of the concentration field. As in experiments, with progressing time, the arches merge with each other.
Close to the edge, smaller secondary arches become visible (a movie showing the whole time evolution can be
seen in movie 3 of the supplementary material). (b) Averaged velocity profiles at two different times. The curves
with markers show the same profiles as in figure 4(d) where different markers indicate different runs. The solid
lines are results from the simulation. For the blue curves, we took the closest time obtained from simulation.
(c) Height zF of the arches as a function of time. The grey dotted lines show all the experimental realizations up
to t = 6.85 × 104 (td = 10 s). The dark red line with squares shows the results from the simulation. (c) Surface
tension γ along the edge for the three times shown in panel (a). The small scale jumps in the curves originate
from the smaller secondary rolls.

of three different configurations of the mesh which we describe in the supplementary
material.

In all simulations the initial mass fraction was ce = 0.5, the RH far away was taken
equal to 50 % and the temperature was set to 295.15 K. The instability was triggered
by numerical noise in all cases. To process the data, we linearly interpolated the mass
fraction and velocity fields from the unstructured mesh used for simulations into a regular
rectangular mesh.

3.3. Numerical results and comparison with experiments
In figure 6 we show results obtained from a simulation using periodic boundary conditions
and a simulation with a domain size equal to the field of view that we had for experiments.
Other conditions can be found in table 1 in Appendix B and in the supplementary
material. The three snapshots in figure 6(a) show the evolution of the instability over
three different times. As opposed to experiments, this time we can directly observe the
ethanol concentration field, and on top the normalized velocity vector field. It is clear
that Marangoni rolls advect ethanol-depleted fluid into the arch-shaped regions. As in
experiments, the arches merge and grow over time.
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After the arches are large enough we can see secondary arches too. From movie 3 in the
supplementary material it can be seen that initially only the principal arches are present.
Inside the arches, ‘pockets’ of rich ethanol solution are present. Secondary rolls can appear
from these pockets. We can think of this as if locally the concentration field is back to the
initial state when no instability was present and the gradient of concentration just builds
up. Therefore, besides the fact that now there is a flow along the interface, locally a second
instability can be triggered as described by Köllner et al. (2013) for 3-D simulations of a
liquid–liquid interface.

The length of the gas domain in the z-direction was selected such that the velocity far
away from the interface would be close to the velocity measured in experiments. We
show this matching in figure 6(b). We plot non-dimensional averaged velocity profiles
obtained at two different times, both from experiments and from the simulation. The
curves with markers are experimental results, corresponding to the two earliest cases that
were already shown in figure 4(d). The solid lines represent the results obtained from a
single simulation, a single time and averaging along the x-direction (for the blue curve, we
took a profile at the closest time obtained from the simulation). Notice that the complete
profiles agreed quite well with the experimental measurements, despite the fact that we
only matched the velocity far away from the edge.

It is important to note that the merging between arches did not take place at the
same times between simulations and experiments, causing a discrepancy between the
experimental and numerical velocity profiles during certain periods of time. In figures 10
and 11 of the supplementary material, we make more detailed comparisons of the velocity
between experiments and simulations. We have noticed that the velocity increases sharply
during a merging event, but changes slowly otherwise. This is in agreement with the faster
growth of zF during merging. Moreover, as long as single arches have similar sizes, the
local velocity is approximately the same. In figure 11 of the supplementary material, we
compare the experimental velocity profiles of arches of similar size at different times
or from different realizations. The velocity profiles match with each other. The velocity
profiles obtained from a simulated arch with a similar size compare well, too. On the other
hand, the local velocities did not match between experiments and simulations if the arches
had different sizes.

For t = 6.85 × 104, the velocity far away from the interface is smaller than in
experiments. This could be the result of the comparable size of the arch with the simulation
domain. Nevertheless, the main features stay similar as in experiments with a region of
exponential decay until the velocity reaches the far end value. Furthermore, we can now
see that the velocity close to the edge (i.e. small values z � 2) can reach much larger values
than those measured experimentally, approximately two orders of magnitude larger.

We tracked the height zF as in experiments by measuring the distance from the edge
at which the vertically averaged profile of the mass fraction had reached the far-field
mass fraction. The result of this process is shown in figure 6(c). Both experimental and
simulation results are plotted together, again showing a good match despite our uncertainty
in the initial time in the experiments. Note that there is no adjustable parameter, we only
matched the initial far-field velocities in the liquid.

From the simulations we can also have access to the local surface tension γ (x) as can be
seen in figure 6(d). We show the surface tension γ (x) corresponding to the three snapshots
in figure 6(a). The curves confirm the presence of gradients going from the centre of
the arches to their meeting points. Overall, the gradient in surface tension seems to stay
approximately constant over the time span shown here. The small scale jumps in the curves
originate from the secondary rolls.
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Before a merging event, both in simulations and in experiments, the stagnation point at
the summit of the arches displaces towards one side. Therefore, the flow towards the edge
in-between two arches reduces. In turn, the supply of ethanol-rich solution also decreases.
A similar situation was observed by Köllner et al. (2013), where the bulk flow caused by
the Marangoni rolls hindered the flow towards the interface. Afterwards, the two adjacent
rolls merged into one.

4. Linear stability analysis

4.1. Simplified model
In this section we will perform a linear stability analysis of a simplified version of the
model equations described in § 3.1. In this way we will be able to obtain analytical
solutions that are very close to those obtained by Sternling & Scriven (1959), with the
addition of the drag term which originates from the wall friction.

In this simplified version of our model equations we will take the density, dynamical
viscosity and diffusion coefficients as constants with respect to mass fraction as has been
done for different systems before, with good results (Bizon et al. 1997; Bratsun & De
Wit 2004; Machrafi et al. 2010). Furthermore, we will assume that surface tension is a
linear function of the mass fraction such that the derivative of the surface tension with
respect to the mass fraction is constant. In particular we will take the values at time zero
such that ρd = ρd

0 , μd = μd
0, Dd = Dd

0 and dγ d/dce = dγ d
0 /dce. In other words ρ = μ =

dγ /dce = 1 and D = 1/Sc, which results in the simplified model equations for the liquid
phase

∇‖ · u = 0, (4.1)

∂tu + 6
5 u · ∇‖u = −∇‖p + ∇2

‖u − 12u, (4.2)

∂tce + u · ∇‖ce = 1
Sc

∇2
‖ce, (4.3)

and for the gas phase
∇2cg

e = 0 and ∇2cg
w = 0. (4.4a,b)

Similarly, the boundary condition for the tangential stresses at the interface (3.9) is
simplified to

∂zux + ∂xuz = Mas

Sc
∂xce. (4.5)

Additionally, we neglect the velocity caused by evaporation such that uz(x, 0, t) = 0.
This assumption has been validated by comparing simulations with and without making
the normal velocity equal to zero at the edge. The results for both cases were virtually
the same. Therefore, for the linear stability analysis we kept uz(x, 0, t) = 0, while for the
simulations uz(x, 0, t) /= 0. In the experimental section we obtained Péclet numbers larger
than unity in odds with this assumption, however, for the onset of instability a more proper
length scale to be consider is δd (the gap of the Hele-Shaw cell), which gives Pe ∼ 1,
meaning that we are in the limit where we could actually neglect this velocity.

After neglecting the normal velocity, from (3.8) we have je + jw = 0 at the interface,
then (3.13) simplifies to je = ∂zce/Sc. Therefore, introducing this expression for the mass
transfer rate of ethanol into (3.16a,b), we get

∂zce = ρgDg
e∂zcg

e, (4.6)

recalling that Dg
e = Dg,d

e /Dd
0.
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Raoult’s law is simplified by taking a Taylor expansion of the molar fraction around
ce(t = 0) ≡ ce,0 /= 0, such that ne = (1 + (1/ce − 1)Md

e /Md
w)−1 ≈ a0(ce,0, Md

e /Md
w) +

a1(ce,0, Md
e /Md

w)ce + O(c2
e). Finally, if we take the activity coefficient Aα = 1 we are left

with

cg,VLE
e (ce) ≈ csat(a0 + a1ce), (4.7)

where csat = pd
e,sat(T)Md

e /(RdTdρ
g,d
0 ). An analogous expression can be found for water.

4.2. Linear stability of 2-D equations
For the base case we will consider no flow in the liquid phase, i.e. uuu0 = 0, which results in
a constant pressure p0. While for the mass fraction linear profiles close to the edge will be
taken, in the same spirit as Sternling & Scriven (1959),

ce,0 = Ez + C0, (4.8)

cg
e,0 = Egz + Cg

0 , (4.9)

with E and Eg made non-dimensional with δd. A more complete model would consider
a time evolving base state with an error-function-like shape, however, then the equation
has to be solved numerically. Here we consider that close to the edge the profiles can be
approximated as linear. We also assume that the changes in concentrations at the edge are
small around the time the instability takes place. By focusing our analysis on the region
close to the interface, our analysis corresponds to the small wavelength regime.

We considered small perturbations in the standard way for the velocity, pressure and
mass fraction fields,

uuu = εû̂ûu1(z) exp(iκx + σ t), (4.10)

p = p0 + εp̂1(z) exp(iκx + σ t), (4.11)

ce = ce,0(z, t) + εĉe,1(z) exp(iκx + σ t), (4.12)

cg
e = cg

e,0(z, t) + εĉg
e,1(z) exp(iκx + σ t), (4.13)

where ε is a small number, κ is the non-dimensional wavenumber of the perturbation, σ

its non-dimensional growth rate and û̂ûu1(z), p̂1(z), ĉe,1(z) and ĉg
e,1(z), the amplitudes of the

corresponding perturbations in velocity, pressure and mass fraction in the liquid and gas,
respectively. These perturbed quantities can be used to linearize equations (4.1) to (4.4a,b),
resulting in the following dispersion relation (see Appendix C for further details):

Ma∗
s = κ2

(
csata1ρ

gDg
e +

√
1 + σ

κ2 Sc
)(

1 +
√

1 + 12
κ2 + σ

κ2

)

(
1 +

√
1 + σ

κ2 Sc
)(√

1 + 12
κ2 + σ

κ2 +
√

1 + σ

κ2 Sc

)
. (4.14)

Notice that this is a simplified version of equation (30) from Sternling & Scriven (1959),
but with the addition of the drag term and a Marangoni number Ma∗

s based on the plate
distance δd.
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Figure 7. Phase diagram of the growth rate σ for different values of κ and (a) Ma∗
s , with constant Sc = 7.51 ×

103, and different values of (b) Sc, with constant Ma∗
s = 1.54 × 105. The vertical white dashed line in panel

(a) marks Ma∗
c = 121.2, below which the system is always stable, while the dotted line corresponds to the

limit κσ=0 = (Ma∗
s /8M)0.5. In both panels (a,b) we have clamped negative values of σ to zero to facilitate

visualization (grey region). The solid white curve indicates σ = 0, while the solid red line indicates max(σ ).
The black region in panel (a) indicates where we did not find solutions for the dispersion relation. (c) The
growth rate σ as a function of κ corresponding to the red vertical dashed line shown in panels (a) and (b).

From this equation we can obtain the condition of marginal stability by setting σ = 0,
resulting in

κσ=0 =
√

Ma∗
s

8M − 3

√
8M
Ma∗

s
, (4.15)

where M = 1 + csata1ρ
gDg

e . This relation is independent of Sc, which was expected from
the results of Sternling & Scriven (1959). Their results can be recovered in the limit of large
Ma∗

s , i.e. κσ=0 = (Ma∗
s /8M)0.5 where the dependence on δd is not present anymore, as

κσ=0 ∝ δd as well as
√

Ma∗
s ∝ δd. This is equivalent to making the gap between plates

large enough so that the limit of an unbounded system is reached (Martin, Rakotomalala
& Salin 2002).

We can now find a critical Marangoni number Ma∗
c ≡ 24M for which κσ=0 = 0.

Below this critical value, the right-hand side of (4.15) becomes negative, while κ has
to be positive. Therefore, for 0 < Ma∗

s � Ma∗
c the system should become stable for all

wavelengths. Furthermore, the Marangoni number can become negative if either the
gradient E or the derivative of surface tension with concentration dγ d

0 /dce change in
sign. Of course this is not possible as the wavenumber has to be a real positive quantity.
However, this does not exclude the possibility of an oscillatory instability, which could
be expected for negative Marangoni numbers considering the results from Sternling
& Scriven (1959). Given that the evaporating ethanol–water system results in positive
Marangoni numbers, we will restrict ourselves to this regime.

4.3. Numerical solution of the dispersion relation
Equation (4.14) was solved numerically to obtain σ as a function of κ and Ma∗

s for
Sc = 7.51 × 103, and the properties shown in table 1 in Appendix B corresponding to an
ethanol–water solution at 50 wt% and 295 K. The results can be seen in figure 7(a), where
we have clamped negative σ to zero to facilitate visualization. Equation (4.15) is plotted
as a solid white line, while the purely 2-D limit, κσ=0 = (Ma∗

s /8M)0.5 is highlighted by
a dotted line. The red solid line corresponds to the locations where σ is maximum for a
given Ma∗

s , i.e. the fastest growing modes.
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Indeed, for Ma∗
s < Ma∗

c = 121.2 the system is expected to be stable, as σ < 0 for every
value of κ . However, we must notice that for regions where σ < −κ2/Sc, we did not find
solutions (marked as a black region). This region corresponds to where three of the radicals
become purely imaginary. We looked for imaginary solutions of σ , without success. While
our search was not exhaustive, we are in the region where Sternling & Scriven (1959) only
found real solutions for the purely 2-D case so we think it is reasonable not to find complex
solutions.

Once a particular liquid–gas system has been fixed (with a given mass fraction gradient
E), the Marangoni number Ma∗

s indicates the effect of the gap between the walls of the
Hele-Shaw cell. By comparing the solid and dotted lines in figure 7 we can observe that
the effect of the confinement as compared with the purely 2-D case is only visible for
Ma∗

s � 1000. Meaning that for larger values the purely 2-D model of Sternling & Scriven
(1959) should be enough to calculate the critical wavelength. In other words, for a given
set of properties, as long as δd is large enough, but not so large that gravity starts to play a
role, the use of the purely 2-D model is sufficient.

According to Sternling & Scriven (1959), if the conditions Dd/Dg,d < 1, νd/νg,d < 1
and dγ d/dce < 0 are satisfied, while solute transfer occurs from the liquid to the gas,
the system should be unstable. However, consideration of the drag of the walls for an
evaporating binary liquid introduces the possibility of stability as long as Ma∗

s < Ma∗
c .

We also looked at the effect of the Schmidt number, Sc, as shown in figure 7(b) for a
fixed Ma∗

s = 1.54 × 105. As mentioned by Sternling & Scriven (1959), varying Sc shows
only a minor effect which was already suggested by the fact that κσ=0 is not a function
of this parameter. Only for Sc � 50 there is a slight increase on the value of the fastest
growing wavenumber.

A plot of σ as a function of κ is displayed in figure 7(c). This case corresponds to
the dashed red line in both panels (a) and (b) of figure 7 (Ma∗

s = 1.54 × 105 and Sc =
7.51 × 103). We have selected this particular case, because it corresponds to the simulated
case in § 3.3. In order to know the correct value of E, we conducted simulations in a
smaller domain such that the mismatch of the boundary condition was not present. If we
then assume that this corresponds to the same conditions as in experiments (for which
we do not know the actual gradient), it would be in accordance with the presence of an
instability, as the Marangoni number is above the critical value.

With respect to the term csata1ρ
gDg

e , it affects the range over which the system becomes
stable, as clearly seen from (4.15). In particular, it increases the value of Ma∗

c , while in
the extreme case, in which it is equal to zero, one gets Ma∗

c = 24, which corresponds to
completely ignoring the gas phase and just setting a constant solute flux at the interface.
Additionally, we noticed that the values of σ decrease with increasing values of the factor
csata1ρ

gDg
e .

One of the simplifications that we took for the linear stability analysis was to consider
the solution as ideal by setting the activity coefficient Ae = 1. If this is not the
case, an increase or decrease of the activity coefficient would affect the value of csat
correspondingly. Therefore, changes in the activity coefficient would come into effect
through csat. In particular for ethanol–water mixtures with activity coefficients above one,
consideration of the activity coefficient would cause the growth rate σ to decrease.

4.4. Comparison of linear stability analysis with numerical simulations
Experimentally, we were not able to observe the onset of the instability since at that
moment the accumulation of dye or particles was too low to create a large enough contrast.
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Figure 8. (a) Ethanol mass fraction ce averaged over the x coordinate as a function of the position z in a
log–log axis for a simulation at very early times. The curves were shifted by subtracting the mean mass fraction
at z = 0 to show that close to the edge the profile is actually linear. Different curves represent different times
(see legend). (b) Mass fraction profile as a function of position z on the gas phase for the same times as shown
in panel (a). The changes are so small that the curves practically overlap with each other. (c) Evolution in time
of the averaged mass fraction along the edge z = 0. (d) Mass fraction profile along the edge z = 0. All curves
were shifted by the corresponding averaged mass fraction at the edge. The colours correspond to the same
times as those shown in panel (a). Movie 4 of the supplementary material shows the whole concentration and
velocity vector fields as a function of time.

Furthermore, given that the arches merged with each other, it is possible that by the time
we are able to observe them, they are already the result of different merging events, which
is what we observe from simulations. Therefore, we relied on the latter for comparison with
theory. To do so, we performed simulations over short times, such that merging had not
taken place, and in domains at least five times larger than the fastest growing wavelength.
To test different Marangoni numbers we varied the evaporation rate by changing the size
of the gas domain.

In figure 8 we show the mass fraction of ethanol ce as a function of space and time. In
particular, these are results for a case of Ma∗

s = 1.55 × 105. In figures 8(a) and 8(b) we
show the averaged mass fraction profiles on the liquid and gas side, respectively. In both
cases the average was taken along the x-direction and we display the profiles over five
different times. In the case of the gas profiles, the changes are so small that they lie on
top of each other almost indistinguishably. Notice that we have plotted the liquid profiles
on a double logarithmic scale and we have shifted them by subtracting the averaged mass
fraction at the interface, i.e. 〈ce(z = 0)〉x (shown in figure 8c). In this way we can see
that close to the interface the profiles are approximately linear, while of course far away
they reach the far-field value. As in the work by Köllner et al. (2013) we observed a local
minimum that results from the mixing zone caused by the Marangoni rolls, indicating that
at those times the instability has already developed and that ethanol depleted liquid has
already been advected back into the bulk.

In figure 8(d) we show the mass fraction profiles along the edge at different times.
These profiles were shifted by their corresponding mean values for visibility. Clearly, the
instability has not grown very much after approximately seven viscous times, while at
t = 10.3 it has dramatically increased. The presence of the instability is also suggested by
the increase of the averaged mass fraction at the edge (figure 8c) and the standard deviation
of the surface tension in figure 9. Furthermore, at t = 17.1 merging has already started,
showing the very early onset of nonlinear effects.
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Figure 9. Average diffusive flux 〈∂zce〉x at the edge and standard deviation of the surface tension std(γ ) as a
function of time, corresponding to the same simulations as shown in figure 8.

From the profile at t = 27.4 it can be seen that more than one wavelength is still present
at the same time, which can be expected since the perturbation comes from numerical
noise combined with the non-uniform shape of the mesh, meaning that more than one
mode can be excited at the same time. Furthermore, certain modes could be excited
again, given that at these early times merging takes place by the displacement (along
the edge) of the formed rolls, leaving free space for new ones to be generated, as can
be seen close to the end of movie 4 of the supplementary material. In fact, we tried cases
where we intentionally introduced a perturbation with one particular wavelength, but other
wavelengths developed too. Since the results were quite similar, here we present only the
cases with random noise.

The presence of many wavelengths at the same time makes it difficult to determine
which one grows the fastest just from looking at the mass fraction profiles, especially
since merging starts very soon. In order to answer this question, we calculated the Fourier
transform of the edge profiles (figure 8d) at each time. Then we calculated the growth rate
of the power spectra for every single wavenumber present in the mass fraction profiles.
This growth rate corresponds to σ = σ(κ) under the assumption that for some time many
wavelengths will be present, and not only the fastest one. A more detailed description of
the procedure is presented in Appendix D.

The corresponding plot of growth rate σ versus wavenumber κ is shown in figure 10 for
different Ma∗

s . In each case, the curves are the average over different realizations and the
error bars represent one standard deviation on each side. We have included cases using the
different kinds of meshes described in § 3.2. We varied the size of the domain in the x-
and z-directions, but always keeping the domain at least five times the size of the fastest
growing wavelength in the x-direction. We only show cases where we did not impose any
initial perturbation and the instability started from numerical error.

Given that in simulations we control the evaporation rate through the size of the gas
domain, in order to determine the modified Marangoni number Ma∗

s of each case, we
obtained E from the average diffusive flux at the boundary 〈∂zce〉x. Figure 9 shows the
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Figure 10. Comparison of the normalized growth rate σ versus normalized wavenumber κ obtained from
linear instability theory (solid line) and from simulations (*). The upper horizontal axis shows the
corresponding wavelength λd = 2πδd/κ . The mean 〈Ma∗

s 〉 indicated in each plot corresponds to the average
value over different realizations (see the supplementary material for a table with the values of Ma∗

s of individual
simulations).

evolution in time of 〈∂zce〉x. For the first time steps the mass fraction gradient increases
very quickly from zero up to the value determined by the boundary condition (4.6), then
it increases slowly until merging takes place and the gradient slightly decreases. In all
cases, we took the average value over the same period for which we fitted the growth
rate of the power (see Appendix D). This average mass fraction gradient Ē ≡ 〈∂zce〉x was
then used to calculate Ma∗

s together with material quantities corresponding to ce = 0.5.
The corresponding values of Ē and Ma∗

s obtained for each different run are shown in the
supplementary material. The values of 〈Ma∗

s 〉 shown in figure 10 are the average of the
modified Marangoni number over all the different runs.

With the Marangoni number known, we calculated the theoretical growth rates as a
function of wavenumber for each case. The results are plotted as solid red lines in figure 10.
The prediction tends to underestimate κ by a factor of approximately 0.5, and for smaller
modified Marangoni numbers, the growth rate is underestimated too. Furthermore, we
would expect that the inclusion of the activity coefficient would shrink the theoretical
curves. However, the agreement is still fairly good considering all the simplifications done
for the linear stability analysis, and the fact that in the simulations nonlinear terms and
water evaporation are taken into account.

Notice that for large values of κ , the growth rate calculated from the simulations does not
keep on decreasing. This could be a result of the higher resolution needed to better resolve
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the corresponding wavelengths. Moreover, it can be seen from figure 11(a) in Appendix D
that the power of large values of κ (κ > 100 in that example) is quite small. Therefore,
above a given value of κ we cannot trust anymore the obtained values of the growth
rate.

On top of each of the plots from figure 10 we have indicated the corresponding values
of the dimensional wavelength λd = 2πδd/κ . Note that for the two largest Ma∗

s the fastest
growing wavelength is smaller than the gap between the plates of the cell (δd = 20 μm).
Bratsun & De Wit (2004) also found that for large Marangoni numbers their predicted
fastest wavelength was smaller than the gap of their cell, which led them to disregard
those solutions. A reason for this is that the Hele-Shaw model relies on the assumption
that variations of the velocity in the direction parallel to the plates of the cell are much
smaller than variations in the directions normal to the plates (Ruyer-Quil 2001). Therefore,
a wavelength smaller than the gap of the cell would result in changes of velocity that would
be stronger in the plane of the cell.

In fact, from (4.15) we can obtain a value for Ma∗
s for which κ = 2π, meaning that

λd = δd. This implies that Ma∗
s = 8M(π +

√
(π2 + 3))2, meaning that for Marangoni

numbers larger than this quantity, there will be at least one wavelength smaller than the
gap. This is already the same regime over which the model becomes close to the purely 2-D
case (from the point of view of linear stability analysis) suggesting that for large Marangoni
numbers a 3-D model would be more suitable in order to look at the onset of the instability,
even if the gap is as small as 20 μm. Nevertheless, as time goes on and coarsening takes
place by means of merging, this restriction is not in play anymore, explaining the good
agreement between simulations and experiments at much longer times. Furthermore, if the
properties of the fluids or the evaporation rate result in a low enough Marangoni number,
then (4.14) could be used as a first estimation of the growth rate of long wavelengths at
onset.

5. Summary, conclusions and outlook

We have investigated by means of experiments, numerical simulations and linear stability
analysis the evaporation of a solution of ethanol and water confined in a Hele-Shaw cell.
The selective nature of the evaporation process, due to the larger volatility of ethanol,
resulted in the appearance of a Marangoni instability at the liquid–air interface. This
instability results in the appearance of convective rolls in the bulk of the liquid phase,
which caused the accumulation of dye in arch-like regions. With ongoing time, we
observed the rolls to grow and merge until they reached the lateral size of the cell.
Eventually, the instability stopped and the flow ceased.

Qualitatively, such phenomena were observed before in experiments by Linde et al.
(1964) for different evaporating binary mixtures confined inside a Hele-Shaw cell,
however, here we measured and analysed the growth of the rolls in a quantitative way by
means of confocal microscopy, μPIV and numerical simulations. We found that the size
of the arches increases following an overall square root of time dependence, similarly to
other multicomponent liquid–liquid systems (Köllner et al. 2015). Furthermore, by looking
at averaged velocity profiles, we found that the velocity in the rolls decays exponentially
towards the bulk of the liquid.

For numerical simulations and linear stability analysis we considered a quasi-2-D model
which results from an average over the direction normal to the walls, assuming a parabolic
profile for the velocity and a constant mass fraction in that direction. In this way we took
into account the drag caused by the walls without having to use the full 3-D equations.
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In spite of these simplifications, simulations and experiments showed a good quantitative
agreement supporting the applicability of the quasi-2-D model at long enough times.

Due to the merging process that characterizes the evolution of the instability, which also
slows down with time, we cannot be sure if the first rolls that we observe experimentally
represent the onset of the instability. In fact, from simulations we were able to corroborate
that the merging process can start at shorter times than those accessible experimentally.
Therefore, for comparison with linear stability theory, we relied only on the results from
simulations.

By looking at the perturbation of the mass fraction at the interface at early times,
we were able to calculate the growth rate of the perturbation as a function of the
different wavenumbers present in it. This allowed us to compare these calculations with
the predictions that we made by linear stability theory. The results are in reasonable
agreement, taking into account that simulations consider the complete nonlinear equations
with material properties that depend on mass fraction, while for linear stability analysis
we (i) made use of a simplified model with constant material properties, (ii) disregarded
the velocity caused by the evaporation of both ethanol and water, (iii) did not include the
evaporation of water and (iv) did not consider a time evolving base state.

The consideration of the drag of the walls of the Hele-Shaw cell in our analysis resulted
in the possibility of stability for conditions that would be considered unstable under the
purely 2-D model of Sternling & Scriven (1959). More specifically, for Ma∗

s < Ma∗
c =

24M the system is expected to be stable for all values of the wavenumber κ . For large
Marangoni numbers the quasi-2-D model tends to the purely 2-D model, making it
unnecessary to consider the drag of the walls, at least in terms of the linear stability
prediction. However, at the same time at large Marangoni numbers, the model predicts
wavelengths that can be smaller than the gap of the cell, suggesting that the full 3-D
equations need to be considered in order to account for the onset of the instability.
Nevertheless, as long as Ma∗

s � 8M(π +
√

(π2 + 3))2, the wavelengths predicted by
the Hele-Shaw model become smaller than the cell thickness. Therefore, the dispersion
relation given by (4.14) could be used as a first estimate for the initial size of the instability,
as long as thermal effects stay small. Moreover, as time goes on and coarsening takes place,
the restriction which the gap size imposes is overcome, and, as we mentioned before,
the numerical results show good agreement with experiments, even at large values of the
Marangoni number. It would be interesting to further test the predictions of the stability
analysis using systems with lower solutal Marangoni numbers.

In future work we plan to apply our results to evaporating ternary systems, also confined
in a Hele-Shaw cell. In those cases the Marangoni instability will determine the location
of spontaneous emulsification (ouzo effect) and could compete with other mechanisms
of pattern formation. In particular, this competition could preclude the formation of
branch-like structures, composed of emulsion droplets, that were observed for a ternary
miscible liquid–liquid system (Lu et al. 2017).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.555.
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Appendix A. Further experimental details

A.1. Pillars and walls inside the chip
The small gap size (μm) compared with the lateral dimensions (cm) of the Hele-Shaw
cell caused a large overhang between the silicon and glass plates. This made the cell prone
to collapse at the centre during the fabrication process. Therefore, we divided the cell
into three channels of 1 cm width each by adding two walls, shown in figure 1(b) as
horizontal black stripes. For additional support and to keep a homogeneous gap, a matrix
of pillars, 50 μm in diameter, was added in-between the walls. In figure 1(a), the pillars
are represented as thin vertical lines, while in figure 1(b) the gap region is coloured grey,
and the pillars are shown as black circles (their size is exaggerated).

A.2. Surface coating
The surface of the chip was made hydrophobic by depositing a layer of Trichloro
(octadecyl) silane (OTS, Sigma-Aldrich) by chemical liquid deposition in a similar way
as in Zhang, Maeda & Craig (2006). To activate the surface, we dipped the chip in a bath
of piranha solution (30 % of hydrogen peroxide and 70 % sulphuric acid) for 40 min at
75 ◦C. We then washed it with plenty of Milli-Q water and ethanol. The chip was kept in
an oven at 120 ◦C for 2 h to eliminate traces of water. After cooling down, the chip was
dipped in a solution of 0.5 % OTS in toluene for 17 h. Finally the chip was sonicated for
10 min in chloroform and 15 min in each of the following solvents one after the other:
toluene, acetone, isopropyl alcohol, ethanol and water. Finally, the chip was dried under a
nitrogen flow.

A.3. μPIV
A suspension of fluorescent particles (FluoSpheres, Life Technologies, 1 μm,
carboxilate-modified, 2 % solid in aqueous solution, with 2 mM of sodium azide) was
added at 0.9 wt% to the ethanol–water solution. This resulted in an initial volume fraction
of particles of 0.016 % and mass fraction of sodium azide of 1.2 × 10−4 wt%, meaning
that we can disregard any effects from the latter even after 30 min of evaporation.

We recorded images with a confocal microscope (Nikon Confocal Microscopes A1
system) at 30 f.p.s. using a 488 nm laser and a pinhole size of 26.8 μm. This settings
resulted in a vertical resolution of 8 μm. We made measurements at a single position in
the y direction, approximately in the middle of the cell. By translating the position of the
focal plane along the gap of the cell, we observed that the visible particles were always
the same, but with different intensities. Therefore, despite the vertical resolution of 8 μm
all the particles inside the gap were visible at the same time. Different particles moved at
different speeds, which we attribute to the Poiseuille flow. Therefore, the velocity results
shown in this work represent a weighted average of the velocity, where the dominant peak
during the correlation step in the PIV process determines the velocity at a given position.
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The recorded images were processed with PIVLab for MATLAB (Thielicke & Stamhuis
2014, 2019; Thielicke 2014). We used interrogation windows of 40 pixels × 40 pixels
(100 μm × 100 μm) with a 50 % overlap.

We calculated the relaxation time according to Tan et al. (2019); Li et al. (2019b),

td0 ≡
(

1 + ρd
sol

2ρd
p

)
(dd

p)2ρd
p

18μd
sol

, (A1)

where ρd
sol ≈ 910.73 kg m−3 and μd

sol ≈ 2.5 mPa s are the density and dynamic viscosity of
the ethanol–water solution, and ρd

p = 1050.00 kg m−3 and dd
p = 1 μm are the density and

diameter of the tracer particles. Then the Stokes number is estimated to be St = td0ud
max/zd

F,
with ud

max the maximum velocity at a given time and zd
F the roll height at that time. The

velocity ranges from ∼10−4–10−3 m s−1 while the roll height goes from 0.1–1 mm,
resulting in a Stokes number of at most St ∼ 10−7. If we consider that from simulations
we observed that the velocity at the edge reaches up to 0.01 m s−1 and we combine this
with the smallest roll that we can observe experimentally, then we get St ∼ 10−6, meaning
that in any case the particles should follow the flow properly.

Appendix B. Values of different properties used for simulations and theoretical
calculations

In table 1 we show the initial dimensional values of the different properties of the
fluids used in the simulations. As mentioned in § 3.1, the generalized form of Rault’s
law (3.15) was used in simulations, for which the activity coefficient was calculated
by the thermodynamic model AIOMFAC (Zuend et al. 2008, 2011). On the other
side, as also mentioned before, a Taylor expansion around an initial mass fraction of
ce,0 = 0.5 was used for the theoretical calculations. The corresponding coefficients were
calculated according to a0(ce,0 = 0.5) = (1 + Md

e /Md
w)−1 − 2(Md

e /Md
w)(1 + Md

e /Md
w)−2

and a1(ce,0 = 0.5) = 4(Md
e /Md

w)(1 + Md
e /Md

w)−2. Their numerical values are displayed in
table 1.

The thermal diffusion coefficient was obtained from Yano, Fukuda & Hashi (1988),
corresponding to ce = 0.494 at 288 K. The gradient of surface tension with respect to
temperature was obtained by fitting data from Vazquez, Alvarez & Navaza (1995).

For the case of E, as discussed in the main text, we did not used the value at t = 0 as there
is no gradient initially. Instead we used the mean value Ē calculated over the same period
used for calculating the growth rate σ as described in Appendix D. The corresponding
values for each simulation can be seen in the supplementary material.

Appendix C. Derivation of dispersion relation

Here we show in more detail the derivation of the dispersion relation (4.14). Introduction
of the perturbed quantities (4.10) to (4.13) into (4.1) to (4.4a,b) yield the following ordinary
differential equations after neglecting nonlinear terms in ε,

(
d2

dz2 − κ2

)
p̂1 = 0, (C1)
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ce,0 0.5 cg
e,0 0

Dd
0 (m2 s−1) 3.65 × 10−10 Dg,d

e,0 (m2 s−1) 1.35 × 10−5

ρd
0 (kg m−3) 9.11 × 102 ρ

g,d
0 (kg m−3) 1.2

μd
0 (kg m−1 s−1) 2.49 × 10−3 μ

g,d
0 (kg m−1 s−1) 1.80 × 10−5

dγ d
0

dce
(kg s−2) −1.85 × 10−2 Dg,d

w,0 (m2 s−1) 2.45 × 10−5

pd
sat (kg m−1 s−2) 6.57 × 103 Td (K) 2.95 × 102

Md
e (kg mol−1) 4.61 × 10−2 Md

w (kg mol−1) 1.80 × 10−2

RH (%) 50 δd (m) 2.00 × 10−5

a0 −1.23 × 10−1 a1 8.08 × 10−1

Dd
0,T (m2 s−1) 8.74 × 10−8 dγ d

0
dT

(kg s−2) −8.99 × 10−5

Table 1. Dimensional values used in simulations for the two phases at t = 0 and for the thermal Marangoni
number estimation.

(
d2

dz2 − κ2 − 12 − σ

)
û̂ûu1 =

(
d
dz

ẑ + iκ x̂
)

p̂1, (C2)

(
d2

dz2 − κ2 − σSc

)
ĉe,1(z) = E Sc ûz,1(z), (C3)

(
d2

dz2 − κ2

)
ĉg

e,1(z) = 0. (C4)

Equation (C1) was obtained in the regular way of applying the divergence to the
Navier–Stokes equation in combination with the continuity equation. It has for its solution

p̂1 = fpe−κz, (C5)

where fp is a constant and we have kept p̂1 finite. Substituting (C5) into (C2) leads to the
solutions

ûz,1 = − κfp
κ2 − β2

(
e−κz − e−βz) , (C6)

in the z-direction, and

ûx,1 = ifp
κ2 − β2

(
κe−κz − βe−βz) (C7)

in the x-direction, with β2 = κ2 + 12 + σ . In these solutions we have already considered
that the velocity should stay finite, assumed uz(x, 0, t) = 0 as described in the main text,
and took into account continuity ∇∇∇‖ · uuu = 0.

Introduction of (C6) into (C3) leads to

ĉe,1 = B0

κ2 − ζ 2 e−κz − B0

β2 − ζ 2 e−βz + B1e−ζ z, (C8)

where ζ 2 = κ2 + σSc, B0 = −E Sc fpκ/(κ2 − β2) and B1 is a constant. Again we took a
finite perturbation far away from the edge.
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The solution of (C4) is given by

ĉg
e,1 = Bg

1eκz, (C9)

with Bg
1 a constant. Once more, we have consider that the perturbation tends to zero far

away from the edge.
The expanded Raoult’s law (4.7) for the base case results in

Cg
0 = csat(a0 + a1C0), (C10)

meaning that for the perturbed mass fraction the condition reads

ĉg
e,1(0) = csata1ĉe,1(0), (C11)

thus

Bg
1 = csata1(I(0) + B1), (C12)

where I(0) = B0/p − B0/q, with p = κ2 − ζ 2 and q = β2 − ζ 2.
On the other side, the mass conservation of solute at the interface (4.6) for the base case

results in

E = Dg
eρ

gEg, (C13)

while for the perturbed mass fraction we have

I′(0) + ζB1 = −Dg
eρ

gκBg
1, (C14)

with I′(0) = κB0/p − βB0/q and Dg
e = Dg,d

e /Dd
0.

In this way we can obtain B1 and Bg
1 in terms of B0, but more importantly the mass

fraction at the edge, which in the liquid side reads

ĉe,1(0) = ζ I(0) − I′(0)

κcsata1Dgρg + ζ
. (C15)

As a last step we apply boundary condition (4.5),

dûx,1(0)

dz
= iκ

Ma
Sc

ĉe,1(0), (C16)

where again we have taken into account that uz(x, 0, t) = 0. In this way, the dispersion
relation is expressed as

E Mas = κ2
(

csata1Dgρg + ζ

κ

)(
1 + β

κ

)(
1 + ζ

κ

)(
β

κ
+ ζ

κ

)
, (C17)

which becomes equivalent to equation (30) from Sternling & Scriven (1959), provided that
we neglect surface viscosity, and consider that μg,d  μl,d, ρg,d  ρl,d and Dl,d  Dg,d,
with the superscripts g and l referring to the gas and liquid phases, respectively. We solved
the complete equation from Sternling & Scriven (1959) for a few cases and compared it
with its simplified counterpart (C17), which resulted in negligible differences when taking
into account the material properties of ethanol and water and keeping the surface viscosity
term equal to zero.

Finally, if we notice that Ma∗
s = E Mas, then (C17) leads to (4.14) in the main text.
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Figure 11. (a) Power density function obtained from the fast Fourier transform of the mass fraction profile at
t = 10.3 from figure 8(d) as a function of the normalized wavenumber κ . (b) Same power as in panel (a) but
now as a function of time in a semilogarithmic scale. The four curves correspond to the vertical dashed lines in
panel (a). The shadowed area represents the section over which a linear fit (in semilogarithmic scale) was used
to calculate the growth rate σ .

Appendix D. Calculation of the growth rate

Here we show typical plots used for the calculation of the growth rate σ as a function of
wavenumber κ . In figure 11(a) we show the power density function (PDF) as a function
of the normalized wavenumber κ . This PDF corresponds to the mass fraction profile at
t = 10.3 from figure 8(d). By calculating the PDF over different times, we can look at the
evolution in time of the power for every single wavenumber (not only those for which the
power has a peak). In figure 11(b) we show four examples corresponding to the vertical
dashed lines in figure 11(a).

If plotted in a semilogarithmic scale, there is a region where the power can be
approximately fitted by a straight line (shadowed region in figure 11b), reflecting
exponential growth. The growth rate was obtained from a straight line fit in the shadowed
region. We did not apply the fit for earlier times to avoid considering the period over
which the concentration gradient is building up (transients, see figure 9), but also not at
later times, because eventually either nonlinear coupling or spectral bleeding causes all
the wavelengths to grow at the same rate as the fastest wavelength. One can see that both
the blue line with circles and the green line with right triangles in figure 11(b) eventually
start growing at a faster rate before reaching a saturation value. However, in some cases
we included part of these regions of nonlinear growth (for the largest wavenumbers), in
order to have enough fitting points for the smallest wavenumbers, which is the reason for
the noisy behaviour observed in figure 10 at larger values of κ .

Figure 10 shows the average over different runs, for which we have changed the kind
of mesh (see supplementary material for a description of the different kinds of meshes),
the resolution and the size of the simulation domain. The use of different resolutions
and different domain sizes, caused that the specific values of κ obtained for the Fourier
transform to be different between simulations. In order to obtain an average curve of σ(κ),
we interpolated the values of σ over a set of values of κ common to every different run.
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From figure 11(b) it is evident that the power is quite small in the region over which we
made the fit (notice that the power represents variations on the mass fraction). However,
by the time the value becomes large, either merging has already taken place or the fastest
wavelength has already shadowed the growth rate of the others. Therefore, we made
the fit at early times when different wavelengths have different growth rates. In movie
5 of the supplementary material we show the evolution in time of the mass fraction
variation showing that merging already takes place before the variations in mass fraction
becomes large. This early merging makes it hard to observe the onset of the instability in
experiments.

In some of our simulations the instability was triggered first in certain regions of the
interface, while it started later in others. We discarded those simulations.
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