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LINEAR INDEPENDENCE OF VALUES OF THE
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Abstract

We establish the linear independence of values of the q-analogue of the exponential function and its
derivatives at specified algebraic arguments, when q is a Pisot–Vijayaraghavan number. We also deduce
similar results for cognate functions, such as the Tschakaloff function and certain generalised q-series.
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1. Introduction

For any complex number q with |q| > 1, the q-analogue of the exponential function is
defined by the absolutely convergent series

Eq(x) := 1 +
∞∑

n=1

xn

[n]q!
,

where [n]q = qn − 1 and [n]q!= (qn − 1)(qn−1 − 1) · · · (q − 1). Similarly, the q-analogue
of the logarithm is given by

Lq(x) :=
∞∑

n=1

xn

[n]q
for |x| < |q|.

The analogy between the classical functions and their q-analogues is driven by the
limit

lim
q→1+

qn − 1
q − 1

= n.

Unlike the classical exponential and logarithm functions, their q-counterparts are
related by the differential relation
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Lq(x) = x
E′q(−x)

Eq(−x)
for |x| < |q|.

For more details, we refer the reader to [7, Section 6]. These functions appear in
various contexts in combinatorics and number theory and are interesting functions
in their own right.

The value at x = 1 of the q-logarithm function is of particular importance, as
Lq(1) = ζq(1), where

ζq(s) :=
∞∑

n=1

ns−1

[n]q
,

is the q-analogue of the Riemann zeta-function (see [6]). The value ζq(1),

ζq(1) =
∞∑

n=1

1
qn − 1

,

is often referred to as the q-harmonic series.
We examine the arithmetic nature and linear independence properties of certain

special values of these functions. Recall that a real algebraic integer ω is said to be
a Pisot–Vijayaraghavan number (abbreviated to PV number) if ω > 1 and |ω(j)| < 1
for all other Galois conjugates ω(j) of ω. Immediate examples of PV numbers are
positive integers greater than one. A nontrivial example is obtained by considering β,
the real root of x4 − x3 − 2x2 + 1 with β > 1. Pisot [8] showed that, in every real
algebraic number field, there exist PV numbers that generate the field. These numbers
make a fundamental appearance in Diophantine approximation and have been studied
extensively.

Fix an algebraic integer q � 0 and let nq = [Q(q) : Q]. Let σ1, σ2, . . . , σnq denote
the embeddings of Q(q) into C, with σ1 being identity. Let Oq be the ring of integers
of Q(q). For any algebraic number α ∈ Q(q), the q-relative height of α, Hq(α), is

Hq(α) :=
nq∏
l=1

max{1, |σl(α)|}.

Thus, if q is a PV number, then Hq(q) = q.
Our first theorem concerns the linear independence of values of derivatives of

a certain generalised q-exponential function. Let P(X) ∈ Z[X] be a nonconstant
polynomial such that P(qt) � 0 for all t ∈ N. Then the generalised q-exponential
function with respect to P is given by

Eq,P(x) = 1 +
∞∑

n=1

xn∏n
t=1 P(qt)

.

If P(X) = X − 1, then Eq,P(x) = Eq(x), the q-exponential function. Note that Eq,P(x) is
a basic hypergeometric series, as defined in [5].

With this notation, we can state our first result.
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THEOREM 1.1. Assume that q or −q is a PV number. Let P(X) = LDXD + · · · + cdXd ∈
Z[X] be a nonconstant polynomial with P(qt) � 0 for t ≥ 1, d ≤ D and LDcd � 0. Let
α1, . . . ,αm be nonzero algebraic integers in Q(q) satisfying

|cd |nq−1 max{|α1|, |α2|, . . . , |αm|}
nq∏
l=2

max{1, |σl(α1)|, |σl(α2)|, . . . , |σl(αm)|} < |q|D. (1.1)

Suppose that αk1/αk2 is not a root of unity for 1 ≤ k1, k2 ≤ m and k1 � k2. Then the
numbers in the set

S := {E(j)
q,P(αk) : 1 ≤ k ≤ m, 0 ≤ j ≤ M} ∪ {1}

are linearly independent over the field Q(q).

The following result is an immediate corollary of this theorem.

COROLLARY 1.2. Assume that q or −q is a PV number. Let α1, . . . ,αm be nonzero
algebraic integers in Q(q) satisfying

max{|α1|, |α2|, . . . , |αm|}
nq∏
l=2

max{1, |σl(α1)|, |σl(α2)|, . . . , |σl(αm)|} < |q|.

Suppose that αk1/αk2 is not a root of unity for 1 ≤ k1, k2 ≤ m and k1 � k2. Then the
numbers in the set

S := {E(j)
q (αk) : 1 ≤ k ≤ m, 0 ≤ j ≤ M} ∪ {1}

are linearly independent over the field Q(q).

In particular, this gives the following result about the special functions discussed
earlier.

COROLLARY 1.3. Assume that q or −q is a PV number and that α ∈ Oq satisfies

0 < min{1, |α|}Hq(α) < |q|.

Then Eq(α), Lq(α) � Q(q). In particular, ζq(1) is irrational.

The irrationality and linear independence of the values of the q-logarithm function
have been studied extensively. We refer the reader to [10] for a comprehensive history
of the problem and an investigation of the values of a generalisation of the q-logarithm
function. The irrationality of ζq(1) when q is an integer was first obtained by Erdős [4].
More recently, Tachiya [9, Theorem 2] proved that ζq(1) � Q(q) when q is a PV
number, which also follows from Corollary 1.3.

A special function closely related to the q-exponential function is the Tschakaloff
function, given by

Tq(x) := 1 +
∞∑

n=1

xn

qn(n+1)/2 .

https://doi.org/10.1017/S0004972723001028 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723001028


456 A. B. Dixit, V. Kumar and S. S. Pathak [4]

In our notation, Tq(x) = Eq,I(x), where I(x) = x. Thus, Theorem 1.1 implies the
following result.

COROLLARY 1.4. Assume that q or −q is a PV number. Suppose that α ∈ Oq satisfies

0 < min{1, |α|}Hq(α) < |q|.

Then the numbers 1, Tq(α), T (1)
q (α), . . . , T (m)

q (α) are linearly independent over Q(q).

It was brought to our notice by the referee that Theorem 1.1 follows from [1,
Corollaries 5.1 and 5.2], which require a much weaker condition on the αk than in
Theorem 1.1. In [1], Amou et al., prove a general result regarding linear independence
of values of solutions to q-difference equations. The techniques necessary to prove
this result are involved, whereas our proof of Theorem 1.1 follows from relatively
elementary considerations.

The statements so far were concerned with the independence of values of a single
function and its derivatives at several arguments. We now address the question of
independence of different cognate functions at the same argument. For any M ∈ N and
any q with |q| > 1, we define an arithmetic progression analogue, Eq,M(x), of Eq(x) by

Eq,M(x) := 1 +
∞∑

n=1

xn

[Mn]q!
.

This is an entire function. Clearly, Eq,1(x) = Eq(x) and

Eq,M(xM) = 1 +
∞∑

n=1
n≡0 mod M

xn

[n]q!
.

Note that Eq,M is not a basic hypergeometric function.
For these special functions, we prove the following theorem.

THEOREM 1.5. Assume that q or −q is a PV number and that a1 < · · · < ak are distinct
positive integers. Let α ∈ Oq be such that 1 ≤ |α| and

Hq(α) < |q|a1 . (1.2)

Then the numbers

1, Eq,a1 (α), . . . , Eq,ak (α) (1.3)

are linearly independent over the field Q(q).

The approach in this paper is an adaptation of the proof of [7, Theorem 1.1], which
is a modification of the argument by Duverney [3]. In essence, it is similar to Fourier’s
proof of the irrationality of the number e. The proof of Theorem 1.1 relies on a
Diophantine lemma, which is a consequence of the Skolem–Mahler–Lech theorem.
The proof of Theorem 1.5 is completed using a recursive elimination argument.
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2. Proof of the theorems

An important ingredient in the proofs is the following particular case of the
Skolem–Mahler–Lech theorem [2, Theorem 4.3, page 124].

THEOREM 2.1. Let α1, . . . ,αk be nonzero algebraic numbers such that αi/αj is not
a root of unity for 1 ≤ i < j ≤ k. Let P1(x), . . . , Pk(x) be nonzero polynomials with
algebraic coefficients. Then there are only finitely many natural numbers n satisfying

P1(n)αn
1 + · · · + Pk(n)αn

k = 0.

This is immediate from the Skolem–Mahler–Lech theorem since the sequence
P1(n)αn

1 + · · · + Pk(n)αn
k is a nondegenerate recurrence sequence if none of the αi/αj

(1 ≤ i < j ≤ k) is a root of unity.

2.1. Proof of Theorem 1.1. Let fj(x) := xjE(j)
q,P(x) for 0 ≤ j ≤ M. Observe that the

result follows if we show that 1 and the values fj(αk) are Q(q)-linearly independent
for 0 ≤ j ≤ M and 1 ≤ k ≤ m. Indeed, suppose that ξ0 and ξj,k are algebraic numbers in
Q(q) for 1 ≤ k ≤ m and 0 ≤ j ≤ M, not all zero, such that

ξ0 +

M∑
j=0

m∑
k=1

ξj,kE(j)
q,P(αk) = 0.

Then we obtain the nontrivial linear relation

ξ0 +

M∑
j=0

m∑
k=1

ξj,k

α
j
k

fj(αk) = 0,

which again has coefficients in Q(q). Thus, it suffices to establish the linear indepen-
dence of the fj(αk) over Q(q).

Let r0(X) = 1 and rj(X) := X(X − 1) · · · (X − j + 1) for 1 ≤ j ≤ M. Then

fj(x) =
∞∑

n=j

rj(n)xn∏n
t=1 P(qt)

=

∞∑
n=1

rj(n)xn∏n
t=1 P(qt)

,

since rj(n) = 0 for 0 ≤ n ≤ j − 1. Now, suppose that λ0 and λj,k ∈ Q(q) are such that

λ0 +

M∑
j=0

m∑
k=1

λj,k fj(αk) = 0.

Without loss of generality, we can assume that λ0 and the λj,k are algebraic integers.
For 1 ≤ k ≤ m, let Ak(X) :=

∑M
j=0 λj,krj(X). Then, from the definition of Eq,P(x),

λ̃0 +

∞∑
n=1

∑m
k=1 Ak(n)αn

k∏n
t=1 P(qt)

= 0,

where λ̃0 = λ0 +
∑m

k=1 λ0,k.
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Let N be a sufficiently large positive integer. We truncate the infinite sum above at
N and clear denominators to obtain

XN := λ̃0

N∏
t=1

P(qt) +
N∑

n=1

( m∑
k=1

Ak(n)αn
k

) N∏
t=n+1

P(qt) = −
N∏

t=1

P(qt)
∞∑

n=N+1

∑m
k=1 Ak(n)αn

k∏n
t=1 P(qt)

.

(2.1)

Then XN ∈ Oq. Moreover, the right-hand side of (2.1) can be written as

N∏
t=1

P(qt)
∞∑

n=N+1

∑m
k=1 Ak(n)αn

k∏n
t=1 P(qt)

=

∑m
k=1 Ak(N + 1)αN+1

k

P(qN+1)
+

1
P(qN+1)

∞∑
n=2

∑m
k=1 Ak(N + n)αN+n

k∏N+n
t=N+2 P(qt)

. (2.2)

For simplicity of notation, let

α := max{|α1|, |α2|, . . . , |αm|}.

From the triangle inequality and the fact that each Ak(X) is a polynomial of degree M,
for all ν > 0, ∣∣∣∣∣

m∑
k=1

Ak(ν)ανk

∣∣∣∣∣ ≤ αν
m∑

k=1

|Ak(ν)| 
 νMαν.

Also, since |P(qt)| ∼ |q|tD for t sufficiently large, the second term on the right-hand side
of (2.2) is


 αN+1

|P(qN+1)|

∞∑
n=2

(n + N)M ·
( α
|q|DN

)n−1
· |q|−D(n2+n−2)/2.

This infinite series converges absolutely as |q| > 1 and the terms decay exponentially.
Applying these bounds to the expression in (2.2) gives

|XN | 

αN+1

|P(qN+1)|
NM , (2.3)

where the implied constant depends on q, the αk and the coefficients λj,k.
We now estimate the size of conjugates of XN . Since ±q is a PV number, |σl(q)| < 1

for 2 ≤ l ≤ nq. From the expression for XN in (2.1), for all n ≥ 0,

σl(XN) = σl(λ̃0)
N∏

t=1

P(σl(q)t) +
N∑

n=1

( m∑
k=1

σl(Ak(n))σl(αk)n
) N∏

t=n+1

P(σl(q)t).

Observe that∣∣∣∣∣
N∏

t=n+1

P(σl(qt))
∣∣∣∣∣ =
∣∣∣∣∣cd

( N∏
t=n+1

σl(qt)
)d∣∣∣∣∣

N−n N∏
t=n+1

∣∣∣∣∣1 + · · · + LD

cd
(σl(qt))D−d

∣∣∣∣∣.
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Since |σl(q)| < 1 for 2 ≤ l ≤ nq, the series
∑∞

t=1 (σl(qt))s is absolutely convergent for
1 ≤ s ≤ D − d. Thus, the infinite product

∞∏
t=1

∣∣∣∣∣1 + · · · + LD

cd
(σl(qt))D−d

∣∣∣∣∣
is convergent and∣∣∣∣∣

N∏
t=n+1

P(σl(q)t)
∣∣∣∣∣ 
 |cd |N−n

N∏
t=n+1

|(σl(qt))d(N−n)| 
 |cd |N−n,

again since |σl(q)| < 1 for 2 ≤ l ≤ nq. By these observations,

|σl(XN)| 
 |cd |N
(
1 +

N∑
n=1

|cd |−n
m∑

k=1

|σl(Ak(n))||σl(αk)|n
)
.

Note that cd ∈ Z so that |cd | ≥ 1. Now, σl(Ak(n)) =
∑M

j=0 σl(λj,k)rj(n), which is again a
polynomial of degree M in n. Putting these bounds together, we deduce that

|σl(XN)| 
 NM+2|cd |N(max{1, |σl(α1)|, . . . , |σl(αm)|})N . (2.4)

As before, the implied constant only depends on q, the αk and the λj,k.
Multiplying the absolute values of all the conjugates of XN and the corresponding

bounds in (2.3) and (2.4) gives
nq∏
l=1

|σl(XN)| 
 Nnq(M+2)−2|cd |(nq−1)NαN

|P(qN+1)|

( nq∏
l=2

max{1, |σ(α1)|, . . . , |σ(αm)|}
)N


 Nnq(M+2)−2
(α|cd |(nq−1)∏nq

l=2 max{1, |σ(α1)|, . . . , |σ(αm)|}
|q|D

)N
.

By the hypothesis (1.1), the last bound tends to zero as N → ∞. In particular,∣∣∣∣∣
nq∏
l=1

σl(XN)
∣∣∣∣∣ < 1

for all N sufficiently large. Here, the left-hand side is a power of the norm of
an algebraic integer (noting that Q(XN) may be a strict subfield of Q(q)). Thus,∏nq

l=1 σl(XN) must be a rational integer for all N > 0. This is only possible if XN = 0
for all N sufficiently large.

Therefore, there exists a natural number N0 such that, for all N ≥ N0,

XN∏N
t=1 P(qt)

= λ̃0 +

N∑
n=1

m∑
k=1

Ak(n)αn
k = 0.

Thus, considering the expression
XN+1∏N+1

t=1 P(qt)
− XN∏N

t=1 P(qt)
,
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which equals zero for N > N0, we obtain

A1(N)αN
1 + · · · + Am(N)αN

m = 0

for all N > N0. As αk1/αk2 is not a root of unity, it follows from Theorem 2.1 that
Ak(N) = 0 for 1 ≤ k ≤ m and all N > N0. Thus, the polynomials Ak(X) are identically
zero. Recall that

Ak(X) =
M∑

j=0

λj,krj(X),

and deg rj(X) = j. Since the rj(X) have distinct degrees, Ak(X) is identically zero if and
only if λj,k = 0 for 0 ≤ j ≤ M and 1 ≤ k ≤ m. This completes the proof of the theorem.

2.2. Proof of Theorem 1.5. We begin along the same lines as in the proof of
Theorem 1.1.

Suppose that the numbers in (1.3) are linearly dependent overQ(q). Then there exist
algebraic integers λ0, λ1, . . . , λk ∈ Oq, not all zero, such that

λ0 + λ1Eq,a1 (α) + · · · + λkEq,ak (α) = 0.

Without loss of generality, we can assume that λ1 � 0. Otherwise, we can change the
notation to replace aj by a1 for the smallest j ≤ k for which λj � 0 and follow the
argument below.

From the definition of the q-exponential function,

λ̃0 +

∞∑
n=1

λ1α
n

[a1n]q!
+ · · · +

∞∑
n=1

λkα
n

[akn]q!
= 0, (2.5)

where λ̃0 = λ0 + λ1 + · · · + λk. Set d = lcm{a1, . . . , ak} and di = d/ai. Choose a large
positive integer N and set Ni = Ndi for i = 1, 2, . . . , k. With these choices of Ni,

a1N1 = a2N2 = · · · = akNk = dN.

Furthermore, for all i = 1, 2, 3, . . . , k,

[dN]q!
[ai(Ni + 1)]q!

=
[aiNi]q!

[ai(Ni + 1)]q!

=
(qaiNi − 1) · · · (q − 1)

(qaiNi+ai − 1) · · · (q − 1)
=

1
(qNd+ai − 1) · · · (qNd+1 − 1)

. (2.6)

Now truncate the ith infinite sum in (2.5) at Ni and multiply by [dN]q! to get

XN := [dN]q!
(
λ̃0 +

N1∑
n=1

λ1α
n

[a1n]q!
+ · · · +

Nk∑
n=1

λkα
n

[akn]q!

)

= −[dN]q!
( ∞∑

n=N1+1

λ1α
n

[a1n]q!
+ · · · +

∞∑
n=Nk+1

λkα
n

[akn]q!

)
. (2.7)
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[9] Values of the q-exponential and related functions 461

Since [dN]q!= [aiNi]q! for 1 ≤ i ≤ k, XN is an algebraic integer inOq. We now estimate
the right-hand side of (2.7). By an argument similar to the one in Theorem 1.1 and
using (2.6), we deduce that

∣∣∣∣∣[dN]q!
∞∑

n=Nj+1

αn

[ajn]q!

∣∣∣∣∣ 
 |α|Nj

|q|ajdN 

(∣∣∣∣∣ α

dj

qajd

∣∣∣∣∣
)N

,

since Nj = Ndj. As a1 < a2 < · · · < ak, d1 > d2 > · · · > dk and |α| ≥ 1,

|XN | 

(∣∣∣∣∣ α

d1

qa1d

∣∣∣∣∣
)N

. (2.8)

By the same argument as in the proof of Theorem 1.1, we can estimate the conjugates
of XN by

|σl(XN)| 
 N1(max{1, |σl(α)|})N1 . (2.9)

As before, the implied constant depends only on q, the ai and the λj,k. Multiplying the
bounds (2.8) and (2.9) for the absolute values of all the conjugates of XN and noting
that |α| ≥ 1, we derive

nq∏
l=1

|σl(XN)| 
 Nnq−1
1

( |α|∏nq

l=2 max{1, |σl(α)|}
|q|a2

1

)d1N

.

By (1.2), the right-hand side tends to zero as N → ∞. However, the left-hand side is a
rational integer since it is a power of the norm of an algebraic integer. Therefore, there
exists a natural number N0 such that XN = 0 for all N > N0, which, in turn, implies that
XN = XN+1 = 0. Consequently,

λ̃0 +

Nd1∑
n=1

λ1α
n

[a1n]q!
+ · · · +

Ndk∑
n=1

λkα
n

[akn]q!
= 0

and

λ̃0 +

Nd1+d1∑
n=1

λ1α
n

[a1n]q!
+ · · · +

Ndk+dk∑
n=1

λkα
n

[akn]q!
= 0

for all N > N0. Subtracting these two relations gives

λ1

Nd1+d1∑
n=Nd1+1

αn

[a1n]q!
+ · · · + λk

Ndk+dk∑
n=Ndk+1

αn

[akn]q!
= 0 (2.10)

for all N > N0. Note that, for 1 ≤ j ≤ k, we have Nd + aj ≤ ajn ≤ Nd + d in the above
sums. Therefore,

αNdk+1

[Nd + a1]q!
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divides each term in (2.10). By extracting this factor, we obtain

λ1

(
αN(d1−dk) +

αN(d1−dk)+1

(qNd+2a1 − 1) · · · (qNd+a1+1 − 1)
+ · · · + αN(d1−dk)+d1−1

(qNd+d − 1) · · · (qNd+a1+1 − 1)

)

+ λ2

(
αN(d2−dk)

(qNd+a2 − 1) · · · (qNd+a1+1 − 1)
+ · · · + αN(d2−dk)+d2−1

(qNd+d − 1) · · · (qNd+a1+1 − 1)

)

+ · · ·

+ λk

( 1
(qNd+ak − 1) · · · (qNd+a1+1 − 1)

+ · · · + αdk−1

(qNd+d − 1) · · · (qNd+a1+1 − 1)

)
= 0.

(2.11)

Now, for 1 ≤ j ≤ k and 0 ≤ l ≤ dj − 1, the absolute value of the general term is

∣∣∣∣∣ αN(dj−dk)+l

(qNd+(l+1)aj − 1) · · · (qNd+a1+1 − 1)

∣∣∣∣∣ 

∣∣∣∣∣α

d1−dk

qδd

∣∣∣∣∣
N

except for j = 1 and l = 0, with δ = min{a1, a2 − a1}. Since 1 ≤ δ, this implies that each
term in (2.11) is
 |αd1−dk/qd |N . By (1.2), this quotient is less than 1, as 1 ≤ |α| < |q|a1 .
Hence, taking the limit as N → ∞, all terms in (2.11) tend to zero except the first,
that is, αN(d1−dk). This implies that λ1 = 0, which is a contradiction. This completes the
proof.
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