FINITE PROJECTIVE GEOMETRIES

GERALD BERMAN

James Singer [12] has shown that there exists a collineation which is transitive on the $(t-1)$-spaces, that is, $(t-1)$-dimensional linear subspaces, of $P G\left(t, p^{n}\right)$. In this paper we shall generalize this result showing that there exist $t-r$ collineations which together are transitive on the s-spaces of $P G\left(t, p^{n}\right)$. An explicit construction will be given for such a set of collineations with the aid of primitive elements of Galois fields. This leads to a calculus for the linear subspaces of finite projective geometries.

1. The existence of a set of $t-s$ collineations transitive on the s-spaces of $P G\left(t, p^{n}\right)$. Let

$$
\begin{equation*}
A_{s} \subset A_{s+1} \subset \ldots \subset A_{t-1} \subset P G\left(t, p^{n}\right) \tag{C}
\end{equation*}
$$

be an ascending chain of linear subspaces of $P G\left(t, p^{n}\right)$, where A_{i} is an i-space ($s \leqslant i \leqslant t$). A_{i} will be a finite projective geometry of i dimensions equivalent to $P G\left(i, p^{n}\right)$. By Singer's theorem there exists a collineation χ_{i}, of period $q_{i}=1+p^{n}+\ldots+p^{n i}$, transitive on the ($i-1$)-spaces of A_{i}. Let B be any s-space of $P G\left(t, p^{n}\right)$. Imbed B in a chain of subspaces

$$
\begin{equation*}
B \equiv B_{s} \subset B_{s+1} \subset \ldots \subset B_{t-1} \subset P G\left(t, p^{n}\right) \tag{0}
\end{equation*}
$$

By the above remarks there exists an integer ρ_{t} such that

$$
\chi_{t}^{\rho_{t}} B_{t-1}=A_{t-1} .
$$

Apply the collineation

$$
\chi_{t}^{p_{t}}
$$

to each of the spaces $B_{i}(i=s, s+1, \ldots, t-1)$, putting

$$
\chi_{i}{ }^{\rho_{t}} B_{i}=B_{i}{ }^{1} .
$$

The chain (C_{0}) will then be mapped on the chain

$$
\begin{equation*}
B_{s}{ }^{1} \subset B_{s+1}{ }^{1} \subset \ldots \subset B_{t-2}{ }^{1} \subset A_{t-1} \subset P G\left(t, p^{n}\right) \tag{1}
\end{equation*}
$$

Continue in this way. At the i th stage we will have the chain

$$
\begin{equation*}
B_{s}{ }^{i} \subset B_{s+1}^{i} \subset \ldots \subset B_{t-i-1}^{i} \subset A_{t-i} \subset \ldots \subset P G\left(t, p^{n}\right) \tag{i}
\end{equation*}
$$

There exists an integer ρ_{t-i} such that

$$
\chi_{t-i}{ }^{\rho_{t-i}} B_{t-i-1}{ }^{i}=A_{t-i-1}{ }^{i} .
$$

Received November 24, 1950; in revised form December 8, 1951. This paper is part of a thesis prepared under the supervision of Professor H. S. M. Coxeter and submitted for a Ph. D. degree at the University of Toronto in June, 1950.

Apply the collineation

$$
\chi_{t-i}{ }^{p_{t-i}}
$$

to each of the spaces $B_{j}{ }^{i}(j=s, s+1, \ldots, t-i-1)$, putting

$$
\chi_{t-i}{ }^{\rho_{t-i}} B_{j}{ }^{i}=A_{j}{ }^{i+1} .
$$

The chain $\left(\mathrm{C}_{i}\right)$ will be mapped on the chain $\left(C_{i+1}\right)$. It is clear that $\left(C_{t-s}\right) \equiv(\mathrm{C})$. In particular, B has been mapped by the collineation

$$
\chi_{s+1}^{\rho_{s}+2} \chi_{s+2}{ }^{\rho_{s}+t_{2}} \ldots \chi_{t}^{\rho_{t}} \text { on } A_{s} .
$$

The inverse collineation

$$
\chi_{t}{ }^{\sigma_{t}} \chi_{t-1}{ }^{\sigma_{t-1}} \cdots \chi_{s+1}{ }^{\sigma_{t}+1} \quad\left(\rho_{i}+\sigma_{i}=q_{i}\right)
$$

thus maps A, on the s-space B of $P G\left(t, p^{n}\right)$.
Let B, B^{*} be any two s-spaces of $P G\left(t, p^{n}\right)$. We have shown that there exist collineations χ, χ^{*}, each products of the collineations $\chi_{i}(i=s+1, s+2, \ldots, t)$, such that $\chi A_{s}=B, \chi^{*} A_{s}=B^{*}$. The collineation $\chi^{*} \chi^{-1}$, which is again a product of the collineations $\chi_{i}(i=s+1, s+2, \ldots, t)$, carries B into B^{*}. This proves

Theorem 1.1. There exist $t-s$ collineations which together are transitive on the s-spaces of $P G\left(t, p^{n}\right)$.

It should be noted that the collineation χ carrying A_{s} into B is not uniquely defined in terms of the collineations $\chi_{i}(i=s+1, s+2, \ldots, t)$, for the chain (C_{0}) is arbitrary.

The purpose of the next few sections is to characterize the collineations χ_{s} more precisely. A method is developed for numbering the points of $P G\left(t, p^{n}\right)$ in such a way that the points of every linear subspace can easily be obtained. It is necessary to know only the points on one i-space $E_{i}(0)$ and the collineation $\chi_{i}(0)$ defined in terms of it for each $i=1,2, \ldots, t$. A construction is given for these "fundamental" s-spaces and collineations by means of primitive elements of Galois fields. The spaces $E_{i}(0)$ correspond to the spaces A_{i} above, and the collineations $\chi_{i}(0)$ to the coliineations χ_{i}.
2. The representation of the points of $P G\left(s, p^{n}\right)$ by elements of $G F\left(p^{(s+1) n}\right)$. A point of $E_{s} \equiv P G\left(s, p^{n}\right)$ may be represented analytically by an ordered sequence $P \equiv\left(x_{0}, x_{1}, \ldots, x_{s}\right)$ of $s+1$ elements taken from $F \equiv G F\left(p^{n}\right)$, the symbol $0 \equiv(0,0, \ldots, 0)$ being excluded. If λ is any non-zero element of F, the sequence

$$
\lambda P \equiv\left(\lambda x_{0}, \lambda x_{1}, \ldots, \lambda x_{s}\right)
$$

represents the same point as P. The points

$$
P_{i} \equiv\left(x_{0}{ }^{i}, x_{1}{ }^{i}, \ldots, x_{s}{ }^{i}\right) \quad(i=1,2, \ldots, n)
$$

are said to be linearly dependent with respect to F if there exist r elements
$\lambda_{i}(i=1,2, \ldots, r)$ in F, not all zero, such that

$$
\sum_{i=1}^{r} \lambda_{i} P_{i} \equiv\left(\sum_{i=1}^{T} \lambda_{i} x_{0}{ }^{i}, \sum_{i=1}^{T} \lambda_{i} x_{1}{ }^{i}, \ldots, \sum_{i=1}^{T} \lambda_{i} x_{s}{ }^{i}\right) \equiv 0 .
$$

Otherwise the points are said to be linearly independent with respect to F. Consistent with this, an r-space ($r \leqslant s$) is defined to be the totality of points linearly dependent upon $r+1$ linearly independent elements of F. A point is thus a 0 -space, and a line a 1 -space.

Let a_{s} be a primitive element of $K_{s} \equiv G F\left(p^{(s+1) n}\right)$ [3]. Every non-zero element of K_{s} can then be expressed uniquely in the form

$$
a_{s}{ }^{i} \quad\left(0 \leqslant i \leqslant p^{(s+1) n}-2\right)
$$

Since a_{s} must satisfy an irreducible F-polynomial of degree $s+1, a_{s}{ }^{s+1}$ may be expressed uniquely in the form

$$
a_{s}^{s+1}=a_{0}+a_{1} a_{s}+\ldots+a_{s} a_{s}^{s} \quad\left(a_{i} \in F ; i=0,1, \ldots, s\right)
$$

With the aid of this relation, every power of a_{s} may be expressed uniquely in the form

$$
a_{s}{ }^{i}=a_{0}^{(i)}+a_{1}^{(i)} a_{s}+\ldots+a_{s}^{(i)} a_{s}^{s} \equiv a^{i}\left(a_{s}\right) \quad\left(i=0,1, \ldots, p^{(s+1) n}-2\right)
$$

where $a_{j}{ }^{(i)}\left(i=0,1, \ldots, p^{(s+1) n}-2 ; j=0,1, \ldots, s\right)$ belong to F. This means that to every integer $i\left(0 \leqslant i \leqslant p^{(s+1) n}-2\right)$ there corresponds uniquely an ordered sequence $\left(a_{0}{ }^{(i)}, a_{1}{ }^{(i)}, \ldots, a_{s}{ }^{(i)}\right)$ of $s+1$ elements of F. Conversely, every ordered sequence of $s+1$ elements of F uniquely determines one of these integers i.
We thus have four ways of denoting the elements of K_{s} which are uniquely defined in terms of a primitive element a_{s} :
(i) by the powers $a_{s}{ }^{i}$ of a primitive element;
(ii) by polynomials $a^{i}\left(a_{s}\right)$ which are of degree less than $s+1$;
(iii) by ordered sequences $\left(a_{0}{ }^{(i)}, a_{1}{ }^{(i)}, \ldots, a_{s}{ }^{(i)}\right)$ of elements of F;
(iv) by the integer i appearing in (i).

In the subsequent discussion a_{s} will be kept fixed, and the four notations will be used interchangeably. Since all Galois fields of the same order are isomorphic we may choose any primitive element of K_{s} to be a_{s}.

It follows from the above discussion that the points of E_{s} may be represented by the elements of K_{s}, two elements of K_{s} representing the same point if and only if they are linearly dependent with respect to F. An r-space of $E_{s}(r \leqslant s)$ will then be represented by the totality of elements of K_{s} linearly dependent with respect to F on $r+1$ linearly independent elements of K_{s}. Corresponding to the four notations for the elements of K_{s} there will be four notations for the points of E_{s}.

The representation of the points of E_{s} by integers is of especial interest because of the following

Theorem 2.1. The integers $0,1, \ldots, q_{s}-1\left(q_{s}=1+p^{n}+\ldots+p^{s n}\right)$ represent different points of E_{s} and so represent all the points of E_{s}.

We first prove
Lemma 2.1. The non-zero elements of K_{s} which correspond to the elements of F are the multiples of q_{s}.

Let $a_{s}{ }^{c}$ be the element of $F \subset K_{s}$ having the lowest positive exponent. Then $\boldsymbol{a}_{s}{ }^{i c}\left(i=0,1, \ldots, g-1 ; s^{g c} \equiv 1\right)$ are elements of F. Let $a_{s}{ }^{e}$ be a non-zero element of F not included among these; $a_{s}{ }^{e}$ must occur between two successive powers of x^{c}, with $(k-1) c<e<k c$, so that $k c-e<c$. Then $a_{s}{ }^{k c-e}=$ $a_{s}{ }^{k c} a_{s}{ }^{-e}$ is an element of F having lower exponent than c. The set

$$
a_{s}{ }^{i c} \quad(i=0,1, \ldots, g-1)
$$

must contain the $p^{n}-1$ non-zero elements of F, so that $g=m-1$ and

$$
c=\left(p^{(s+1) n}-1\right) /\left(p^{n}-1\right)=q_{s} .
$$

In the integer notation this means that the non-zero elements of F are the multiples of q_{s}.

Theorem 2.1 follows at once; for if the points $0,1, \ldots, q_{s^{-1}}$ are not distinct, two of them, say i and $j(i \leqslant j)$, must be linearly dependent with respect to F. By the Lemma this implies that

$$
j \equiv i+k q_{s} \quad\left(\bmod p^{(s+1) n}-1\right)
$$

so that $j-i\left(0 \leqslant j-i<q_{s}\right)$ is an element of F. This can happen only if $i=j$.
Since i and j represent the same point of E_{s} if and only if $j \equiv i+k q_{s}$ for some integer k, we have

Corollary 2.1. Two integers represent the same point of E_{s} if and only if they are congruent modulo q_{s}.

The points of E_{s} may thus be represented by the residue classes of integers modulo q_{s}.
3. Fundamental difference sets. Let ϕ_{s} be the (1-1) mapping which carries any element $\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ of $K_{s}(s \leqslant t)$ into the corresponding element ($a_{0}, a_{1}, \ldots, a_{s}, 0, \ldots, 0$) of K_{t}.
$\phi_{s}: \quad\left(a_{0}, a_{1}, \ldots, a_{s}\right) \in K_{s} \rightarrow\left(a_{0}, a_{1}, \ldots, a_{s}, 0, \ldots, 0\right) \in K_{t}$.
The inverse mapping $\phi_{s}{ }^{-1}$ will be defined only in the image set $\phi_{s} K_{s}$, that is, for the elements $\left(a_{0}, a_{1}, \ldots, a_{i}\right) \in K_{i}$ with $a_{i}=0(i=s+1, s+2, \ldots, t)$.

If $\phi_{s} A_{i}=A_{i}{ }^{*}(i=1,2, \ldots, r)$, where the A_{i} are elements of K_{s}, and if $c_{i} \in F$, it is clear that

$$
\phi_{s} \sum_{i=1}^{\Gamma} c_{i} A_{i}=\sum_{i=1}^{\Gamma} c_{i} A_{i}^{*}
$$

so that ϕ_{s} preserves linear independence with respect to F. Geometrically this means that ϕ_{s} is a collineation between E_{s} and a subspace of E_{t}.

Theorem 3.1. ϕ_{s} is a collineation between E_{s} and s-space of E_{t}.
Since a collineation carries r-spaces into r-spaces, we have
Corollary 3.1. ϕ_{s} carries r-spaces $(r \leqslant s \leqslant t)$ of E_{s} into r-spaces of E_{t}.
It will be convenient to order the sets of points in the subsequent discussion. The letter D will always refer to an ordered set of points, and the letter E to the same set of points considered as an unordered set.

Let D_{s} be the set of points E_{s} with the ordering $0,1, \ldots, q_{s}-1$. The collineation ϕ_{s} will carry D_{s} into an ordered subset of E_{t} which will be denoted by $D_{s}(0)\left(D_{t}(0) \equiv D_{t}\right)$. The elements of $D_{s}(0)$ will be denoted by $d_{s}{ }^{i} \equiv d_{s}{ }^{i}(0)$, where

$$
d_{s}{ }^{i}=\phi_{s} i \quad\left(i=0,1, \ldots, q_{s}-1 ; s=1,2, \ldots, t\right) .
$$

In particular, $d_{t}{ }^{i}=i\left(i=0,1, \ldots, q_{t}-1\right) . E_{s}(0)$ will of course be the unordered set of points $d_{s}{ }^{i}\left(i=0,1, \ldots, q_{s}-1\right)$. By Corollary 3.1 we have

Theorem 3.2. $E_{s}(0)$ is an s-space of $E_{t}(s=1,2, \ldots, t)$.
The actual numbers which represent the points of $E_{s}(0)$ will depend on the primitive element a_{t} used to define E_{t}, while the ordering of $D_{s}(0)$ will depend on the primitive elements a_{s} used to define E_{s}. The properties of the sets, however, will be the same for all choices of a_{s} and a_{t}.

The sets $D_{s}(0)(s=1,2, \ldots, t)$ will be called the fundamental difference sets of E_{r}. The set $E_{t-1}(0)$ is the same as the set which Singer called a difference set.
The following two theorems express useful properties of the sets defined above.

Theorem 3.3. $E_{r}(0) \subset E_{s}(0)$ provided $r<s$.
If $r<s$ the set of elements $\left\{\left(a_{0}, a_{1}, \ldots, a_{r}, 0, \ldots, 0\right)\right\}$ is contained in the set of elements $\left\{\left(a_{0}, a_{1}, \ldots, a_{s}, 0, \ldots, 0\right)\right\}$ where the a_{i} range over all the elements of F. Geometrically this means that the set of points $E_{r}(0)$ is contained in the set $E_{s}(0)$.

Theorem 3.4. The s-space $E_{s}(0)$ contains the points $0,1, \ldots, s$ but not the point $s+1$, for $s=1,2, \ldots, t-1$.

The point $\left(\delta_{0}{ }^{i}, \delta_{1}{ }^{i}, \ldots, \delta_{s}{ }^{i}\right)\left(\delta_{j}{ }^{i}=0\right.$ if $i \neq j ; \delta_{j}{ }^{i}=1$ if $i=j$) is mapped by ϕ_{s} on the point $\left(\delta_{0}{ }^{i}, \delta_{1}{ }^{i}, \ldots, \delta_{s}{ }^{i}, 0, \ldots, 0\right)$, so that $\phi_{s} i=i(i=0,1, \ldots, s)$. On the other hand, if some point

$$
\begin{equation*}
\left(a_{0}{ }^{(i)}, a_{1}{ }^{(i)}, \ldots, a_{s}{ }^{(i)}\right) \tag{i>s}
\end{equation*}
$$

of E_{s} were mapped by ϕ_{s} on $\left(\delta_{0}{ }^{s+1}, \delta_{1}{ }^{s+1}, \ldots, \delta_{t}{ }^{s+1}\right)$ we would have, using the polynomial notation, $a_{t}{ }^{s+1}=a_{0}{ }^{(i)}+a_{1}{ }^{(i)} a_{t}+\ldots+a_{s}{ }^{(i)} a_{t}{ }^{s}$. If $s<t$ this means
that a_{t} satisfies an F-equation of degree less than $t+1$, contrary to the assumption that a_{t} is a primitive element of K_{t}.
4. Collineations. The cyclic permutation $\left(0,1, \ldots, q_{s}-1\right)$ will be denoted by χ_{s}.

Theorem 4.1. χ_{s} is a collineation in E_{s}.
Let $a_{s}{ }^{e_{i}}(i=1,2, \ldots, r)$ be any r collinear points of E_{s}. If $r>2$ there exist r elements $\lambda_{i} \in F$ such that

$$
\sum_{i=1}^{T} \lambda_{i} a_{s}^{e_{i}}=0
$$

Multiplying this equation by λ_{s} yields

$$
\sum_{i=1}^{\tau} \lambda_{i} a_{s}^{e_{i+1}}=0
$$

In the integer notation this implies that if $e_{i}(i=1,2, \ldots, r)$ are collinear points of E_{s}, so also are $\chi_{s} e_{i}=e_{i}+1(i=1,2, \ldots, r)$, showing that χ_{s} is a collineation of E_{s}.

Corollary 4.1.1. $\chi_{s}{ }^{\sigma} \equiv \chi_{s} \chi_{s} \ldots \chi_{s}$ is a collineation of E_{s} of period $q_{s} /\left(q_{s}, \sigma\right)$.
$\chi_{s}{ }^{\sigma}$, being the product of collineations, is a collineation. The period of $\chi_{s}{ }^{\sigma}$ is the lowest integer r such that $\left(\chi_{s}{ }^{\sigma}\right)^{r}=1$. Thus r is the smallest positive integer such that $\sigma r=m q_{s}$, where m is an integer. Let

$$
\sigma^{*}=\sigma /\left(q_{s}, \quad \sigma\right), q_{s}^{*}=q_{s} /\left(q_{s}, \sigma\right),
$$

so that $\sigma^{*} r=m q_{s}{ }^{*}$. Since σ^{*} and $q_{s}{ }^{*}$ are relatively prime, the least value for r is $q_{s}{ }^{*}$.

Corollary 4.1.2. If A is any r-space of $E_{T}(r \leqslant s)$, the sets of points $\chi_{s}{ }^{\sigma} A_{s}$ $\left(\sigma=1,2, \ldots, q_{s}-1\right)$ are r-spaces of E_{s}.

The image $\chi_{s}(0) \equiv \phi_{s} \chi_{s} \phi_{s}{ }^{-1}$ of χ_{s} under the mapping ϕ_{s} will be a collineation in E_{t} since ϕ_{s} and χ_{s} are both collineations. $\chi_{s}(0)$ is defined uniquely on the set $E_{s}(0)$ which it leaves invariant.

Theorem 4.2. $\chi_{s}(0)$ is a collineation in the space $E_{s}(0)$ of E_{l}.
As in the previous theorem, there are two corollaries.
Corollary 4.2.1. $\chi_{s}{ }^{\sigma}(0) \equiv \chi_{s}(0) \chi_{s}(0) \ldots \chi_{s}(0)=\phi_{s} \chi_{s}{ }^{\sigma} \phi_{s}{ }^{-1}$ is a collineation of $E_{s}(0)$ of period $q_{s} /\left(q_{s}, \sigma\right)$.

Corollary 4.2.2. If $A(0)$ is any r-space of $E_{s}(0)$, the sets of points $\chi_{s}{ }^{\sigma}(0) A(0)$ ($\sigma=1,2, \ldots, q_{s}-1$) are r-spaces of $E_{s}(0)$.

It is convenient to have the collineation $\chi_{s}(0)$ expressed in terms of the elements of $E_{s}(0)$. Apply $\chi_{s}(0)$ to any element $d_{s}{ }^{i}$ of $E_{s}(0)$. Since

$$
\chi_{s}(0) d_{s}{ }^{i}=\phi_{s} \chi_{s} \phi_{s}{ }^{-1} d_{s}{ }^{i}=\phi_{s} \chi_{s} i=\phi_{s}(i+1)=d_{s}^{i+1}
$$

$\chi_{s}(0)$ replaces any element $d_{s}{ }^{i}\left(i=0,1, \ldots, q_{s}-1\right)$ of $E_{s}(0)$ by $d_{s}{ }^{i+1}$ where $d_{s}{ }^{q} \equiv d_{s}{ }^{0}$. This proves

Theorem 4.3.

$$
\chi_{s}(0)=\left(d_{s}{ }^{0}, d_{s}{ }^{1}, \ldots, d_{s^{q}}^{q}{ }^{-1}\right) .
$$

More general collineations may now be defined. The product of collineations

$$
\Lambda\left(\xi_{s}\right) \equiv \Lambda\left(\sigma_{t}, \sigma_{t-1}, \ldots, \sigma_{s+1}\right) \equiv \chi_{t}^{\sigma_{t}} \chi_{t-1}^{\sigma_{t-1}}(0) \ldots \chi_{s+1}^{\sigma_{t+1}}(0)
$$

is a collineation defined in the space $E_{s+1}(0)$. The s-space $E_{s}(0)$ of $E_{s+1}(0)$ will be mapped by $\Lambda\left(\xi_{s}\right)$ into an s-space of E_{t} which will be denoted by $E_{s}\left(\xi_{s}\right)$, that is,

$$
\Lambda\left(\xi_{s}\right) E_{s}(0)=E_{s}\left(\xi_{s}\right)
$$

Note that $E_{s}(0,0, \ldots, 0)=E_{s}(0)$. The elements of $E_{s}\left(\xi_{s}\right)$ will be denoted by $d_{s}{ }^{i}\left(\xi_{s}\right)$, where

$$
\Lambda\left(\xi_{s}\right) d_{s}{ }^{i}=d_{s}{ }^{i}\left(\xi_{s}\right) \quad\left(i=0,1, \ldots, q_{s}-1\right)
$$

The image of the collineation $\chi_{s}(0)$ under the mapping $\Lambda\left(\xi_{s}\right)$ will be denoted by $\chi_{s}\left(\xi_{s}\right)$, so that

$$
\chi_{s}\left(\xi_{s}\right)=\Lambda\left(\xi_{s}\right) \chi_{s}(0) \Lambda^{-1}\left(\xi_{s}\right)
$$

To express $\chi_{s}\left(\xi_{s}\right)$ in terms of the elements of $E_{s}\left(\xi_{s}\right)$, apply $\chi_{s}\left(\xi_{s}\right)$ to any element $d_{s}{ }^{i}\left(\xi_{s}\right)$ of $E_{s}\left(\xi_{s}\right):$

$$
\begin{aligned}
\chi_{s}\left(\xi_{s}\right) d_{s}{ }^{i}\left(\xi_{s}\right) & =\Lambda\left(\xi_{s}\right) \chi_{s}(0) \Lambda^{-1}\left(\xi_{s}\right) d_{s}{ }^{i}\left(\xi_{s}\right) \\
& =\Lambda\left(\xi_{s}\right) \chi_{s}(0) d_{s}^{i}=\Lambda\left(\xi_{s}\right) d_{s}^{i+1} \\
& =d_{s}^{i+1}\left(\xi_{s}\right) .
\end{aligned}
$$

Since

$$
d_{s}^{d \cdot}\left(\xi_{s}\right) \equiv d_{s}^{0}\left(\xi_{s}\right)
$$

we have

Theorem 4.4.

$$
\chi_{s}\left(\xi_{s}\right) \equiv\left(d_{s}{ }^{0}\left(\xi_{s}\right), d_{s}{ }^{1}\left(\xi_{s}\right), \ldots, d_{s}{ }^{q-1}\left(\xi_{s}\right)\right)
$$

There are relationships between the collineations defined above. For example, $\Lambda\left(\xi_{s}\right)$ may be expressed in terms of the collineations $\chi_{i}\left(\xi_{i}\right)(\mathrm{i}=s+1, s+2, \ldots, t)$.

Theorem 4.5. The collineation

$$
\chi_{s+1}{ }^{\sigma_{s}+1}\left(\xi_{s+1}\right) \chi_{s+2}{ }^{\sigma_{t+2}}\left(\xi_{s+2}\right) \ldots \chi_{t}{ }^{\sigma_{t}} \equiv \Delta^{*}\left(\xi_{s}\right)
$$

is equivalent to the collineation $\Lambda\left(\xi_{3}\right)$.
The theorem is true for $s=t-1$. Proceeding by induction we assume the theorem true for $s=k$ and prove it true for $s=k-1$. That is, on the assump-
tion that $\Lambda\left(\xi_{k}\right)=\Lambda^{*}\left(\xi_{k}\right)$, we must prove that $\Lambda\left(\xi_{k-1}\right)=\Lambda^{*}\left(\xi_{k-1}\right)$.
From the definitions and inductive assumption:

$$
\Lambda\left(\xi_{k-1}\right)=\Lambda\left(\xi_{k}\right) \chi_{k}^{\sigma_{k}}(0)
$$

and

$$
\Lambda^{*}\left(\xi_{k-1}\right)=\chi_{k}^{\sigma_{k}}\left(\xi_{k}\right) \Lambda^{*}\left(\xi_{k}\right)=\chi_{k}^{\sigma_{k}}\left(\xi_{k}\right) \Lambda\left(\xi_{k}\right),
$$

so that for any element $d_{k}{ }^{i}\left(0 \leqslant i \leqslant q_{k}-1\right)$ of $E_{k}(0)$ we have:

$$
\Lambda\left(\xi_{k-1}\right) d_{k}{ }^{i}=\Lambda\left(\xi_{k}\right) \chi_{k}^{\sigma_{k}} d_{k}^{i}=\Lambda\left(\xi_{k}\right) d_{k}^{i+\sigma_{k}}=d_{k}^{i+\sigma_{k}}\left(\xi_{k}\right)
$$

and

$$
\Lambda^{*}\left(\xi_{k-1}\right) d_{k}^{i}=\chi_{k}^{\sigma_{k}}\left(\xi_{k}\right) \Lambda\left(\xi_{k}\right) d_{k}^{i}=\chi_{k}^{\sigma_{k}}\left(\xi_{k}\right) d_{k}^{i}\left(\xi_{k}\right)=d_{k}^{i+\sigma_{k}}\left(\xi_{k}\right)
$$

Thus for any linear subspace A or $E_{k}(0)$,

$$
\Lambda\left(\xi_{k-1}\right) A=\Lambda^{*}\left(\xi_{k-1}\right) A
$$

which shows that $\Lambda^{*}\left(\xi_{k-1}\right)$ is equivalent to $\Lambda\left(\xi_{k-1}\right)$.

Corollary 4.5.

$$
\chi_{r}^{\sigma_{r}}\left(\xi_{r}\right) \chi_{r+1}{ }^{\sigma_{r}+1}\left(\xi_{r+1}\right) \ldots \chi_{s}^{\sigma_{4}}\left(\xi_{s}\right)=\chi_{s}^{\sigma_{s}}\left(\xi_{s}\right) \chi_{s-1}^{\sigma_{t-1}}\left(\xi_{s}, 0\right) \ldots \chi_{T}^{\sigma_{r}}\left(\xi_{s}, 0\right) .
$$

By the theorem,

$$
\chi_{r}^{\sigma_{r}}\left(\xi_{T}\right) \chi_{r+1}{ }^{\sigma_{r+1}}\left(\xi_{T+1}\right) \ldots \chi_{s}^{\sigma_{t}}\left(\xi_{s}\right) \Lambda\left(\xi_{s}\right)=\Lambda\left(\xi_{s}\right) \chi_{s}^{\sigma_{s}}(0) \chi_{s-1}^{\sigma_{s-1}}(0) \ldots \chi_{T}^{\sigma_{r}}(0),
$$

so that

$$
\begin{aligned}
\chi_{r}^{\sigma_{r}} & \left(\xi_{r}\right) \chi_{r+1}^{\sigma_{r+1}}\left(\xi_{r+1}\right) \ldots \chi_{s}^{\sigma_{s}}\left(\xi_{s}\right) \\
& \left.=\left[\Lambda\left(\xi_{s}\right) \chi_{s}^{\sigma^{\sigma}}(0) \Lambda^{-1}\left(\xi_{s}\right)\right] \Lambda \Lambda\left(\xi_{s}\right) \chi_{s-1}^{\sigma_{s}-1}(0) \Lambda^{-1}\left(\xi_{s}\right)\right] \ldots\left[\Lambda\left(\xi_{s}\right) \chi_{r}^{\sigma_{r}}(0) \Lambda^{-1}\left(\xi_{s}\right)\right] \\
& =\chi_{s}^{\sigma^{\sigma^{2}}}\left(\xi_{s}\right) \chi_{s-1}^{\sigma_{s}-1}\left(\xi_{s}, 0\right) \ldots \chi_{r}^{\sigma_{r}}\left(\xi_{s}, 0\right),
\end{aligned}
$$

since for $k<s$,

$$
\Lambda\left(\xi_{s}\right) \chi_{k}^{\sigma_{k}}(0) \Lambda^{-1}\left(\xi_{s}\right)=\Lambda\left(\eta_{k}\right) \chi_{k}^{\sigma_{k}}(0) \Lambda^{-1}\left(\eta_{k}\right)=\chi_{k}\left(\eta_{k}\right)
$$

where $\eta_{k}=\left(\sigma_{t}, \sigma_{t-1}, \ldots, \sigma_{s+1}, 0, \ldots, 0\right)=\left(\xi_{k}, 0\right)$.
By means of Corollary 4.5, more general expressions for $\Lambda\left(\xi_{k}\right)$ may be obtained. Since they are not essential for the subsequent discussion, they will be omitted.

Theorems 3.3 and 3.4 may be generalized.
Theorem 4.6. $E_{r}\left(\xi_{r}\right) \subset E_{s}\left(\xi_{s}\right)$, provided $r<s$.
Since $\chi_{k}{ }^{\sigma_{k}}\left(\xi_{k}\right)$ leaves $E_{k}\left(\xi_{k}\right)$ invariant and

$$
\Lambda\left(\xi_{k-1}\right)=\chi_{k}{ }^{\sigma_{k}}\left(\xi_{k}\right) \Lambda\left(\xi_{k}\right)
$$

it follows that

$$
\Lambda\left(\xi_{k-1}\right) E_{k}(0)=\chi_{k}{ }^{\sigma_{k}}\left(\xi_{k}\right) \Lambda\left(\xi_{k}\right) E_{k}(0)=\chi_{k}{ }^{\sigma_{k}}\left(\xi_{k}\right) E_{k}\left(\xi_{k}\right)=E_{k}\left(\xi_{k}\right)
$$

Applying the operator $\Lambda\left(\xi_{k-1}\right)$ to both sides of the inequality, $E_{k-1}(0) \subset E_{k}(0)$ (Theorem 3.3) yields $E_{k-1}\left(\xi_{k-1}\right) \subset E_{k}\left(\xi_{k}\right)$, so that

$$
E_{r}\left(\xi_{r}\right) \subset E_{r+1}\left(\xi_{r+1}\right) \subset \ldots \subset E_{s}\left(\xi_{s}\right)
$$

Theorem 4.7. The space $E_{s}\left(\xi_{s}\right)$ contains the points $\Lambda\left(\xi_{s}\right) i(i=0,1, \ldots, s)$ but not the point $\Lambda\left(\xi_{s}\right)(s+1)$.

This follows at once from Theorem 3.4. As a special case we have
Corollary 4.7. The space $E_{s}(\sigma) \equiv \chi_{t}{ }^{\sigma} E_{s}(0)$ contains the points $\sigma, \sigma+1, \ldots$, $\sigma+s$, but not the point $\sigma+s+1\left(\sigma=0,1, \ldots, q_{s}-1\right)$.
5. The linear subspaces of E_{t}. With the aid of the collineations just defined, all the subspaces of E_{\imath} may be obtained. We first prove

Lemma 5.1. The space of intersection of the $s-1(s-1)$-spaces $E_{s-1}(k+i)=$ $\chi_{s}{ }^{k+i} E_{s-1}(0)(i=0,1, \ldots, s-2)$ is a line for $k=0,1, \ldots, q_{s}-1$.

By Corollary 4.7, the r-space $E_{r}(\sigma)$ contains the points $\sigma, \sigma+1, \ldots, \sigma+r$, which, being linearly independent, span the space. $E_{\tau}(\sigma)$ and $E_{r}(\sigma+1)$ each contain the points $\sigma+1, \sigma+2, \ldots, \sigma+r$ and hence they each contain the space $E_{r-1}(\sigma+1)$ spanned by these points. By Corollary 4.7, $\sigma \notin E_{\tau}(\sigma+1)$ while $\sigma+r+1 \notin E_{r}(\sigma)$. It follows that $E_{r}(\sigma) \cap E_{r}(\sigma+1)=E_{r-1}(\sigma+1)$. Thus

$$
\begin{aligned}
E_{s-1}(k) \cap & E_{s-1}(k+1) \cap \ldots \cap E_{s-1}(k+s-2) \\
& =E_{s-2}(k+1) \cap E_{s-2}(k+2) \cap \ldots \cap E_{s-2}(k+s-2) \\
& =E_{1}(k+s-2)
\end{aligned}
$$

which is the line spanned by $k+s-2$ and $k+s-1$.
Theorem 5.1. The $q_{s}(s-1)$-spaces of E_{s} are $E_{s-1}(\sigma)\left(\sigma=0,1, \ldots, q_{s}-1\right)$.
E_{s} contains exactly $q_{s}(s-1)$-spaces, whereas by Corollary 4.1.2, $E_{s-1}(\sigma)$ is an ($s-1$)-space for $\sigma=0,1, \ldots, q_{s}-1$. To prove the theorem it will be sufficient to show that these $q_{s}(s-1)$-spaces are distinct.

Suppose the $(s-1)$ spaces $E_{s-1}(\sigma)\left(\sigma=0,1, \ldots, q_{s}-1\right)$ are not all different. Then for some $\tau_{2}>\tau_{1}, E_{s-1}\left(\tau_{1}\right)=E_{s-1}\left(\tau_{2}\right)$, so that

$$
\chi_{s}^{q_{t}-\tau_{1}} E_{s-1}\left(\tau_{1}\right)=\chi_{s}^{q_{0}-\tau_{1}} E_{s-1}\left(\tau_{2}\right)
$$

That is $E_{s-1}(0)=E_{s-1}\left(\tau_{2}-\tau_{1}\right), 0<\tau_{2}-\tau_{1}<q_{s}$. Let $\tau<q_{s}$ be the least positive integer such that $E_{s-1}(\tau)=E_{s-1}(0)$. It is clear that q_{s} must be a multiple of τ, say $q_{s}=\lambda \tau$, so that the spaces $E_{s-1}(i \tau)(i=0,1, \ldots, \lambda-1)$ are identical. Choose $E_{s-1}(\mu)$ one of these sets such that $s-1<\mu<q_{s}-s+1$. This can always be done. The elements of $E_{s-1}(\mu)$ are $d_{s-1}{ }^{i}+\mu(i=0,1, \ldots$ $\left.q_{s}-1\right)$. Since, by Theorem 3.4, $E_{s-1}(0)$ contains the points $0,1, \ldots, s-1$, there must exist s integers $i_{j}(j=0,1, \ldots, s-1)$ such that

$$
d_{s-1}^{i_{j}}+\mu \equiv j \quad\left(\bmod q_{s}\right)
$$

This means that

$$
d_{s-1}^{i_{i}} \equiv j-\mu \quad(j=0,1, \ldots, s-1)
$$

are s consecutive integers lying in $E_{s-1}(0)$. These integers are different from any of $0,1, \ldots, s-1$ by the choice of μ.

By the lemma, the intersection of the $s-1(s-1)$-spaces $E_{s-1}(\sigma)(\sigma=$ $0,1, \ldots, s-2)$ is a line L_{1}, and the intersection of the $(s-1)$-spaces $E_{s-1}(\sigma)$ $(\sigma=1,2, \ldots, s-1)$ is a line L_{2}. These lines are different, for otherwise $E_{s-1}(0)$ would contain the point s. With the aid of Corollary 4.7 it is seen that L_{1} and L_{2} contain the points $s-1$ and $q_{s}-\mu+s-1$. Since $\mu \neq 0\left(\bmod q_{s}\right)$ the lines L_{1} and L_{2} intersect in two distinct points, which is impossible. It follows that the $q_{s}(s-1)$-spaces $E_{s-1}(\sigma)\left(\sigma=0,1, \ldots, q_{s}-1\right)$ are different.

A more general theorem is obtained by applying the collineation $\Lambda\left(\xi_{s}\right) \phi_{s}$ to the $(s-1)$-spaces of E_{s}.

Theorem 5.2. The $q_{s}(s-1)$-spaces of $E_{s}\left(\xi_{s}\right)$ are $E_{s-1}\left(\xi_{s}, \sigma\right)(\sigma=0,1, \ldots$, $\left.q_{s}-1\right)$.

Here again it is sufficient to show that the q_{s} spaces $E_{s-1}\left(\xi_{s}, \sigma\right)$ are different. Suppose $E_{s-1}\left(\xi_{s}, a\right)=E_{s-1}\left(\xi_{s}, \beta\right)\left(0 \leqslant a<\beta \leqslant q_{s}-1\right)$. Apply the collineation $\phi_{s}{ }^{-1} \Lambda^{-1}\left(\xi_{s}\right)$ to both spaces. This would mean that in the space E_{s} we would have $E_{s-1}(a)=E_{s-1}(\beta)$ contrary to Theorem 5.1.

All the linear subspaces of $E_{s}\left(\xi_{s}\right)$ may be obtained inductively with the aid of Theorem 5.2. The $(s-1)$-spaces of $E_{s}\left(\xi_{s}\right)$ are

$$
E_{s-1}\left(\xi_{s}, \sigma_{s}\right) \equiv E_{s-1}\left(\xi_{s-1}\right) \quad\left(\sigma_{s}=0,1, \ldots, q_{s}-1\right)
$$

The $(s-2)$-spaces of $E_{s-1}\left(\xi_{s-1}\right)$ are

$$
E_{s-2}\left(\xi_{s-1}, \sigma_{s-1}\right) \equiv E_{s-2}\left(\xi_{s-2}\right) \quad\left(\sigma_{s-1}=0,1, \ldots, q_{s-1}-1\right)
$$

and so on. Since there is at least one descending chain of subspaces joining $E_{s}\left(\xi_{s}\right)$ with each of its r-spaces ($r=1,2, \ldots, s-1$), every linear subspace may be obtained in this way.

Theorem 5.3. Every r-space $(1 \leqslant r<s \leqslant t)$ of $E_{s}\left(\xi_{s}\right)$ may be expressed in the form $E_{r}\left(\xi_{s}, \sigma_{s}, \sigma_{s-1}, \ldots, \sigma_{\tau+1}\right)\left(0 \leqslant \sigma_{i} \leqslant q_{i}-1\right)$.

Corollary 5.3.1. Every s-space of E_{t} may be expressed in the form $E_{s}\left(\xi_{s}\right)$ for an appropriate choice of ξ_{s}.

Corollary 5.3.2. The collineation $\Lambda\left(\xi_{s}\right)$ maps $E_{s}(0)$ on any s-space of E_{t} for an appropriate choice of ξ_{s}.

We have thus constructed a set of $t-s$ collineations $\chi_{i}(0) \quad(i=s+1$, $s+2, \ldots, t)$, the existence of which was proved in Theorem 1.1, which are transitive on the s-spaces of E_{t}.

DIFFERENCE SETS

$P G(2,2)$	$D_{1}(0)=0,1,3$.
$P G(3,2)$	$\begin{aligned} & D_{1}(0)=0,1,4 \\ & D_{2}(0)=0,1,2,4,5,10,8 \end{aligned}$
$P G(4,2)$	$\begin{aligned} & D_{1}(0)=0,1,12 \\ & D_{2}(0)=0,1,2,12,13,27,24 . \\ & D_{3}(0)=0,1,2,3,12,13,14,10,24,25,27,28,5,18,8 . \end{aligned}$
$P G(5,2)$	$\begin{aligned} & D_{1}(0)= 0,1,6 . \\ & D_{2}(0)=0,1,2,6,7,26,12 . \\ & D_{3}(0)= 0,1,2,3,6,7,8,35,12,13,26,27,18,48,32 . \\ & D_{4}(0)= 0,1,2,3,4,18,19,16,32,33,35,36,6,7,8,9,56,24,48, \\ & 49,38,45,41,52,12,13,14,26,27,28,54 . \end{aligned}$
$P G(2,3)$	$D_{1}(0)=0,1,9,3$.
$P G(3,3)$	$\begin{aligned} & D_{1}(0)=0,1,26,32 . \\ & D_{2}(0)=0,1,2,32,33,12,24,29,5,26,27,22,18 . \end{aligned}$
$P G(4,3)$	$\begin{aligned} D_{1}(0)= & 0,1,69,5 . \\ D_{2}(0)= & 0,1,2,5,6,17,10,101,46,69,70,88,74 . \\ D_{3}(0)= & 0,1,2,3,22,46,47,28,36,112,79,30,138,18,93,49,15, \\ & 109,74,75,39,106,88,89,10,11,69,70,71,101,102, \\ & 115,5,6,7,61,77,51,86,95 . \end{aligned}$
$P G(2,4)$	$D_{1}(0)=0,1,16,4,14$.
$P G(3,4)$	$\begin{aligned} D_{1}(0)= & 0,1,27,16,7 \\ D_{2}(0)= & 0,1,2,46,16,17,51,14,32,34,4,54,64,56,7,8,27,28, \\ & 23,68,43 . \end{aligned}$
$P G(2,5)$	$D_{1}(0)=0,1,10,3,26,14$.
$P G(3,5)$	$\begin{aligned} D_{1}(0)= & 0,1,76,43,46,18 . \\ D_{2}(0)= & 0,1,2,43,44,122,86,70,7,64,76,77,23,119,18,19 \\ & 55,61,96,143,152,92,84,61,94,108,46,47,36,89,148 . \end{aligned}$
$P G(2,7)$	$D_{1}(0)=0,1,52,3,36,43,32,13$.
$P G(2,8)$	$D_{1}(0)=0,1,67,11,38,20,59,43,71$.
$P G(2,9)$	$D_{1}(0)=0,1,56,27,49,81,61,77,3,9$.
$P G(2,11)$	$D_{1}(0)=0,1,114,100,53,96,30,131,40,46,25,122$.
$P G(2,13)$	$D_{1}(0)=0,1,139,153,119,134,24,59,128,107,8,37,41,181$.
$P G(2,16)$	$\begin{aligned} D_{1}(0)= & 0,1,41,147,259,184,211,70,19,138,243,80,158,93, \\ & 36,267,271 . \end{aligned}$

6. A construction for the points of the r-spaces of $E_{s}\left(\xi_{s}\right)(1 \leqslant r<s \leqslant t)$ by means of difference sets. Since

$$
\Lambda\left(\xi_{r}\right)=\chi_{t}^{\sigma_{t}} \chi_{t-1}^{\sigma_{t-1}}(0) \ldots \chi_{r+1}^{\sigma_{r+1}}(0)
$$

and

$$
\chi_{k}(0)=\left(d_{k}^{0}, d_{k}^{1}, \ldots, d_{k}^{q_{k}-1}\right)
$$

it is clear that all the r-spaces of $E_{s}\left(\xi_{s}\right)$ may be constructed from the sets $D_{i}(0)(i=r, r+1, \ldots, t)$.

However, if $\xi_{s} \neq 0$ it is more convenient to calculate first the sets

$$
D_{i}\left(\xi_{s}, 0\right)=\Lambda\left(\xi_{s}\right) D_{i}(0) \quad(i=r, r+1, \ldots, s)
$$

which by Theorem 4.4 yield the collineations $\chi_{i}\left(\xi_{s}, 0\right)(i=r, r+1, \ldots, s)$. Then

$$
\begin{aligned}
E_{r}\left(\xi_{s}, \sigma_{s}, \sigma_{s-1}, \ldots, \sigma_{r+1}\right) & =\Lambda\left(\xi_{s}, \sigma_{s}, \sigma_{s-1}, \ldots, \sigma_{\tau+1}\right) E_{r}(0) \\
& =\chi_{r+1}{ }^{\sigma_{r+1}}\left(\xi_{r+1}\right) \chi_{\tau+2}^{\sigma_{r+2}}\left(\xi_{r+2}\right) \ldots \chi_{s}{ }^{\sigma_{s}}\left(\xi_{s}\right) \Lambda\left(\xi_{s}\right) E_{r}(0) \\
& =\chi_{s}{ }^{\sigma_{s}}\left(\xi_{s}\right) \chi_{s-1}{ }^{\sigma_{s-1}}\left(\xi_{s}, 0\right) \ldots \chi_{\tau+1}^{\sigma_{r+1}}\left(\xi_{s}, 0\right) E_{r}\left(\xi_{s}, 0\right)
\end{aligned}
$$

by Theorem 4.5 and its Corollary.
The accompanying table of difference sets has been constructed with the aid of Galois tables [1;2] as described in §3.

References

1. W. H. Bussey, Tables of Galois fields. Bull. Amer. Math. Soc., vol. 12 (1905-6), 22-38.
2. -, Tables of Galois fields, Bull. Amer. Math. Soc., vol. 16 (1909-10), 188-206.
3. R. D. Carmichael, Introduction to the theory of groups of finite order (Boston, 1937).
4. H. S. M. Coxeter, The real projective plane (New York, 1949).
5. -, Self-dual configurations and regular graphs, Bull. Amer. Math. Soc., vol. 56 (1950), 413-456.
6. G. Fano, Sui postulati fondamentali della geometria proiettiva in uno spazio lineare a un numero qualunque di dimensioni, Giornale di Mathematiche, vol. 30 (1892), 106-132.
7. Marshall Hall, Jr., Cyclic projective planes, Duke Math. J., vol. 14 (1947), 1079.
8. W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry, vol. 1 (Cambridge, 1947).
9. C. R. Rao, Finite geometries and certain derived results in the theory of numbers, Proc. Nat. Inst. Sci. India (1945), 136-149.
10. - Difference sets and combinatorial arrangements derivable from finite geometries, Proc. Nat. Inst. Sci. India (1946), 123-135.
11. G. de B. Robinson, The foundations of geometry (Toronto, 1940).
12. J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc., vol. 43 (1938), 377-385.
13. E. Snapper, Periodic linear transformations of affine and projective geometries, Can. J. Math., vol. 2 (1950), 149-151.
14. D. M. Y. Sommerville, An introduction to the geometry of n dimensions (London, 1929).
15. B. L. van der Waerden, Moderne Algebra (Berlin, 1931).
16. O. Veblen and W. H. Bussey, Finite projective geometries, Trans. Amer. Math. Soc., vol. 7 (1906), 244.

Illinois Institute of Technology

