
FINITE PROJECTIVE GEOMETRIES 

GERALD BERMAN 

James Singer [12] has shown that there exists a collineation which is transi
tive on the (/ — 1)-spaces, that is, (t — 1)-dimensional linear subspaces, of 
PG(t, pn). In this paper we shall generalize this result showing that there exist 
t — r collineations which together are transitive on the s-spaces of PG{t,pn). 
An explicit construction will be given for such a set of collineations with the 
aid of primitive elements of Galois fields. This leads to a calculus for the linear 
subspaces of finite projective geometries. 

1. The existence of a set of i — s collineations transitive on the s-spaces of 
PG(t,pn). Let 

(C) As C As+1 C • • • C A ,_x C PG(t, pn) 

be an ascending chain of linear subspaces of PG(t, pn), where At is an i-space 
(s < i < t). Ai will be a finite projective geometry of i dimensions equivalent 
to PG(i,pn). By Singer's theorem there exists a collineation xu of period 
qt — 1 + pn + . . . + pni, transitive on the (i — 1)-spaces of At. Let B be any 
s-space of PG{t, pn). Imbed B in a chain of subspaces 

(Co) B^BsC Bs+1 C . . . C B M C PG(t, pn). 

By the above remarks there exists an integer pt such that 

x«P ,B,-i = i l , - i . 

Apply the collineation 

Xt 

to each of the spaces Bt (i = s,s+l,...,t— 1), putting 

Xi *Bi = Bt . 

The chain (Co) will then be mapped on the chain 

(Ci) B,1 C ^ ^ i 1 C . . . C BU C i t - i C PG(t, pn). 

Continue in this way. At the ith stage we will have the chain 

(CO Ba* C Bs+1* C . . . C Bt„U C i M C . C PG(f, pn). 

There exists an integer pt-i such that 

Xt-i -E>t-i-i =At-i-i. 
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Apply the collineation 

to each of the spaces B/ (j = s, s + 1, . . . , / — i — 1), putting 

Xt-i Bj = Aj . 

The chain (Ci) will be mapped on the chain (C*+i). It is clear that (Ct-S) = (C). 
In particular, B has been mapped by the collineation 

P» + i P» + a Pt A 

Xs+i Xs+2 . . . Xt onAs. 

The inverse collineation 
Xt Xt-i . . . Xs+i KPi + a% - Qt) 

thus maps As on the s-space B of PG(t, pn). 
Let B, B* be any two s-spaces of PG(t, pn). We have shown that there exist 

collineations x, X*> each products of the collineations xt (i = 5 + 1, J + 2, . . . , /), 
such that xAs = B, x*-4 s = -B*. The collineation x*X-1> which is again a product 
of the collineations xi (i' = s + 1, ^ + 2, . . . , /), carries B into 5*. This proves 

THEOREM 1.1. There exist t — s collineations which together are transitive on 
the sspaces of PG(t, pn). 

It should be noted that the collineation x carrying As into B is not uniquely 
defined in terms of the collineations x% (i = s + lf s + 2, . . . , J), for the chain 
(Co) is arbitrary. 

The purpose of the next few sections is to characterize the collineations Xs 
more precisely. A method is developed for numbering the points of PG(t, pn) 
in such a way that the points of every linear subspace can easily be obtained. 
It is necessary to know only the points on one z-space £i(0) and the collineation 
X*(0) defined in terms of it for each i = 1, 2, . . . , / . A construction is given for 
these "fundamental" ^-spaces and collineations by means of primitive elements 
of Galois fields. The spaces £*(()) correspond to the spaces At above, and the 
collineations x*(0) to the collineations xt-

2. The representation of the points of PG(s, pn) by elements of GF(p(s+1)n). 
A point of Es = PG(s, pn) may be represented analytically by an ordered 
sequence P = (x0, Xi, . . . ,x8) of s + 1 elements taken from F = GF(pn)f 

the symbol 0 = (0, 0, . . . , 0) being excluded. If X is any non-zero element of Ft 

the sequence 

XP = (Xxo, X#i, . . . , \xs) 

represents the same point as P. The points 

Pt = (x0\ xx\ . . . , x9*) (i = 1, 2, . . . , n) 

are said to be linearly dependent with respect to F if there exist r elements 

https://doi.org/10.4153/CJM-1952-027-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-027-5


304 GERALD BERMAN 

\ t (i = 1 , 2 , . . . , r) in F, not all zero, such that 

]T \iPi = I X *«*o\ X ^#1*! • • • » X *#•*) — 0. 
i= l \ i= l i= l i= l / 

Otherwise the points are said to be linearly independent with respect to F. 
Consistent with this, an r-space (r < s) is defined to be the totality of points 
linearly dependent upon r + 1 linearly independent elements of F. A point is 
thus a 0-space, and a line a 1-space. 

Let as be a primitive element of Ks = GF(p^s+1)n) [3]. Every non-zero element 
of i£s can then be expressed uniquely in the form 

a / (0 < i < £ ( m ) * - 2). 

Since as must satisfy an irreducible F-polynomial of degree 5 + 1 , a / + 1 may be 
expressed uniquely in the form 

a / + 1 = a0 + aias + . . . + asas
s (a* € F; i = 0, 1, . . . , s). 

With the aid of this relation, every power of as may be expressed uniquely in 
the form 

as = a0 + ai as + . . . + a8 as s a (as) (i = 0, 1, . . . , p —2) 

where a/*> (i = 0, 1, . . . , £W>n - 2; j = 0, 1 , . . . , s) belong to F. This means 
that to every integer i (0 < i < £<*+1>n — 2) there corresponds uniquely an 
ordered sequence (a0

(*\ # i ( i \ • • • » #s(i)) of 5 + 1 elements of F. Conversely, 
every ordered sequence of 5 + 1 elements of F uniquely determines one of these 
integers i. 

We thus have four ways of denoting the elements of Ks which are uniquely 
defined in terms of a primitive element as: 

(i) by the powers as* of a primitive element; 
(ii) by polynomials a*(as) which are of degree less than 5 + 1; 

(iii) by ordered sequences (a0
(i), ai ( i ) , . . . , as

(i)) of elements of F; 
(iv) by the integer i appearing in (i). 

In the subsequent discussion as will be kept fixed, and the four notations will 
be used interchangeably. Since all Galois fields of the same order are isomorphic 
we may choose any primitive element of Ks to be as. 

It follows from the above discussion that the points of Es may be represented 
by the elements of KSf two elements of K8 representing the same point if and 
only if they are linearly dependent with respect to F. An r-space of Es (r < s) 
will then be represented by the totality of elements of Ks linearly dependent 
with respect to F on r + 1 linearly independent elements of Ks. Corresponding 
to the four notations for the elements of Ks there will be four notations for the 
points of Es. 

The representation of the points of Es by integers is of especial interest 
because of the following 
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THEOREM 2.1. The integers 0, 1 , . . . , q8 - 1 (qs = 1 + pn + . . . + pm) 
represent different points of Es and so represent all the points of Es. 

We first prove 

LEMMA 2.1. The non-zero elements of Ks which correspond to the elements of F 
are the multiples of qs. 

Let as
c be the element of F C Ks having the lowest positive exponent. Then 

as
ic (i — 0, 1, . . . , g — 1; soc = 1) are elements of F. Let as

e be a non-zero 
element of F not included among these; as

e must occur between two successive 
powers of xc, with (k — \)c < e < kc, so that kc — e < c. Then as

kc~e = 
as

kc as~
e is an element of F having lower exponent than c. The set 

*sic (i = 0, l , . . . , g - 1) 

must contain the pn — 1 non-zero elements of F, so that g = m — 1 and 

c = (£<"-»• - !)/(/,» - 1) = qi. 

In the integer notation this means that the non-zero elements of F are the 
multiples of qs. 

Theorem 2.1 follows at once; for if the points 0, 1, . . . , qs-i are not distinct, 
two of them, say i and j (i < j), must be linearly dependent with respect to F. 
By the Lemma this implies that 

j ^ i + kq, ( m o d £ ( s + 1 ) * - l ) , 

so that j — i (0 < j — i < qs) is an element of F. This can happen only if i = j . 
Since i and j represent the same point of Es if and only if j = i + kqs for 

some integer k, we have 

COROLLARY 2.1. Two integers represent the same point of Es if and only if 
they are congruent modulo qs. 

The points of Es may thus be represented by the residue classes of integers 
modulo qs. 

3. Fundamental difference sets. Let <t>s be the (1-1) mapping which carries 
any element (a0, ai, . . . , as) of Ks (s < /) into the corresponding element 
(a0, ai, . . . , a„ 0y . . . , 0) of Kt. 

<l>s: (a0, ai, . . . , as) G K8 —> (a0, ah . . . , aSl 0, . . . , 0) Ç # , . 

The inverse mapping <t>s~
l will be defined only in the image set <t>sKSJ that is, 

for the elements (a0, ah . . . , a,) Ç Kt with a< = 0 (i = s + 1, 5 + 2, . . . , /). 
If <t>sAi = A? (i = 1, 2, . . . , r), where the Af are elements of i£„ and if 

ct Ç F, it is clear that 
r T 

i = i i = i 
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so that <t>s preserves linear independence with respect to F. Geometrically this 
means that <t>s is a collineation between Es and a subspace of Et. 

THEOREM 3.1. <t>sis a collineation between Es and s-space of Et. 

Since a collineation carries r-spaces into r-spaces, we have 

COROLLARY 3.1. <£s carries r-spaces (r < 5 < t) of Es into r-spaces of Et. 

It will be convenient to order the sets of points in the subsequent discussion. 
The letter D will always refer to an ordered set of points, and the letter E to 
the same set of points considered as an unordered set. 

Let Ds be the set of points Es with the ordering 0, 1, . . . , qs — 1. The col
lineation <t>s will carry Ds into an ordered subset of Et which will be denoted by 
Ds(0) (Dt(0) = Dt). The elements of Ds(0) will be denoted by ds* = <*,'(()), 
where 

d,* = <t>si (i = 0, 1, . . . ,q8 - l\s = 1, 2, . . . , / ) . 

In particular, df = i (i = 0, 1,. . . , qt — 1). -E,(0) will of course be the un
ordered set of points ds

i (i = 0, 1, . . . , qs — 1). By Corollary 3.1 we have 

THEOREM 3.2. Es(0) is an s-space of Et (s = 1, 2 , . . . , /). 

The actual numbers which represent the points of Es(0) will depend on the 
primitive element at used to define Eu while the ordering of Ds(0) will depend 
on the primitive elements as used to define Es. The properties of the sets, 
however, will be the same for all choices of as and at. 

The sets Ds(fi) (s = 1, 2, . . . , t) will be called the fundamental difference sets 
of Et. The set £ r_i(0) is the same as the set which Singer called a difference set. 

The following two theorems express useful properties of the sets defined 
above. 

THEOREM 3.3. E r(0) C Es(0) provided r < s. 

If r < s the set of elements {(ao, ai, . . . , ar, 0, . . . , 0)} is contained in the 
set of elements {(a0, ai, . . . , as, 0, . . . , 0)} where the at range over all the 
elements of F. Geometrically this means that the set of points Er(0) is contained 
in the set E5(0). 

THEOREM 3.4. The s-space Es(0) contains the points 0, 1, . . . , 5 but not the 
point 5 + 1 , for s = 1, 2, . . . , / — 1. 

The point (50
l, di\ . . . , 6,0 (of = 0 if i y£ j ; 8/ = 1 if i = j) is mapped by 

<j)s on the point (So*, ôi*, . . . , ôs\ 0, . . . , 0), so that <t>s i = i (i = 0, 1, . . . , s). 
On the other hand, if some point 

( a o ( % i ( i ) , . . . , a s
( i ) ) (i>s) 

of Es were mapped by <t>s on (ô0
s+1, ôis+1, . . . ,ô,*+1) we would have, using the 

polynomial notation, a^+1 = a0
(i) + ai(i)at + . . . + as

(i)at
8. li s < t this means 
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that at satisfies an F-eqiiation of degree less than t + 1, contrary to the assump
tion that at is a primitive element of Kt. 

4. Collineations. The cyclic permutation (0, 1,. . . , q8 — 1) will be denoted 
by Xs. 

THEOREM 4.1. Xs is a collineation in Es. 

Let a," (i = 1, 2, . . . , r) be any r collinear points of E8. If r > 2 there exist 
r elements A* Ç i^such that 

T 

22 A<a/* = 0. 

Multiplying this equation by As yields 

E X«a/'+1 = 0. 

In the integer notation this implies that if et (i = 1, 2, . . . , r) are collinear 
points of Es, so also are x£i = et + 1 (i = 1 , 2 , . . . , r), showing that Xs is a 
collineation of Es. 

COROLLARY 4.1.1. Xs* = XsXs • • • Xsis a collineation of Es of period q8/(q8, a). 

X/, being the product of collineations, is a collineation. The period of x° is 
the lowest integer r such that ( x / ) r = 1. Thus r is the smallest positive integer 
such that ar = mqst where m is an integer. Let 

so that a*r — rnqs*. Since cr* and q* are relatively prime, the least value for r 
is qs*. 

COROLLARY 4.1.2. / / A is any r-space of Er (r < s), the sets of points Xs*A8 

(o- = 1, 2, . . . , qs — 1) are r-spaces of Es. 

The image Xs(0) = ^sXs^s"1 of Xs under the mapping <£* will be a collineation 
in Et since 0S and x» are both collineations. Xs(0) is defined uniquely on the set 
E8(fi) which it leaves invariant. 

THEOREM 4.2. Xs(0) is a collineation in the space E8(0) of Et. 

As in the previous theorem, there are two corollaries. 

COROLLARY 4.2.1. x/(0) = x«(0) x»(0) . . . x*(0) = 0 s x/0s - 1 is a collineation 
of Es(0) of period qs/(qs, a). 

COROLLARY 4.2.2. If A (0) is any r-space of Es(0), the sets of points Xsv(0)A (0) 
(a = 1, 2, . . . , qs — 1) are r-spaces of Es(0). 

It is convenient to have the collineation Xs(0) expressed in terms of the 
elements of Es(0). Apply xs(0) to any element d8* of Es(0). Since 
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X«(0)d,* = <t>sXs<t>s
 lds

i = <l>sXsi= 4>s{i + 1) = ds
i+l, 

Xs(0) replaces any element ds
l (i = 0, 1, . . . , qs — 1) of £,(0) by ds

i+1 where 
ds

Qt == ds°. This proves 

THEOREM 4.3. 

x,(0) = (d*,d,\...,d9*r% 

More general collineations may now be defined. The product of collineations 

A({.) ^ A(cn, (!,_!, . . . , crs+1) ^ X i ' ^ - i ' ^ O ) . . . x*+i" + 1(0) 

is a collineation defined in the space £ s + i (0). The 5-space £,(0) of £,+i(0) will 
be mapped by A(£s) into an s-space of Et which will be denoted by £«(£s), 
that is, 

Afe)£ s(0) = £,(£,). 

Note that £ s(0, 0, . . . , 0) = £,(0). The elements of £,(£,) will be denoted by 
rf«*(f«)t where 

Aft,)**,* = <*.'(£,) (i = 0, l , . . . , ^ s - 1). 

The image of the collineation x«(0) under the mapping A(£s) will be denoted 
by x«(£«)? so that 

X.tt.) = A&)x s (0 )A" 1 a s ) . 

To express x*(£«) m terms of the elements of £*(£,), apply x«(£«) to any element 
d.'tt.) of £,(*,): 

X . t t . K ' t t . ) = A(C,)x.(0)A-1tt.)d f ' tt.) 

= At t . )x . (0 )d . '= A & K , i + 1 

- d,<+1tt.). 

Since 

4.«-({.) = d,°tt.) 

we have 

THEOREM 4.4. 

x.tt.)^ (^tt.),^1^),...,^-1^)). 
There are relationships between the collineations defined above. For example, 

A (J,) may be expressed in terms of the collineations x i(£<) (i = s + l , s + 2 , . . . ,£) . 

THEOREM 4.5. r&e collineation 

x ^ , + , ( U ) x ^ , + , ( U ) . • • x i " ^ A*fe) 

is equivalent to the collineation A(f5). 

The theorem is true for 5 = t — 1. Proceeding by induction we assume the 
theorem true for s = k and prove it true for s = k — 1. That is, on the assump-
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tion that Afe) = A*(&), we must prove that A(&_i) = A*(£t_i). 
From the definitions and inductive assumption : 

A ({*.!) = Afe) x /*(0) 

and 

A*fe-i) = X*"(&)A*(&) = x/*(fc)A(fe), 

so that for any element d^ (0 < i < g* — 1) of £*(()) we have: 

A f ô ^ K ' = A(fc)x*'\**' = AfoM*""* = <**""*«*) 

and 

A*fe-i)4* = x / ' & H & K ' = x / ' & K ' f e ) = <**""&). 

Thus for any linear subspace A or Ek (0), 

A ( { M M = A*&-iM, 

which shows that A*(£A_i) is equivalent to Afe_i). 

COROLLARY 4.5. 

Xr ' P ( f r )x* l ' r + , t t r+l ) • • • X." « . ) = X." (f.) X - l ' — (f„ 0) . . . X r " t t „ 0) . 

By the theorem, 

Xr°'a r)x,+i°'+ '(e r+i) • • • X."(f.)Att,) = Af t , ) x . " (0 )x^ i " - (0 ) . . . Xr"(0), 

so that 

x/ r(£r)Xr+i a r + 1(fr+l) . . • x / ' (£«) 

= [A(£,)x."(0) A-1({.)][A(f,)x^i' -~ ,(0) A - 1 ^ ) ] . . . [A&)xrffr(0) A" 1 ^ ) ] 

= x / t t t . ) x ^ - " , « . , 0 ) . . . X r ' f « „ 0 ) > 

since for k < $, 

A & ) x / t ( 0 ) A " 1 & ) = Afe)xr(0)A-1(77A) = X*(i?*) 

where 77* = (<r„ (r,_i, . . . , crs+u 0, . . . , 0) = (£*, 0). 

By means of Corollary 4.5, more general expressions for A&) may be obtained. 
Since they are not essential for the subsequent discussion, they will be omitted. 

Theorems 3.3 and 3.4 may be generalized. 

THEOREM 4.6. ET(£T) C E»(£*), provided r < s. 

Since x/* (£*) leaves Ek (£*) invariant and 

Afe-i) = x/*(&)A(&) 

it follows that 

Att^OE^O) = x/*(f*)A(&)£*(0) = X*"&)£*&) = £*«*)• 
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Applying the operator A&_i) to both sides of the inequality, £*_i(0) C Ek(0) 
(Theorem 3.3) yields £*_! fe-i) C £*(£*)> so that 

£ r(£ r) C Ei+itti+i) C . . . C £.({,)• 

THEOREM 4.7. 77*e 5^ace £s(£s) contains the points A(£s)i (i = 0, 1, . . . , s) 
but not the point A(£s) (s + 1). 

This follows at once from Theorem 3.4. As a special case we have 

COROLLARY 4.7. The space Es{<r) = xtffEs(0) contains the points c, a + 1, . . . , 
a + 5, 6w£ W0/ ^ e £0z'w£ (7 + 5 + 1 (o- = 0, 1, . . . , qs — 1). 

5. The linear subspaces of Et. With the aid of the collineations just defined, 
all the subspaces of Et may be obtained. We first prove 

LEMMA 5.1. The space of intersection of the s — 1 (s — 1) -spaces Es-i(k + i) = 
Xsk+i Es-i(fi) (i = 0, 1, . . . , s — 2) is a line for k = 0, 1, . . . , qs — 1. 

By Corollary 4.7, the r-space ET(a) contains the points a, a + 1, . . . , a + r, 
which, being linearly independent, span the space. Er(o-) and ET(<r + 1) each 
contain the points <r + 1, <r + 2, . . . , o- + r and hence they each contain the 
space Er-i(<r + 1) spanned by these points. By Corollary 4.7, <r $ET(<r + 1) 
while o- + r + 1 iET{a). It follows that Er(<r) H £r(<r + 1) = £ r _ iO + 1). 
Thus 

£_ i (* ) n E _ i ( i + 1 ) n . . . n£*- i (£ + * - 2) 

= Es.2(k + 1 ) n £s-2(& + 2) n . . . nEs-2(k + s - 2) 

= Ex(* + 5 - 2 ) 

which is the line spanned by k + 5 — 2 and & + 5 — 1. 

THEOREM 5.1. The qs (s — l)-spaces of Es are JES_I(O-) (<T = 0, 1, . . . , qs — 1). 

£ s contains exactly qs (s — l)-spaces, whereas by Corollary 4.1.2, Es-i(<r) 
is an (s — 1)-space for a = 0, 1, . . . , q8 — 1. To prove the theorem it will be 
sufficient to show that these qs (s — 1)-spaces are distinct. 

Suppose the (s — 1) spaces £s_i(<r) (o- = 0, 1, . . . , qs — 1) are not all 
different. Then for some r2 > rh ES-I(TI) = Es_i(r2), so that 

x / - " T l £ - i ( r i ) = x . " ~ r i £ - i ( T 2 ) . 

That is E,_i(0) = £ s - i ( r 2 — ri), 0 < r2 — ri < qs. Let r < g5 be the least 
positive integer such that Es_i(r) = £s_i(0). It is clear that qs must be a mul
tiple of r, say gs = XT, so that the spaces Es-i(ir) (i = 0, 1, . . . , X — 1) are 
identical. Choose JES_I(/X) one of these sets such that s — 1 < JJ, < qs — 5 + 1 . 
This can always be done. The elements of ES_I(M) are i ,-i* + \x (i' = 0, 1, . . . 
qs — 1). Since, by Theorem 3.4, Eg_i(0) contains the points 0, 1, . . . , 5 — 1, 
there must exist 5 integers i} (j = 0, 1, . . . , 5 — 1) such that 

dt-i
u + M = j (modg,). 
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This means that 

<*_!*' « J - M (.7 = 0,1 S -I) 

are s consecutive integers lying in £s_i(0). These integers are different from 
any of 0, 1, . . . , 5 — 1 by the choice of fi. 

By the lemma, the intersection of the s — 1 (s — 1)-spaces E5_i(cr) (<r = 
0, 1, . . . , 5 — 2) is a line L\, and the intersection of the (s — l)-spaces £s_i(o-) 
(a- = 1, 2, . . . , s — 1) is a line L2. These lines are different, for otherwise 
JES_I(0) would contain the point s. With the aid of Corollary 4.7 it is seen that 
Li and Z2 contain the points 5—1 and qs — \x + 5 — 1. Since n j£ 0 (mod qs) 
the lines L\ and Z,2 intersect in two distinct points, which is impossible. It fol
lows that the qs (s — l)-spaces ES-I(<T) (o- = 0, 1, . . . , qs — 1) are different. 

A more general theorem is obtained by applying the collineation A(^s)<j>s to 
the (s — 1)-spaces of Es. 

THEOREM 5.2. The qs (s — l)-spaces of Es(£s) are £5-i(?s, a) (<r = 0, 1 , . . . , 
<Z» - D -

Here again it is sufficient to show that the qs spaces Es-i(£s, a) are different. 
Suppose £5_i(£s, a) = £s_i(£s, 13) (0 < a < fi < qs — 1). Apply the collineation 
(frs^A^^s) to both spaces. This would mean that in the space Es we would have 
£s_i(a) = Es_i(j3) contrary to Theorem 5.1. 

All the linear subspaces of Es(£s) may be obtained inductively with the aid 
of Theorem 5.2. The (s — l)-spaces of Es(£s) are 

Es-i(£s, *s) s £,_i&_i) (<rs = 0, 1, . . . , qs - 1). 

The (s — 2)-spaces of Es_i(£,_i) are 

Es_2(£5_i, o w ) = E,_2(£,_2) (cr,_i = 0, 1, . . . , q8-i — 1), 

and so on. Since there is at least one descending chain of subspaces joining 
Es(%s) with each of its r-spaces (r = 1, 2, . . . , s — 1), every linear subspace 
may be obtained in this way. 

THEOREM 5.3. Every r-space (1 < r < s < t) of Es(%8) may be expressed in 
the form Er(£s, <rs, <rs-U . . . , ar+i) (0 < <rt < qt - 1). 

COROLLARY 5.3.1. Every s-space of Et may be expressed in the form £«(£*) for 
an appropriate choice of £,. 

COROLLARY 5.3.2. The collineation A(£«) maps Es(0) on any s-space of Et 

for an appropriate choice of £s. 

We have thus constructed a set of / — s collineations x*(0) (i = s + 1, 
s + 2, . . . , t), the existence of which was proved in Theorem 1.1, which are 
transitive on the s-spaces of Eu 
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DIFFERENCE SETS 

PG{2, 2) DM = 0, 1, 3. 

PG(3, 2) ZMO) = 0, 1, 4. 
ZMO) = 0, 1, 2, 4, 5, 10, 8. 

PG(4, 2) Di(0) = 0, 1, 12. 
ZMO) = 0, 1, 2, 12, 13, 27, 24. 
Pg(0) = 0, 1, 2, 3, 12, 13, 14, 10, 24, 25, 27, 28, 5, 18, 8. 

PG(5,2) ZMO) = 0, 1, 6. 
ZMO) = 0, 1, 2, 6, 7, 26, 12. 
D,(0) = 0, 1, 2, 3, 6, 7, 8, 35, 12, 13, 26, 27, 18, 48, 32. 
ZMO) = 0, 1, 2, 3, 4, 18, 19, 16, 32, 33, 35, 36, 6, 7, 8, 9, 56, 24, 48, 

49, 38, 45, 41, 52, 12, 13, 14, 26, 27, 28, 54. 

PG(2, 3) ZMO) = 0, 1, 9, 3. 

PG(3,3) ZMO) = 0, 1, 26, 32. 
ZMO) = 0, 1, 2, 32, 33, 12, 24, 29, 5, 26, 27, 22, 18. 

PG(4, 3) ZMO) = 0, 1, 69, 5. 
ZMO) = 0, 1, 2, 5, 6, 17, 10, 101, 46, 69, 70, 88, 74. 
ZMO) = 0, 1, 2, 3, 22, 46, 47, 28, 36, 112, 79, 30, 138, 18, 93, 49, 15, 

109, 74, 75, 39, 106, 88, 89, 10, 11, 69, 70, 71, 101, 102, 
115, 5, 6, 7, 61, 77, 51, 86, 95. 

PG(2,4) ZMO) = 0, 1, 16, 4, 14. 

PG(3,4) ZMO) = 0, 1, 27, 16, 7. 
ZMO) = 0, 1, 2, 46, 16, 17, 51, 14, 32, 34, 4, 54, 64, 56, 7, 8, 27, 28, 

23, 68, 43. 

PG(2, 5) ZMO) = 0, 1, 10, 3, 26, 14. 

PG(3, 5) ZMO) = 0. 1. 76, 43, 46, 18. 
ZMO) = 0, 1, 2, 43, 44, 122, 86, 70, 7, 64, 76, 77, 23, 119, 18, 19, 

55, 61, 96, 143, 152, 92, 84, 61, 94, 108, 46, 47, 36, 89, 148. 

PG(2, 7) ZMO) = 0, 1, 52, 3, 36, 43, 32, 13. 

PG{2, 8) ZMO) = 0, 1, 67, 11, 38, 20, 59, 43, 71. 

PG(2, 9) ZMO) = 0, 1, 56, 27, 49, 81, 61, 77, 3, 9. 

PG{2, 11) ZMO) = 0, 1, 114, 100, 53, 96, 30, 131, 40, 46, 25, 122. 

PG(2, 13) ZMO) = 0. 1. 139, 153, 119, 134, 24, 59, 128, 107, 8, 37, 41, 181. 

PG(2, 16) ZMO) = 0. 1- 41, 147, 259, 184, 211, 70, 19, 138, 243, 80, 158, 93, 
36, 267, 271. 
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6. A construction for the points of the r-spaces of £«(£«) (1 < r < s < t) by 
means of difference sets. Since 

A(*,)= X . "x« - i "~ , (0 ) . . . x , + i " + , (0 ) 

and 

x*(0) = (4°, dk\ . . . , dj'-1) 

it is clear that all the r-spaces of £,(£«) may be constructed from the sets 
Dt(0) (i = r, r+ 1 , . . . , 0 . 

However, if £s 5̂  0 it is more convenient to calculate first the sets 

DM,, 0) = Afe)^z(O) (i = r, r + 1, . . . , 5), 

which by Theorem 4.4 yield the collineations x*(£«> 0) (i = r, r + 1, . . . , s). 
Then 

•£r(£s> O'si 0"*-l» • • • » °>+l) = A(£„ 0"5, (Ts-h • • • i CTr+l)^r(0) 

= X r + r + 1(Ul)Xr+2ar + S(^+2) • • • x/ftt.)A({.)£r(0) 

= x/,(f.)xM,"1(£„ 0) . . . xrfi'r+ltt., 0)£r(£„ 0), 
by Theorem 4.5 and its Corollary. 

The accompanying table of difference sets has been constructed with the 
aid of Galois tables [1; 2] as described in §3. 
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