FINITE PROJECTIVE GEOMETRIES

GERALD BERMAN

James Singer [12] has shown that there exists a collineation which is transitive on the (t-1)-spaces, that is, (t-1)-dimensional linear subspaces, of $PG(t, p^n)$. In this paper we shall generalize this result showing that there exist t - r collineations which together are transitive on the s-spaces of $PG(t, p^n)$. An explicit construction will be given for such a set of collineations with the aid of primitive elements of Galois fields. This leads to a calculus for the linear subspaces of finite projective geometries.

1. The existence of a set of t - s collineations transitive on the s-spaces of $PG(t, p^n)$. Let

(C)
$$A_s \subset A_{s+1} \subset \ldots \subset A_{t-1} \subset PG(t, p^n)$$

be an ascending chain of linear subspaces of $PG(t, p^n)$, where A_i is an *i*-space $(s \leq i \leq t)$. A_i will be a finite projective geometry of *i* dimensions equivalent to $PG(i, p^n)$. By Singer's theorem there exists a collineation χ_i , of period $q_i = 1 + p^n + \ldots + p^{n_i}$, transitive on the (i - 1)-spaces of A_i . Let *B* be any *s*-space of $PG(t, p^n)$. Imbed *B* in a chain of subspaces

(C₀)
$$B \equiv B_s \subset B_{s+1} \subset \ldots \subset B_{t-1} \subset PG(t, p^n).$$

By the above remarks there exists an integer ρ_t such that

$$\chi_{t}^{\mu_{t}}B_{t-1}=A_{t-1}.$$

Apply the collineation

 $\chi_i^{\rho_i}$

to each of the spaces B_i (i = s, s + 1, ..., t - 1), putting

 $\chi_i^{\rho_i} B_i = B_i^{-1}.$

The chain (C_0) will then be mapped on the chain

(C₁)
$$B_s^1 \subset B_{s+1}^1 \subset \ldots \subset B_{t-2}^1 \subset A_{t-1} \subset PG(t, p^n).$$

Continue in this way. At the *i*th stage we will have the chain

(C_i)
$$B_s^i \subset B_{s+1}^i \subset \ldots \subset B_{t-i-1}^i \subset A_{t-i} \subset \ldots \subset PG(t, p^n).$$

There exists an integer ρ_{t-i} such that

$$\chi_{t-i}^{\rho_{t-i}}B_{t-i-1}^{i} = A_{t-i-1}^{i}.$$

https://doi.org/10.4153/CJM-1952-027-5 Published online by Cambridge University Press

Received November 24, 1950; in revised form December 8, 1951. This paper is part of a thesis prepared under the supervision of Professor H. S. M. Coxeter and submitted for a Ph. D. degree at the University of Toronto in June, 1950.

Apply the collineation

$$\chi_{t-i}^{\rho_{t-i}}$$

to each of the spaces B_{j}^{i} $(j = s, s + 1, \dots, t - i - 1)$, putting

$$\chi_{t-i}^{\rho_{t-i}} B_{j}^{i} = A_{j}^{i+1}.$$

The chain (C_i) will be mapped on the chain (C_{i+1}) . It is clear that $(C_{i-s}) \equiv (C)$. In particular, *B* has been mapped by the collineation

$$\chi_{s+1}^{\rho_{s+1}}\chi_{s+2}^{\rho_{s+2}}\ldots\chi_t^{\rho_t} \text{ on } A_s.$$

The inverse collineation

$$\chi_i^{\sigma_i}\chi_{i-1}^{\sigma_{i-1}}\ldots\chi_{s+1}^{\sigma_{s+1}} \qquad (\rho_i+\sigma_i=q_i)$$

thus maps A_s on the s-space B of $PG(t, p^n)$.

Let B, B^* be any two s-spaces of $PG(t, p^n)$. We have shown that there exist collineations χ , χ^* , each products of the collineations χ_i (i = s + 1, s + 2, ..., t), such that $\chi A_s = B$, $\chi^* A_s = B^*$. The collineation $\chi^* \chi^{-1}$, which is again a product of the collineations χ_i (i = s + 1, s + 2, ..., t), carries B into B^* . This proves

THEOREM 1.1. There exist t - s collineations which together are transitive on the s-spaces of $PG(t, p^n)$.

It should be noted that the collineation χ carrying A_s into B is not uniquely defined in terms of the collineations χ_i (i = s + 1, s + 2, ..., t), for the chain (C_0) is arbitrary.

The purpose of the next few sections is to characterize the collineations χ_s more precisely. A method is developed for numbering the points of $PG(t, p^n)$ in such a way that the points of every linear subspace can easily be obtained. It is necessary to know only the points on one *i*-space $E_i(0)$ and the collineation $\chi_i(0)$ defined in terms of it for each $i = 1, 2, \ldots, t$. A construction is given for these "fundamental" *s*-spaces and collineations by means of primitive elements of Galois fields. The spaces $E_i(0)$ correspond to the spaces A_i above, and the collineations $\chi_i(0)$ to the collineations χ_i .

2. The representation of the points of $PG(s, p^n)$ by elements of $GF(p^{(s+1)n})$. A point of $E_s \equiv PG(s, p^n)$ may be represented analytically by an ordered sequence $P \equiv (x_0, x_1, \ldots, x_s)$ of s + 1 elements taken from $F \equiv GF(p^n)$, the symbol $0 \equiv (0, 0, \ldots, 0)$ being excluded. If λ is any non-zero element of F, the sequence

$$\lambda P \equiv (\lambda x_0, \lambda x_1, \ldots, \lambda x_s)$$

represents the same point as P. The points

$$P_{i} \equiv (x_{0}^{i}, x_{1}^{i}, \ldots, x_{s}^{i}) \qquad (i = 1, 2, \ldots, n)$$

are said to be linearly dependent with respect to F if there exist r elements

 λ_i (i = 1, 2, ..., r) in F, not all zero, such that

$$\sum_{i=1}^r \lambda_i P_i \equiv \left(\sum_{i=1}^r \lambda_i x_0^i, \sum_{i=1}^r \lambda_i x_1^i, \ldots, \sum_{i=1}^r \lambda_i x_s^i\right) \equiv 0.$$

Otherwise the points are said to be linearly independent with respect to F. Consistent with this, an *r*-space $(r \leq s)$ is defined to be the totality of points linearly dependent upon r + 1 linearly independent elements of F. A point is thus a 0-space, and a line a 1-space.

Let a_s be a primitive element of $K_s \equiv GF(p^{(s+1)n})$ [3]. Every non-zero element of K_s can then be expressed uniquely in the form

$$a_s^i \qquad (0 \leqslant i \leqslant p^{(s+1)n} - 2)$$

Since a_s must satisfy an irreducible *F*-polynomial of degree s + 1, a_s^{s+1} may be expressed uniquely in the form

$$a_s^{s+1} = a_0 + a_1 a_s + \ldots + a_s a_s^s$$
 $(a_i \in F; i = 0, 1, \ldots, s).$

With the aid of this relation, every power of a_s may be expressed uniquely in the form

$$a_s^i = a_0^{(i)} + a_1^{(i)}a_s + \ldots + a_s^{(i)}a_s^s \equiv a^i(a_s) \quad (i = 0, 1, \ldots, p^{(s+1)n} - 2)$$

where $a_j^{(i)}$ $(i = 0, 1, \ldots, p^{(s+1)n} - 2; j = 0, 1, \ldots, s)$ belong to F. This means that to every integer i $(0 \le i \le p^{(s+1)n} - 2)$ there corresponds uniquely an ordered sequence $(a_0^{(i)}, a_1^{(i)}, \ldots, a_s^{(i)})$ of s + 1 elements of F. Conversely, every ordered sequence of s + 1 elements of F uniquely determines one of these integers i.

We thus have four ways of denoting the elements of K_s which are uniquely defined in terms of a primitive element a_s :

- (i) by the powers a_s of a primitive element;
- (ii) by polynomials $a^i(a_s)$ which are of degree less than s + 1;
- (iii) by ordered sequences $(a_0^{(i)}, a_1^{(i)}, \ldots, a_s^{(i)})$ of elements of F;
- (iv) by the integer i appearing in (i).

In the subsequent discussion a_s will be kept fixed, and the four notations will be used interchangeably. Since all Galois fields of the same order are isomorphic we may choose any primitive element of K_s to be a_s .

It follows from the above discussion that the points of E_s may be represented by the elements of K_s , two elements of K_s representing the same point if and only if they are linearly dependent with respect to F. An r-space of E_s ($r \leq s$) will then be represented by the totality of elements of K_s linearly dependent with respect to F on r + 1 linearly independent elements of K_s . Corresponding to the four notations for the elements of K_s there will be four notations for the points of E_s .

The representation of the points of E_s by integers is of especial interest because of the following

304

THEOREM 2.1. The integers $0, 1, \ldots, q_s - 1$ $(q_s = 1 + p^n + \ldots + p^{sn})$ represent different points of E_s and so represent all the points of E_s .

We first prove

LEMMA 2.1. The non-zero elements of K_s which correspond to the elements of F are the multiples of q_s .

Let a_s^c be the element of $F \subset K_s$ having the lowest positive exponent. Then a_s^{ic} $(i = 0, 1, \ldots, g - 1; s^{gc} \equiv 1)$ are elements of F. Let a_s^e be a non-zero element of F not included among these; a_s^e must occur between two successive powers of x^c , with (k - 1)c < e < kc, so that kc - e < c. Then $a_s^{kc-e} = a_s^{kc} a_s^{-e}$ is an element of F having lower exponent than c. The set

 a_s^{ic} (i = 0, 1, ..., g - 1)

must contain the $p^n - 1$ non-zero elements of F, so that g = m - 1 and

$$c = (p^{(s+1)n} - 1)/(p^n - 1) = q_s$$

In the integer notation this means that the non-zero elements of F are the multiples of q_s .

Theorem 2.1 follows at once; for if the points $0, 1, \ldots, q_{s^{-1}}$ are not distinct, two of them, say *i* and *j* ($i \leq j$), must be linearly dependent with respect to *F*. By the Lemma this implies that

$$j \equiv i + kq_s \pmod{p^{(s+1)n} - 1},$$

so that j - i ($0 \le j - i < q_s$) is an element of F. This can happen only if i = j.

Since i and j represent the same point of E_s if and only if $j \equiv i + kq_s$ for some integer k, we have

COROLLARY 2.1. Two integers represent the same point of E_s if and only if they are congruent modulo q_s .

The points of E_s may thus be represented by the residue classes of integers modulo q_s .

3. Fundamental difference sets. Let ϕ_s be the (1-1) mapping which carries any element (a_0, a_1, \ldots, a_s) of K_s $(s \leq t)$ into the corresponding element $(a_0, a_1, \ldots, a_s, 0, \ldots, 0)$ of K_t .

$$\phi_s: \qquad (a_0, a_1, \ldots, a_s) \in K_s \to (a_0, a_1, \ldots, a_s, 0, \ldots, 0) \in K_t.$$

The inverse mapping ϕ_s^{-1} will be defined only in the image set $\phi_s K_s$, that is, for the elements $(a_0, a_1, \ldots, a_s) \in K_t$ with $a_t = 0$ $(i = s + 1, s + 2, \ldots, t)$.

If $\phi_s A_i = A_i^*$ (i = 1, 2, ..., r), where the A_i are elements of K_s , and if $c_i \in F$, it is clear that

$$\phi_{s} \sum_{i=1}^{r} c_{i} A_{i} = \sum_{i=1}^{r} c_{i} A_{i}^{*},$$

so that ϕ_s preserves linear independence with respect to F. Geometrically this means that ϕ_s is a collineation between E_s and a subspace of E_t .

THEOREM 3.1. ϕ_s is a collineation between E_s and s-space of E_i .

Since a collineation carries r-spaces into r-spaces, we have

COROLLARY 3.1. ϕ_s carries r-spaces ($r \leq s \leq t$) of E_s into r-spaces of E_t .

It will be convenient to order the sets of points in the subsequent discussion. The letter D will always refer to an ordered set of points, and the letter E to the same set of points considered as an unordered set.

Let D_s be the set of points E_s with the ordering $0, 1, \ldots, q_s - 1$. The collineation ϕ_s will carry D_s into an ordered subset of E_t which will be denoted by $D_s(0)$ $(D_t(0) \equiv D_t)$. The elements of $D_s(0)$ will be denoted by $d_s^i \equiv d_s^i(0)$, where

$$d_s^i = \phi_s i$$
 $(i = 0, 1, ..., q_s - 1; s = 1, 2, ..., t).$

In particular, $d_t^i = i$ $(i = 0, 1, ..., q_t - 1)$. $E_s(0)$ will of course be the unordered set of points d_s^i $(i = 0, 1, ..., q_s - 1)$. By Corollary 3.1 we have

THEOREM 3.2. $E_s(0)$ is an s-space of E_t (s = 1, 2, ..., t).

The actual numbers which represent the points of $E_s(0)$ will depend on the primitive element a_t used to define E_t , while the ordering of $D_s(0)$ will depend on the primitive elements a_s used to define E_s . The properties of the sets, however, will be the same for all choices of a_s and a_t .

The sets $D_s(0)$ (s = 1, 2, ..., t) will be called the *fundamental difference sets* of E_t . The set $E_{t-1}(0)$ is the same as the set which Singer called a difference set.

The following two theorems express useful properties of the sets defined above.

THEOREM 3.3. $E_r(0) \subset E_s(0)$ provided r < s.

If r < s the set of elements $\{(a_0, a_1, \ldots, a_r, 0, \ldots, 0)\}$ is contained in the set of elements $\{(a_0, a_1, \ldots, a_s, 0, \ldots, 0)\}$ where the a_i range over all the elements of F. Geometrically this means that the set of points $E_r(0)$ is contained in the set $E_s(0)$.

THEOREM 3.4. The s-space $E_s(0)$ contains the points $0, 1, \ldots, s$ but not the point s + 1, for $s = 1, 2, \ldots, t - 1$.

The point $(\delta_0^i, \delta_1^i, \ldots, \delta_s^i)$ $(\delta_j^i = 0$ if $i \neq j$; $\delta_j^i = 1$ if i = j) is mapped by ϕ_s on the point $(\delta_0^i, \delta_1^i, \ldots, \delta_s^i, 0, \ldots, 0)$, so that $\phi_s i = i$ $(i = 0, 1, \ldots, s)$. On the other hand, if some point

$$(a_0^{(i)}, a_1^{(i)}, \ldots, a_s^{(i)})$$
 $(i > s)$

of E_s were mapped by ϕ_s on $(\delta_0^{s+1}, \delta_1^{s+1}, \ldots, \delta_t^{s+1})$ we would have, using the polynomial notation, $a_t^{s+1} = a_0^{(i)} + a_1^{(i)}a_t + \ldots + a_s^{(i)}a_t^s$. If s < t this means

https://doi.org/10.4153/CJM-1952-027-5 Published online by Cambridge University Press

that a_t satisfies an *F*-equation of degree less than t + 1, contrary to the assumption that a_t is a primitive element of K_t .

4. Collineations. The cyclic permutation $(0, 1, \ldots, q_s - 1)$ will be denoted by χ_s .

THEOREM 4.1. χ_s is a collineation in E_s .

Let $a_s^{e_i}$ (i = 1, 2, ..., r) be any r collinear points of E_s . If r > 2 there exist r elements $\lambda_i \in F$ such that

$$\sum_{i=1}^r \lambda_i a_s^{e_i} = 0.$$

Multiplying this equation by λ_s yields

$$\sum_{i=1}^r \lambda_i a_s^{e_i+1} = 0.$$

In the integer notation this implies that if e_i (i = 1, 2, ..., r) are collinear points of E_s , so also are $\chi_s e_i = e_i + 1$ (i = 1, 2, ..., r), showing that χ_s is a collineation of E_s .

COROLLARY 4.1.1. $\chi_s^{\sigma} \equiv \chi_s \chi_s \dots \chi_s$ is a collineation of E_s of period $q_s/(q_s, \sigma)$.

 χ_s^{σ} , being the product of collineations, is a collineation. The period of χ_s^{σ} is the lowest integer r such that $(\chi_s^{\sigma})^r = 1$. Thus r is the smallest positive integer such that $\sigma r = mq_s$, where m is an integer. Let

$$\sigma^* = \sigma/(q_s, \sigma), q_s^* = q_s/(q_s, \sigma),$$

so that $\sigma^* r = mq_s^*$. Since σ^* and q_s^* are relatively prime, the least value for r is q_s^* .

COROLLARY 4.1.2. If A is any r-space of E_r ($r \leq s$), the sets of points $\chi_s^{\sigma}A_s$ ($\sigma = 1, 2, \ldots, q_s - 1$) are r-spaces of E_s .

The image $\chi_s(0) \equiv \phi_s \chi_s \phi_s^{-1}$ of χ_s under the mapping ϕ_s will be a collineation in E_t since ϕ_s and χ_s are both collineations. $\chi_s(0)$ is defined uniquely on the set $E_s(0)$ which it leaves invariant.

THEOREM 4.2. $\chi_s(0)$ is a collineation in the space $E_s(0)$ of E_t .

As in the previous theorem, there are two corollaries.

COROLLARY 4.2.1. $\chi_s^{\sigma}(0) \equiv \chi_s(0) \chi_s(0) \dots \chi_s(0) = \phi_s \chi_s^{\sigma} \phi_s^{-1}$ is a collineation of $E_s(0)$ of period $q_s/(q_s, \sigma)$.

COROLLARY 4.2.2. If A(0) is any r-space of $E_s(0)$, the sets of points $\chi_s^{\sigma}(0)A(0)$ ($\sigma = 1, 2, \ldots, q_s - 1$) are r-spaces of $E_s(0)$.

It is convenient to have the collineation $\chi_s(0)$ expressed in terms of the elements of $E_s(0)$. Apply $\chi_s(0)$ to any element d_s^i of $E_s(0)$. Since

$$\chi_{s}(0)d_{s}^{i} = \phi_{s}\chi_{s}\phi_{s}^{-1}d_{s}^{i} = \phi_{s}\chi_{s}i = \phi_{s}(i+1) = d_{s}^{i+1},$$

 $\chi_s(0)$ replaces any element d_s^i $(i = 0, 1, ..., q_s - 1)$ of $E_s(0)$ by d_s^{i+1} where $d_s^{q_s} \equiv d_s^0$. This proves

THEOREM 4.3.

$$\chi_{s}(0) = (d_{s}^{0}, d_{s}^{1}, \ldots, d_{s}^{q}, -1).$$

More general collineations may now be defined. The product of collineations

$$\Lambda(\xi_s) \equiv \Lambda(\sigma_t, \sigma_{t-1}, \ldots, \sigma_{s+1}) \equiv \chi_t^{\sigma_t} \chi_{t-1}^{\sigma_{t-1}}(0) \ldots \chi_{s+1}^{\sigma_{s+1}}(0)$$

is a collineation defined in the space $E_{s+1}(0)$. The s-space $E_s(0)$ of $E_{s+1}(0)$ will be mapped by $\Lambda(\xi_s)$ into an s-space of E_t which will be denoted by $E_s(\xi_s)$, that is,

$$\Lambda(\xi_s)E_s(0) = E_s(\xi_s).$$

Note that $E_s(0, 0, ..., 0) = E_s(0)$. The elements of $E_s(\xi_s)$ will be denoted by $d_s^i(\xi_s)$, where

$$\Lambda(\xi_s)d_s^{\ i} = d_s^{\ i}(\xi_s) \qquad (i = 0, 1, \dots, q_s - 1).$$

The image of the collineation $\chi_s(0)$ under the mapping $\Lambda(\xi_s)$ will be denoted by $\chi_s(\xi_s)$, so that

$$\chi_s(\xi_s) = \Lambda(\xi_s) \chi_s(0) \Lambda^{-1}(\xi_s).$$

To express $\chi_s(\xi_s)$ in terms of the elements of $E_s(\xi_s)$, apply $\chi_s(\xi_s)$ to any element $d_s^i(\xi_s)$ of $E_s(\xi_s)$:

$$\chi_s(\xi_s)d_s^{\ i}(\xi_s) = \Lambda(\xi_s)\chi_s(0)\Lambda^{-1}(\xi_s)d_s^{\ i}(\xi_s)$$
$$= \Lambda(\xi_s)\chi_s(0)d_s^{\ i} = \Lambda(\xi_s)d_s^{\ i+1}$$
$$= d_s^{\ i+1}(\xi_s).$$

Since

$$d_s^{q_s}(\xi_s) \equiv d_s^{0}(\xi_s)$$

we have

THEOREM 4.4.

$$\chi_{s}(\xi_{s}) \equiv (d_{s}^{0}(\xi_{s}), d_{s}^{1}(\xi_{s}), \ldots, d_{s}^{q_{s}-1}(\xi_{s})).$$

There are relationships between the collineations defined above. For example, $\Lambda(\xi_s)$ may be expressed in terms of the collineations $\chi_i(\xi_i)$ (i = s + 1, s + 2, ..., t).

THEOREM 4.5. The collineation

$$\chi_{s+1}^{\sigma_{s+1}}(\xi_{s+1})\chi_{s+2}^{\sigma_{s+2}}(\xi_{s+2})\ldots\chi_{t}^{\sigma_{t}}\equiv \Lambda^{*}(\xi_{s})$$

is equivalent to the collineation $\Lambda(\xi_s)$.

The theorem is true for s = t - 1. Proceeding by induction we assume the theorem true for s = k and prove it true for s = k - 1. That is, on the assumption of the true for s = k - 1.

308

tion that $\Lambda(\xi_k) = \Lambda^*(\xi_k)$, we must prove that $\Lambda(\xi_{k-1}) = \Lambda^*(\xi_{k-1})$. From the definitions and inductive assumption:

 $\Lambda(\xi_{k-1}) = \Lambda(\xi_k) \chi_k^{\sigma_k}(0)$

and

$$\Lambda^*(\xi_{k-1}) = \chi_k^{\sigma_k}(\xi_k) \Lambda^*(\xi_k) = \chi_k^{\sigma_k}(\xi_k) \Lambda(\xi_k),$$

so that for any element d_k^i $(0 \le i \le q_k - 1)$ of $E_k(0)$ we have:

$$\Lambda(\xi_{k-1})d_k^{\ i} = \Lambda(\xi_k)\chi_k^{\ \sigma_k}d_k^{\ i} = \Lambda(\xi_k)d_k^{\ i+\sigma_k} = d_k^{\ i+\sigma_k}(\xi_k)$$

and

$$\Lambda^{*}(\xi_{k-1})d_{k}^{i} = \chi_{k}^{\sigma_{k}}(\xi_{k})\Lambda(\xi_{k})d_{k}^{i} = \chi_{k}^{\sigma_{k}}(\xi_{k})d_{k}^{i}(\xi_{k}) = d_{k}^{i+\sigma_{k}}(\xi_{k}).$$

Thus for any linear subspace A or $E_k(0)$,

$$\Lambda(\xi_{k-1})A = \Lambda^*(\xi_{k-1})A,$$

which shows that $\Lambda^*(\xi_{k-1})$ is equivalent to $\Lambda(\xi_{k-1})$.

COROLLARY 4.5.

$$\chi_{r}^{\sigma_{r}}(\xi_{r})\chi_{r+1}^{\sigma_{r+1}}(\xi_{r+1})\ldots\chi_{s}^{\sigma_{e}}(\xi_{s}) = \chi_{s}^{\sigma_{e}}(\xi_{s})\chi_{s-1}^{\sigma_{e-1}}(\xi_{s},0)\ldots\chi_{r}^{\sigma_{r}}(\xi_{s},0).$$

By the theorem,

$$\chi_{r}^{\sigma_{r}}(\xi_{r})\chi_{r+1}^{\sigma_{r+1}}(\xi_{r+1})\ldots\chi_{s}^{\sigma_{s}}(\xi_{s})\Lambda(\xi_{s}) = \Lambda(\xi_{s})\chi_{s}^{\sigma_{s}}(0)\chi_{s-1}^{\sigma_{s-1}}(0)\ldots\chi_{r}^{\sigma_{r}}(0),$$

so that

$$\chi_{r}^{\sigma_{r}}(\xi_{r})\chi_{r+1}^{\sigma_{r+1}}(\xi_{r+1})\ldots\chi_{s}^{\sigma_{s}}(\xi_{s})$$

$$= [\Lambda(\xi_{s})\chi_{s}^{\sigma_{s}}(0)\Lambda^{-1}(\xi_{s})][\Lambda(\xi_{s})\chi_{s-1}^{\sigma_{s-1}}(0)\Lambda^{-1}(\xi_{s})]\ldots[\Lambda(\xi_{s})\chi_{r}^{\sigma_{r}}(0)\Lambda^{-1}(\xi_{s})]$$

$$= \chi_{s}^{\sigma_{s}}(\xi_{s})\chi_{s-1}^{\sigma_{s-1}}(\xi_{s},0)\ldots\chi_{r}^{\sigma_{r}}(\xi_{s},0),$$

since for k < s,

$$\Lambda(\xi_s)\chi_k^{\sigma_k}(0)\Lambda^{-1}(\xi_s) = \Lambda(\eta_k)\chi_k^{\sigma_k}(0)\Lambda^{-1}(\eta_k) = \chi_k(\eta_k)$$

where $\eta_k = (\sigma_t, \sigma_{t-1}, \ldots, \sigma_{s+1}, 0, \ldots, 0) = (\xi_k, 0).$

By means of Corollary 4.5, more general expressions for $\Lambda(\xi_k)$ may be obtained. Since they are not essential for the subsequent discussion, they will be omitted.

Theorems 3.3 and 3.4 may be generalized.

THEOREM 4.6. $E_r(\xi_r) \subset E_s(\xi_s)$, provided r < s.

Since $\chi_k^{\sigma_k}(\xi_k)$ leaves $E_k(\xi_k)$ invariant and

$$\Lambda(\xi_{k-1}) = \chi_k^{\sigma_k}(\xi_k) \Lambda(\xi_k)$$

it follows that

$$\Lambda(\xi_{k-1})E_{k}(0) = \chi_{k}^{\sigma_{k}}(\xi_{k})\Lambda(\xi_{k})E_{k}(0) = \chi_{k}^{\sigma_{k}}(\xi_{k})E_{k}(\xi_{k}) = E_{k}(\xi_{k}).$$

309

Applying the operator $\Lambda(\xi_{k-1})$ to both sides of the inequality, $E_{k-1}(0) \subset E_k(0)$ (Theorem 3.3) yields $E_{k-1}(\xi_{k-1}) \subset E_k(\xi_k)$, so that

$$E_r(\xi_r) \subset E_{r+1}(\xi_{r+1}) \subset \ldots \subset E_s(\xi_s).$$

THEOREM 4.7. The space $E_s(\xi_s)$ contains the points $\Lambda(\xi_s)i$ (i = 0, 1, ..., s) but not the point $\Lambda(\xi_s)$ (s + 1).

This follows at once from Theorem 3.4. As a special case we have

COROLLARY 4.7. The space $E_s(\sigma) \equiv \chi_i^{\sigma} E_s(0)$ contains the points $\sigma, \sigma + 1, \ldots, \sigma + s$, but not the point $\sigma + s + 1$ ($\sigma = 0, 1, \ldots, q_s - 1$).

5. The linear subspaces of E_t . With the aid of the collineations just defined, all the subspaces of E_t may be obtained. We first prove

LEMMA 5.1. The space of intersection of the s-1 (s-1)-spaces $E_{s-1}(k+i) = \chi_s^{k+i} E_{s-1}(0)$ (i = 0, 1, ..., s-2) is a line for $k = 0, 1, ..., q_s - 1$.

By Corollary 4.7, the *r*-space $E_r(\sigma)$ contains the points σ , $\sigma + 1, \ldots, \sigma + r$, which, being linearly independent, span the space. $E_r(\sigma)$ and $E_r(\sigma + 1)$ each contain the points $\sigma + 1$, $\sigma + 2$, ..., $\sigma + r$ and hence they each contain the space $E_{r-1}(\sigma + 1)$ spanned by these points. By Corollary 4.7, $\sigma \notin E_r(\sigma + 1)$ while $\sigma + r + 1 \notin E_r(\sigma)$. It follows that $E_r(\sigma) \cap E_r(\sigma + 1) = E_{r-1}(\sigma + 1)$. Thus

$$E_{s-1}(k) \cap E_{s-1}(k+1) \cap \dots \cap E_{s-1}(k+s-2) \\ = E_{s-2}(k+1) \cap E_{s-2}(k+2) \cap \dots \cap E_{s-2}(k+s-2) \\ \dots \\ = E_1(k+s-2)$$

which is the line spanned by k + s - 2 and k + s - 1.

THEOREM 5.1. The q_s (s - 1)-spaces of E_s are $E_{s-1}(\sigma)$ ($\sigma = 0, 1, ..., q_s - 1$).

 E_s contains exactly q_s (s-1)-spaces, whereas by Corollary 4.1.2, $E_{s-1}(\sigma)$ is an (s-1)-space for $\sigma = 0, 1, \ldots, q_s - 1$. To prove the theorem it will be sufficient to show that these q_s (s-1)-spaces are distinct.

Suppose the (s-1) spaces $E_{s-1}(\sigma)$ $(\sigma = 0, 1, \ldots, q_s - 1)$ are not all different. Then for some $\tau_2 > \tau_1$, $E_{s-1}(\tau_1) = E_{s-1}(\tau_2)$, so that

$$\chi_{s}^{q_{s}-\tau_{1}}E_{s-1}(\tau_{1}) = \chi_{s}^{q_{s}-\tau_{1}}E_{s-1}(\tau_{2})$$

That is $E_{s-1}(0) = E_{s-1}(\tau_2 - \tau_1)$, $0 < \tau_2 - \tau_1 < q_s$. Let $\tau < q_s$ be the least positive integer such that $E_{s-1}(\tau) = E_{s-1}(0)$. It is clear that q_s must be a multiple of τ , say $q_s = \lambda \tau$, so that the spaces $E_{s-1}(i\tau)$ $(i = 0, 1, \ldots, \lambda - 1)$ are identical. Choose $E_{s-1}(\mu)$ one of these sets such that $s - 1 < \mu < q_s - s + 1$. This can always be done. The elements of $E_{s-1}(\mu)$ are $d_{s-1}i + \mu$ $(i = 0, 1, \ldots, s - 1)$, there must exist s integers i_J $(j = 0, 1, \ldots, s - 1)$ such that

$$d_{s-1}^{i_i} + \mu \equiv j \pmod{q_s}.$$

This means that

$$d_{s-1}^{i_j} \equiv j - \mu \qquad (j = 0, 1, \dots, s - 1)$$

are s consecutive integers lying in $E_{s-1}(0)$. These integers are different from any of $0, 1, \ldots, s - 1$ by the choice of μ .

By the lemma, the intersection of the s - 1 (s - 1)-spaces $E_{s-1}(\sigma)$ $(\sigma = 0, 1, \ldots, s - 2)$ is a line L_1 , and the intersection of the (s - 1)-spaces $E_{s-1}(\sigma)$ $(\sigma = 1, 2, \ldots, s - 1)$ is a line L_2 . These lines are different, for otherwise $E_{s-1}(0)$ would contain the point s. With the aid of Corollary 4.7 it is seen that L_1 and L_2 contain the points s - 1 and $q_s - \mu + s - 1$. Since $\mu \not\equiv 0 \pmod{q_s}$ the lines L_1 and L_2 intersect in two distinct points, which is impossible. It follows that the q_s (s - 1)-spaces $E_{s-1}(\sigma)$ $(\sigma = 0, 1, \ldots, q_s - 1)$ are different.

A more general theorem is obtained by applying the collineation $\Lambda(\xi_s)\phi_s$ to the (s-1)-spaces of E_s .

THEOREM 5.2. The q_s (s-1)-spaces of $E_s(\xi_s)$ are $E_{s-1}(\xi_s, \sigma)$ $(\sigma = 0, 1, \ldots, q_s - 1)$.

Here again it is sufficient to show that the q_s spaces $E_{s-1}(\xi_s, \sigma)$ are different. Suppose $E_{s-1}(\xi_s, a) = E_{s-1}(\xi_s, \beta)$ $(0 \le a < \beta \le q_s - 1)$. Apply the collineation $\phi_s^{-1}\Lambda^{-1}(\xi_s)$ to both spaces. This would mean that in the space E_s we would have $E_{s-1}(a) = E_{s-1}(\beta)$ contrary to Theorem 5.1.

All the linear subspaces of $E_s(\xi_s)$ may be obtained inductively with the aid of Theorem 5.2. The (s-1)-spaces of $E_s(\xi_s)$ are

$$E_{s-1}(\xi_s, \sigma_s) \equiv E_{s-1}(\xi_{s-1})$$
 $(\sigma_s = 0, 1, \ldots, q_s - 1).$

The (s-2)-spaces of $E_{s-1}(\xi_{s-1})$ are

$$E_{s-2}(\xi_{s-1},\sigma_{s-1}) \equiv E_{s-2}(\xi_{s-2}) \quad (\sigma_{s-1}=0,1,\ldots,q_{s-1}-1),$$

and so on. Since there is at least one descending chain of subspaces joining $E_s(\xi_s)$ with each of its *r*-spaces (r = 1, 2, ..., s - 1), every linear subspace may be obtained in this way.

THEOREM 5.3. Every r-space $(1 \leq r < s \leq t)$ of $E_s(\xi_s)$ may be expressed in the form $E_r(\xi_s, \sigma_s, \sigma_{s-1}, \ldots, \sigma_{r+1})$ $(0 \leq \sigma_i \leq q_i - 1)$.

COROLLARY 5.3.1. Every s-space of E_t may be expressed in the form $E_s(\xi_s)$ for an appropriate choice of ξ_s .

COROLLARY 5.3.2. The collineation $\Lambda(\xi_s)$ maps $E_s(0)$ on any s-space of E_t for an appropriate choice of ξ_s .

We have thus constructed a set of t - s collineations $\chi_i(0)$ (i = s + 1, s + 2, ..., t), the existence of which was proved in Theorem 1.1, which are transitive on the s-spaces of E_t .

DIFFERENCE SETS

PG(2, 2)	$D_1(0) = 0, 1, 3.$
PG(3, 2)	$D_1(0) = 0, 1, 4.$
	$D_2(0) = 0, 1, 2, 4, 5, 10, 8.$
<i>PG</i> (4, 2)	$D_1(0) = 0, 1, 12.$
	$D_2(0) = 0, 1, 2, 12, 13, 27, 24.$ $D_3(0) = 0, 1, 2, 3, 12, 13, 14, 10, 24, 25, 27, 28, 5, 18, 8.$
<i>PG</i> (5, 2)	$D_1(0) = 0, 1, 6.$
	$D_2(0) = 0, 1, 2, 6, 7, 26, 12.$
	$D_3(0) = 0, 1, 2, 3, 6, 7, 8, 35, 12, 13, 26, 27, 18, 48, 32.$
	$D_4(0) = 0, 1, 2, 3, 4, 18, 19, 16, 32, 33, 35, 36, 6, 7, 8, 9, 56, 24, 48, 49, 38, 45, 41, 52, 12, 13, 14, 26, 27, 28, 54.$
PG(2, 3)	$D_1(0) = 0, 1, 9, 3.$
PG(3, 3)	$D_1(0) = 0, 1, 26, 32.$
	$D_2(0) = 0, 1, 2, 32, 33, 12, 24, 29, 5, 26, 27, 22, 18.$
<i>PG</i> (4, 3)	$D_1(0) = 0, 1, 69, 5.$
	$D_2(0) = 0, 1, 2, 5, 6, 17, 10, 101, 46, 69, 70, 88, 74.$ $D_2(0) = 0, 1, 2, 3, 22, 46, 47, 28, 36, 112, 70, 30, 138, 18, 03, 40, 15$
	109, 74, 75, 39, 106, 88, 89, 10, 11, 69, 70, 71, 101, 102, 109, 100, 100, 100, 100, 100, 100, 100
	115, 5, 6, 7, 61, 77, 51, 86, 95.
PG(2, 4)	$D_1(0) = 0, 1, 16, 4, 14.$
PG(3, 4)	$D_1(0) = 0, 1, 27, 16, 7.$
	$D_2(0) = 0, 1, 2, 46, 16, 17, 51, 14, 32, 34, 4, 54, 64, 56, 7, 8, 27, 28, 23, 68, 43.$
PG(2, 5)	$D_1(0) = 0, 1, 10, 3, 26, 14.$
PG(3, 5)	$D_1(0) = 0, 1, 76, 43, 46, 18.$
	$D_2(0) = 0, 1, 2, 43, 44, 122, 86, 70, 7, 64, 76, 77, 23, 119, 18, 19,$
	55, 61, 96, 143, 152, 92, 84, 61, 94, 108, 46, 47, 36, 89, 148.
PG(2,7)	$D_1(0) = 0, 1, 52, 3, 36, 43, 32, 13.$
PG(2, 8)	$D_1(0) = 0, 1, 67, 11, 38, 20, 59, 43, 71.$
PG(2, 9)	$D_1(0) = 0, 1, 56, 27, 49, 81, 61, 77, 3, 9.$
PG(2, 11)	$D_1(0) = 0, 1, 114, 100, 53, 96, 30, 131, 40, 46, 25, 122.$
<i>PG</i> (2, 13)	$D_1(0) = 0, 1, 139, 153, 119, 134, 24, 59, 128, 107, 8, 37, 41, 181.$
<i>PG</i> (2, 16)	$D_1(0) = 0, 1, 41, 147, 259, 184, 211, 70, 19, 138, 243, 80, 158, 93, 36, 267, 271.$

6. A construction for the points of the *r*-spaces of $E_s(\xi_s)$ $(1 \le r < s \le t)$ by means of difference sets. Since

$$\Lambda(\xi_{r}) = \chi_{t}^{\sigma_{t}} \chi_{t-1}^{\sigma_{t-1}}(0) \ldots \chi_{r+1}^{\sigma_{r+1}}(0)$$

and

$$\chi_k(0) = (d_k^{0}, d_k^{-1}, \ldots, d_k^{q_k-1})$$

it is clear that all the r-spaces of $E_s(\xi_s)$ may be constructed from the sets $D_i(0)$ (i = r, r + 1, ..., t).

However, if $\xi_s \neq 0$ it is more convenient to calculate first the sets

$$D_i(\xi_s, 0) = \Lambda(\xi_s) D_i(0)$$
 $(i = r, r + 1, ..., s),$

which by Theorem 4.4 yield the collineations $\chi_i(\xi_s, 0)$ (i = r, r + 1, ..., s). Then

$$E_{\tau}(\xi_{s}, \sigma_{s}, \sigma_{s-1}, \dots, \sigma_{r+1}) = \Lambda(\xi_{s}, \sigma_{s}, \sigma_{s-1}, \dots, \sigma_{r+1})E_{\tau}(0)$$

= $\chi_{r+1}^{\sigma_{r+1}}(\xi_{r+1})\chi_{r+2}^{\sigma_{r+s}}(\xi_{r+2})\dots\chi_{s}^{\sigma_{s}}(\xi_{s})\Lambda(\xi_{s})E_{\tau}(0)$
= $\chi_{s}^{\sigma_{s}}(\xi_{s})\chi_{s-1}^{\sigma_{s-1}}(\xi_{s}, 0)\dots\chi_{r+1}^{\sigma_{r+1}}(\xi_{s}, 0)E_{r}(\xi_{s}, 0),$

by Theorem 4.5 and its Corollary.

The accompanying table of difference sets has been constructed with the aid of Galois tables [1; 2] as described in §3.

References

- 1. W. H. Bussey, Tables of Galois fields, Bull. Amer. Math. Soc., vol. 12 (1905-6), 22-38.
- 2. ——, Tables of Galois fields, Bull. Amer. Math. Soc., vol. 16 (1909-10), 188-206.
- 3. R. D. Carmichael, Introduction to the theory of groups of finite order (Boston, 1937).
- 4. H. S. M. Coxeter, The real projective plane (New York, 1949).
- Self-dual configurations and regular graphs, Bull. Amer. Math. Soc., vol. 56 (1950), 413-456.
- 6. G. Fano, Sui postulati fondamentali della geometria proiettiva in uno spazio lineare a un numero qualunque di dimensioni, Giornale di Mathematiche, vol. 30 (1892), 106-132.
- 7. Marshall Hall, Jr., Cyclic projective planes, Duke Math. J., vol. 14 (1947), 1079.
- 8. W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry, vol. 1 (Cambridge, 1947).
- 9. C. R. Rao, Finite geometries and certain derived results in the theory of numbers, Proc. Nat. Inst. Sci. India (1945), 136-149.
- Difference sets and combinatorial arrangements derivable from finite geometries, Proc. Nat. Inst. Sci. India (1946), 123-135.
- 11. G. de B. Robinson, The foundations of geometry (Toronto, 1940).
- 12. J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc., vol. 43 (1938), 377-385.
- 13. E. Snapper, Periodic linear transformations of affine and projective geometries, Can. J. Math., vol. 2 (1950), 149-151.
- 14. D. M. Y. Sommerville, An introduction to the geometry of n dimensions (London, 1929).
- 15. B. L. van der Waerden, Moderne Algebra (Berlin, 1931).
- 16. O. Veblen and W. H. Bussey, *Finite projective geometries*, Trans. Amer. Math. Soc., vol. 7 (1906), 244.

Illinois Institute of Technology