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Abstract. For a site (with enough points), we construct a topological spagg, and a full
embeddingy™* of the category of sheaves ahinto those onX 4 (i.e., a morphism of toposes
¢:Sh(X 5y) — SNh(8)). The embedding will be shown to induce a full embedding of derived categor-
ies, hence isomorphisms'k8, A) = H*(X4), ¢* A) for any Abelian sheafi on §. As a particular
case, this will give for any scheniéa topological spac# yy and a functorial isomorphism between
the étale cohomology HY, A) and the ordinary sheaf cohomology ¢ (y), ¢*A), for any sheaf

A for the étale topology oif .
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1. Introduction and Statement of the Theorem

Many cohomology groups arising in geometry and topology are (or can be) defined
as the cohomology groups of some topos; that is, as the sheaf cohomology groups
of some site. This applies directly to étale and other cohomologies of schemes [1,
10], but also to many others such as Galois cohomology [12] and cyclic cohomo-
logy [2].

The purpose of this paper is to give a general construction which shows that
all these cohomology groups are isomorphic to the ordinary sheaf cohomology
groups of a topological space associated to the site or the topos. When the site is a
group G (with associated topos @ -sets), our construction gives a model for the
classifying space8G. In general, our result can be interpreted as the construction
of a ‘classifying space’ for any site (satisfying the following technical condition).

Our construction applies to topwith enough pointsWe recall that a poinp of
a toposy is a topos morphismp: 8 — 7, from the topos$ of sets into7”. Such a
morphism can equivalently be described as a funptof” — § which preserves
colimits and finite limits, or as a morphism of sitesC — &, whereC is any site
of definition for 7. The toposT is said to have enough points if for any sequence
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A — B — C of Abelian groups in7 (i.e., sheaves of Abelian groups i),
the sequence is exact whenever for each ppimf 7 the associated sequence
p*A — p*B — p*C is an exact sequence of Abelian groups. We hasten to point
out that virtually all topoi arising in geometric practice have enough points. This
applies, for example, to the presheaf toﬁben an arbitrary small categofy, and
to the étale topos associated to a scheme. In fact, any ‘coherent’ topos has enough
points (Deligne, Appendix to Exposé VIin [1]).

For any topological spac¥, the category StX) of sheaves orX is a topos
(with enough points), whose cohomology groups are the ordinary sheaf cohomo-
logy groups ofX [3, 6]. We will prove the following result

THEOREM. LetT be a topos with enough points. There exists a topological space
X+ and a topos morphism: Sh(X+) — 77, such that

(i) ¢*is a full and faithful embedding &f into Sh(X+);
(ii) for any Abelian group in 7, the morphisny induces isomorphisms

H' (T, A) > H'(Xs, ¢*(A)), n>0.

Here H(X+, ¢*(A)) denotes the sheaf cohomology of the spigewith the
sheafp*(A) as coefficients. We will give an explicit construction of this spage
from 7, which depends not only o, but also on the choice of a site for. For
this reason, the constructidn — X is only functorial in7™ in a weak sense (see
Remark 2.4 below).

Note that, since the topos &%) always has enough points, the (mild) as-
sumption thatr” has enough points is a necessary one, being implied by part (i) of
the theorem. For part (ii) of the theorem, we will actually prove that the derived
functors R g, of the direct image functap,: Sh(X+) — 7 have the property that

A, q=0,

q * —
RYp.(p*A) 0 ¢-0

for any Abelian groupA in 7. This property states that: Sh(Xs) — 7 is an
acyclic morphismlt implies in particular thaty* induces a full and faithful em-
bedding of derived categorig3*(7) — D*(X7). The same argument applies to
ringed topoi: if @7 is any ring in7 and D' (7, O) is the associated derived
category of complexes af+-modules [1], thenp* induces a full and faithful
embeddingD* (7, O7) — D (X7, *(O7)).

The theorem, as well as the construction of the spagehave been inspired
by [8], where it is proved that any topos (not necessarily with enough points) is
cohomologically equivalent to the topos of sheaves on a ‘locale’. (A locale is an
abstract notion of ‘topological space without points’.) However, our theorem is
not a consequence of this result of [8]. Furthermore, our proof is different. The
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proof in [8] made essential use of the ‘internal logic’ of a topos and its behaviour
under change-of-base. These methods cannot be applied to the topological space
X4 constructed here.

2. Construction of the SpaceX 4 and of the Map ¢

In this section,7” denotes a fixed topos with enough points. Recall [1, 9] that the
latter means that the functoys: 7 — 4, for all points p: 8 — 77, are jointly
conservative. Although the collection of all such poiptss in general a proper
class rather than a set, there will always bsea# of points p for which the
functorsp*, for p € &, are already jointly conservative. We will fix such a g&t
and henceforth refer to points in this setsasall points of 7. For a pointp of 7
and an object (sheafj in 7, we will also use the common notatidf), for the set
p*(E), and refer taF, as ‘the stalk of£ at p’.

Next, we fix a sheafs in 7 so that the collection of all subsheav&sc G”,

n > 0, generate§ . For exampleG can be the disjoint sum (coproduct) of all the
objects in some site of definition f6F. But often, there is a smaller and much more
natural choice folG: the toposy” will generally contain some ‘universal’ structure
U of a certain kind. For example, in the case of the étale tojgas,the universal
strictly local ring [5]. More generally, ifT is a classifying topody/ is the universal
model for the theory classified by (see [9], Chapter VIII). This objeav will
have the property required fa¥, namely that the subsheaves of finite products
U x --- x U generatey .

Finally, we fix an infinite set’, which is big enough so that it surjects onto all
the stalksG ,, for all small pointsp of 7; in other words, cards,) < card/).

The construction of the spacé; will depend on these choices, of the get
of points, of the sheaf;, and of the sef. (We come back to this dependence in
Remark 2.4 below.)

The points of the spac¥ = X4 are now defined to be equivalence classes of
pairs (p, «), wherep is a small point of7” and« is a function from a subset of
It0G,, 1 O dom(a) = G ,, with the property that:—%(g) is infinite, for each
g € G,. Two such pairgp, o) and (g, B) areequivalent(i.e., define the same
point x € X), if there exists a natural isomorphism of functersp* — ¢* so
that 8 = 05 o a. We will often writex = (p, «) for a pointx € X, and not
distinguish explicitly between such paits, «) and their equivalence classes.

The topology on this seX of points is defined as follows: For amy> 0 and
any subsheaf c G", and anyiy, ..., i, € I, the set

Ui, ..i,.c ={(p,a) liy, ..., i, € doma) and(a(iy), ..., a(i,)) € Cp} (1)

is to be a basic open set. Note that this set is well-defined on equivalence classes,
i.e.,(p,a) € Uy, .i.ciff (g,B) €U, i c-Inthe sequel, we will usually write
foriq, ..., i, anda (i) for (a(iy), ..., a(i,)), so that

Uic ={(p,a) | i e domw) anda(i) € Cp}. (2)
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We remark that, by changing, we can always assume that the sequenee

(i1, ..., i,) does not contain repetitions. For examglg, « for C ¢ G? is equal

to U; ¢ for C’ the pullback ofC along the diagonah: G — G?2. In the sequel we
will often tacitly assume that a sequencdoes not contain repetitions.

LEMMA 2.1. The setdJ; - form a basis for a topology oX.

Proof. This is clear from the formul&; c NU; p = U, j cxp, foranyC c G",
DcG",i=C(1,...,in), J = (J1,..., jm), andi, j the concatenation of these
two sequences. O

It can be shown that the spa&ethus defined is always a sober topological space
([1], IV.4.2.1), although it is not a Hausdorff space.

Next, we describe the morphisgn Sh(X) — 7 occurring in the statement of
the theorem. Recall that such a morphism of topoi is given by an inverse image
functor¢*: T — Sh(X) and a direct image functar,: Sh(X) — 7, right adjoint
to ¢*. The functorg* preserves colimits and finite limits, and these properties
imply that ¢* has a right adjoint, unique up to isomorphism. So, to definé
suffices to define such a functet: 7 — Sh(X). For any sheaf in 7, consider
the setp*(E) = {(p,a,e) | (p,a) € X,e € E,}, with obvious projection
m:9*(E) — X. (Again, being more precise we should speak about equivalence
classes of such triples, whete, a, ¢) is equivalent to(g, B, g) if there exists a
natural isomorphism of functo p* — ¢* so that = 65 o @ andfx(e) = g.)

The sefp*(E) carries a natural topology, with basic open S&ts ; = {(p, a, e) |
(p,a) € Uic and e = f(a(i))}, foranyi = (i1, ..., i,) andC C G" as above,
and any morphisny:C — Ein 7.

LEMMA 2.2. These setd/; ¢, form the basis for a topology op*(E), which
makes the projection: ¢*(E) — X into a local homeomorphism.

Proof. Consider two such basic openséts randV;p ,.Leth:CxgD — E
be the map from the pullback, = fom = gom. ThenVic ;N V;p, =
Vi j.CxgD.h-

Thus the setd; ¢  form a basis for a well-defined topology @ri(E). Fur-
thermore, the sections: U; c — Vi ¢ ¢, ando(p, a) = f,(«(i)) are well-defined
on equivalence classes and show that the projeetigst (E) — X restricts to a
homeomorphisnV; ¢  — Ui c. O

Thusr: ¢*(E) — X is a sheaf orX. Note that for the stalk of this sheaf at a point
(p, @) of X we have

(p*(E)(p,a) = Ep- (3)

PROPOSITION 2.3. The constructionE +— ¢*(E) defines the inverse image
functor of a topos morphism: Sh(X) — 7.
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Proof. We observe first that the construction is functoriakinlf #: E — F is
a morphism in7”, the induced map

@*(h):9*(E) — ¢*(F), (p,a,e) = (p,a, hpye))

is continuous for the topologies just defined. To see this, take any Qaint, e)
of *(E), and letV; ¢ ; be a basic open neighbourhood(ef «, 2, (e)) in ¢*(F),
where f:C — F. Since the subsheaves 6f generatef, it follows that there
isaB C G™ and a mapu: B — C xy E so that, forc = a(i), there exists a
pointb € B, with u,(b) = (c,e) € (C xp E),. Choosej = (ji, ..., jm) With
Jr € I,sothath = a(j) = (@(j1),...,a(ju)). Letv = ro0u: B — C, and let
D = graphv) C B x C C G™ x G". ThenW =V, p 0o« IS @ basic open set in
¢*(E), such tha(p, a, e) € W andg*(h) mapsW into V; ¢ ;.

This shows that* is a functor. It remains to verify that* preserves colimits
and finite limits. But it suffices to show that this holds at the level of the stalks,
where it is obvious from the identity (3). O

Remark2.4. The construction ok = X; depends on?, G and I, in a
functorial way. Clearly, for a larger se®’ > & of small points, there is a map
X (P) — X (P overT . Similarly, it will be clear from Section 3 that a surjection
s:J — I'induces a map*: X(I) — X (J), while if G’ © G is a larger choice of
an object so that the subsheaves of its finite powers generate, there is a restriction
mapX (G') — X (G). Itis a consequence of our theorem that all these comparison
maps induce isomorphisms in cohomology for Abelian coefficients which come
from 77, so that the dependence ¥fon &£, G and! is inessential in this sense.

If f: 71 — T,is atopos morphism, we can fix first the parametersnd1; for
71 andG;, for 75, and then choos®, large enough to include all compositégs p
for p € 1, andG1 D f*(G>), and finally I, so large that there exists a surjection
I, — I,. Then the constructed spacks and X, fit into a commutative diagram

Shixy) —— shixy)

o

r]—’ It

1 f‘ 2

3. Enumeration Spaces

The fibres of the morphism: Sh(X4+) — 7 will turn out to be (approximated by)

certain acyclic topological spaces, which we will discuss separately in this section.
Let I be a fixed infinite index set. For any sgt with cardinality cardS) <

cardl), the enumeration space &) (or En,(S)) has as points all functions
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a: D — S defined on some subsé&t = dom(e) C I, and with the property that
a~1(s) C D is infinite for eachs € S. The basic open sets of E$) are the sets of
the formV;, i 5.5 =l a(y) =s, fork=1,...,n}, foranyiy,...,i, €I
andsq, ..., s, € S. It will be convenient to use a shorter notation, and wuit®r
the finite partial function froml to S defined byu(iy) = s, (k = 1, ..., n), and
write V, = {a € En(S) | u C «} for the same basic open set. Note thatifoe 0
(i.e.,u = @) the entire space EN) occurs among these basic open sets.

NOTATION 3.1. These finite partial functionsinduce various continuous opera-
tions on ErS), which will be used in the sequel. Fere En(S), denote byr — u
the restriction ofx to dom(e) —dom(u). Furthermore, denote kayU u the union of
these partial functions, defined only in case deymdom(x) = @. Finally, we will
use the notatioriu /«) for (« — u) U u, which is the function obtained by ‘writing
u overa'.

Remark3.2. In relation to Remark 2.4, we note thatSf ¢ S is a sub-
set, the restriction ofe: D — Sto{i € D | (i) € S’} defines a continuous
map res: EQS) — EN(S’). Furthermore, any surjectionJ — [ defines by
composition an obvious continuous m&pEn; (S) — En; (S).

LEMMA 3.3. Each enumeration spa&mn(S) is connected and locally connected,;
in fact, each basic open s#&t, is connected.

Proof. Fix an open seV,, and letV,, = 01 U O, be a cover by two nonempty
open sets. Choose pointg € 0; anday € O, and basic open setg,, and
Vi, With @y € V,, C O1 anday € V,, C O,. These are given by finite partial
functionsuy, uo, with u C u; C oy andu C up C ay. Let = uy/a; € O, and
y = (01 —up)Uu. Thus,y C g andy C a1, hences anda; belong to every open
neighbourhood of in En(S). Nowy € V,,soy € O, 0ory € O,. Butif y € 01,
theng € 01N Oy, and ify € O, thenay € 01N O2. ThusO1 N O, # @, showing
that V, is connected. O

Next we conside€ech homology of E¢S). The following proposition forms the
crucial part of the proof of our theorem.

PROPOSITION 3.4. For any coverU of En(S) by basic open sets, we have
H,(U,Z) =0 (n > 0).

Proof. LetU = {V,, | o € X} be such an open cover, indexed by aXeflo
avoid too many indices, we will in this proof write for u,, andV, for V,, . Let
C.(UW) be the usuaCech complex, i.e, (W) is the free Abelian group on the set
N, (W) ={(00,...,04) | VouN---NV, # @}. Note that(oy, . . ., 0,) € N,(W) iff
the finite partial functionsr, ..., o, are compatible, in the sense that their union
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oo U --- U o, (short foru,, U --- Uu,,) is well-defined. We will show that this
complex is chain contractible, by exhibiting an explicit chain homotbpy

d d d ?
0-Z S Co(UW) S C1(U) S C(U) S -

h_y ho hy h2
doh_1=id, oh, + h,_10 = id. (4)
To defineh, we fix a pointe € En(S) and an index € X with « € V,,. Further-

more, for each sequenee= (oy, ..., 0,) € N,(U), we choose an indef (o) so
that

a—(ogU---Uo, Ut) € Vyg). (5)
Theh, are now defined by induction, by

h_1(D) =7,

ha(0) = (=1)" o f(0) — hy-1(30) f (0)].

Hereo is the tuple(oy, ..., 0,),0 f(0) = (oq, ..., 0,, f(0)), andh,_1(d0) f (o)
is the sumd (—=1)'h,_1(00...3d;...0,) f(o) obtained by adding (o) to the end
of every term ini,,_1(d0). For example,

ho(og) = —(oof(00) — Tf(00)),
hi1(0001) = 0001 f (0001) + 01 f (01) f (0001) — Tf (01) f (0001)—
— o00f(00) f(0001) + Tf(00) f (0001),

etc. Let us observe first that, (o) is a well-defined element af, 1 (U); i.e., that

for any sequencg = (uo, ..., i,11) OCCUrring ink,, (o), the corresponding basic
openVy = V,,N---NV, . is nonempty. We will show by induction onthat
for any generatop occurring ink, (o), there exists a poing = Bg (1) in En(S)

such that

(6)

BDa—(ogU---Uo,Ut) and BeVp=V,,N---NV, .. (7)

Forn = 0, the two generators occurring y(og) are o f (og) andt f (og) and,
by (5), we can choose

ﬂ(aof(ao)) = — (00 U T) U 0g € VO‘of(O'o)’
B(tf(og) =a—(ogUT)UT € Vipiop-

Suppose, then, that we have found a pgiiais in (7) for eachioy, . .., 0,,) and each
generatomu in i, (o). Now consider a sequenee= (o, ..., 0,11) € Nyr1(W),
with

ha(0) = (=10 f(0) — hy-1(30) f(0)] (8)
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as in (6). For the generaterf (o), we can take8 = (@ — (ogU---Uo, 1 UT)) U
(opU---Uopy1) = (U ---Uo,1) /(e — 1), since by (5), this8 will satisfy
B € Vg ro)- Next considerr,_1(do) f (o). For a generatop = (uo, - . ., n+1)
inh(og...0;...0,),we have by induction found &, so that

ﬂoD(X—(O()U...OA‘,'...UO'nU‘L') and ,BOEV[L-

Also, f(6) C « — (ogU ---Uo,UT) C @ — (6gU ---6;--- U, UT), SO
Bo € Vuyo)- Thuspo is also a witness for the fact that the parf (o) occurring
in h,_1(d0) f (o) corresponds to a nonempty intersection of basic open sets.

It remains to prove the identities (4) for a chain homotopy. Cleady,; = id,
while for og € Co(U),

dho(og) + h_1(dog) = —3d(0oof(00)) +d(tf(00)) + T
—(f(o0) +00) + (f(o0) —T) + 7
= 0p.

We proceed by induction, and suppose the idertity + 4,_10 = id has been
proved. Consider, then, any generatgr..o,,1 € C,,1(U). The induction hypo-
thesis implies thadh, (30) = 9o — h,_1(3°0) = do, whence

dh,(d0) f (o) = (30) f(0). 9)
Thus, using the general identity

(o - - np) = (o - a)p + (=D g .. s (10)
we find

Mp1(0) = 3(=1)"[0 f(0) — h,(d0) f(a)] (by definition)
= (=D"[(00) f(0) + (—=D)"0 — 3(h,(d0) f(0))] (by (10))
= o + (=1)"[(d0) f (o) — (3h,(30)) f(0)—
—(=1)"*?h,(30)] (by (10))
= 0 — hy(d0) + (=1)"[(d0) f(0) — dh,(d0) f(0)]
= o0 — h,(d0).

This completes the proof of the proposition. O

PROPOSITION 3.5.Let V be a basic open set iBn(S), and letU be a cover of
V by basic open sets. Théh, (U, Z) = 0 (n > 0).

Proof. This is proved in exactly the same way as the previous proposition.
If Vv = V,, then one modifies the proof by restricting all constructions to finite
sequences or pointse with u C v, «. O
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4. Construction of ¢, and a Projection Formula

The enumeration spaces &h are related to the spaéé = X, constructed for a

topos above, in the following way. For each small pging — 7, with stalkG,,

of the special shed¥, there is a continuous map: En(G,) — X,i,(a) = (p, ).
Denote byr:En(G,) — pt the unique map into the one-point space. These

two maps induce topos morphismis< Sh(En(G))) 2 Sh(X), which relate to
the mapy: Sh(X) — 7 in the following way.

LEMMA 4.1. The square

ShEN(G,)) e Sh(X)

n[ p \w (11)

§—F— 7

commutes up to natural isomorphism.

Proof. Let E be an object iy, with sheafp*(E) on X as constructed in
Section 2. Using the notation of the proof of Lemma 2.2, consider a canonical
sectiono:U;c — Vic,r C 9*(E),o(p,a) = f,(a(i)), of the shealp*(E). The
connected components DJl(U,»,C) are the basic open set§ = {o | a(ip) =
81, ..., a(iy) = g}, foral g = (g1,...,8,) € C, C G. The sectiono is
constant onV,, with value f, (g1, - .., g,). This shows that;¢*(E) is a constant
sheaf, with stalk', sincei;¢*(E)(p.o) = ¢*(E)(p.o) = Ep- O

We note that the square (11) need not be a pullback of topoi, although it is very
close to being one: Eii7 ) is the space of points of the topos theoretic pullback.

COROLLARY 4.2. Leto:U;¢c — ¢*(E) be any section of the sheaf(E),
defined on the basic open gét.. Then for any two pointsp, «) and (p, B) in
Uic,

a(i) = i) = o(p,a) =o(p, p). 12)

Proof. The sectiorv restricts along,: En(G,) — X to a section oni;l(U,»,c)
of the constant sheaf with stalk,. This section is constant on the connected
componentsV, = {o | a(i) = g} of i;l(Ui,C) already occurring in the proof
of Lemma 4.1. Formula (12) follows. O

Recall that a topos morphism 7' — 7 consists of two particular functogs® and
©«, With ¢* left exact and left adjoint t@,.. The particular morphism: Sh(X) —
J constructed above, has the following additional property.
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PROPOSITION 4.3.There exists a functap,: Sh(X) — 7 which is left adjoint
top*: 7 — Sh(X), i.e.,

Homy (¢ (F), E) = Homgpx) (F, ¢*(E)) (13)

for any sheafF" on X and any objec of the toposr .

Proof. For the proof of this proposition, we will construct for each sheafn
X an objecty,(F) of the toposy . Note that each basic open €&t- C X can be
viewed as a sheaf ok (where the sheaf projection is the inclusibpc — X).
Furthermore, an arbitrary sheafis the colimit of such sheavds,  (the colimit
being taken over the poset of sectiongFodlefined on basic open sets). Thus, since
the desired left adjoinegy must necessarily commute with colimits, it suffices
to constructy, (U; ) for each basic open sét, - and prove the natural bijective
correspondence of (13) in this special case

Hom(p\ (Ui c), E) = T'(Uj ¢, ¢*(E)). (14)
We define
©0(Uic) =get C. (15)

To prove (14) for this definition, we shall use the following two lemmas.

LEMMA 4.4. LetU; ¢ andU;  be two basic open sets i, and suppose that
Ujp # 9. ThenU;  C U, iff the sequence = (iy, ..., i,) is a subsequence of
j = (1,..., jm), and the corresponding projectiad@” — G" mapsB into C.

Proof. The implication &) is clear. For£>), choose a pointp, o) € U; 5. If ix
is any index in which does not occur amongy, ..., j.), leta’ be the restriction
of o to doma) — {ix}. Then(p,a’) € U;p but(p,a’) ¢ U;c. This shows that
if U;p C Ui theni must be a subsequence afNow consider the projection
7:G™ — G" coming from the fact that is a subsequence gf (Here we use
that we can assume that batland j do not contain repetitions, as explained just
below (2).) To prover(B) C C, it suffices to prove that, for each small pojmt
m,(By) C C,, (because the stalks at the small points are jointly conservative, by
assumption).

Take(gi, ..., gn) € By, and letw € En(G ) be any enumeration witl( i) =
gr(k=1,...,m). Then(p,a) € Uj p C Ui, SOmp(g1,...,8m) = (a(iy), ...,
a(iy)) = a(i) € C,. m

LEMMAA4.5. LetU; ¢ be abasic open set. LAV, 3, } be afamily of nonempty ba-
sic open subsets &f; ¢, with associated projections:: B — C asin Lemma4.4.

ThenUi; ¢ is covered byU , .} in the spaceX iff {z:: B — C} is an epimorphic
family in 7.
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Proof. To simplify notation, we just treat the case wheére- i; andC C G,
while j = (i1, j¢) is a sequence of length 2 a®} C G2. By Lemma 4.3, the
projectionny: G2 — G maps eaclB; into C, giving a mapr;: Bs — C.

Suppose now thal/; c = (JUj, 5. To show that{z;: B — C} is an epi-
morphic family, it suffices to prove, for each small pointC,, = U, 7z (Be) -

Take anyc € C,,, and choose an enumeratiere En(G ) with «(i) = c. Then
(p,a) € Uic, hence for somé& also(p,a) € Uj, p,. Thus, j: € dom(w) and
b = (a(i), a(j¢)) € (Bg),, whencec = 7¢(b) € m:(Bg),, as desired.

The converse is similar. O

We now continue the proof of Proposition 4.3, and show the isomorphism (13)
for ¢(U;.c) = C. In one direction, any map: C — E in 7 defines a canonical
section

oy U,',C — (P*(E), O'f(p, a) = fp(a(i))a (16)

(as in the proof of Lemma 2.2).

In the other direction, suppose:U; . — ¢*(E) is an arbitrary section of
¢*(E). Locally, 0 must be a canonical section as described in Section 2. Thus,
there is a cover

Uic= U Uj.B; (17)
§

and for eaclf a mapf:: B: — E so that

G(p’ a) = (f&')p(a(]f))’ for (P, C() € Ujg,Bg' (18)

By Lemma 4.5, the identity (17) implies that tii& form a cover ofC in the
topos 7. Let us simplify the notation as in the proof of Lemma 4.5, and write
i =11, j = (i1, Je),C C G, B C G?, andm;: B — C for the restriction of the
first projectionG? — G. We claim that the mapg:: B: — E form a compatible
family for this cover{B; — C}, hence define a unigue mafiC — E with

f om: = fe. For this, it needs to be shown, for any two indiéeand¢, that the

square
B: xc B, =2— B,
m\ {f; (19)
B E
¢ fe

commutes irf7". It suffices to check that the corresponding diagram of stalks com-
mutes for every small poinp. Choose such a point, and consider an element
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b € (B: x¢ B;),. Write m1(b) = (¢, bs) € (Bg), andm(b) = (c,b;) € (B¢)p.
Choose now two enumerations 8 € En(G,), such that

a(i) =c, a(je) = be,
B)=c, By =Db;.
Then(p, a) € U, 5, and(p, B) € Uj, p,, SO

(feom)p(d) = (fe)plc, be)
= (fo)pla(d), a(je)
= o(p,a) (by(18))

and similarly (f; o m2),(b) = o(p, B). But(p, a), (p, B) € Ui, while a(i) =
B(i), soo(p,a) = o(p, ) by Corollary 4.2. This proves thalf;: o m1),(b) =
(f; om2),(b) foranyb € (Bs x¢ B;),, and hence that (19) commutes. Thus, the
f& together uniquely determine a m#p= f,:C — E.

Itis now straightforward to check that these constructions;,dfom f and of
f, from o, are mutually inverse, and prove the required bijection (14).

This completes the proof of Proposition 4.3. O

Let us reconsider the square (11) at the beginning of this section. Singg,En

is a locally connected space (Lemma 3.3) the inverse image functof —
ShEN(G,)), which sends a set to the constant sheaf, has a left adjoint
m:ShEN(G,)) — 4. For a sheafFF on ENG,), m(F) is simply the set of
connected components 6f whereF is viewed as an étale space over(&n).

COROLLARY 4.6. For the square (11), the projection formuta(i,)* = p*¢
holds.

Proof. First, a more precise formulation of this corollary should state that the
canonical natural transformation

m(ip)"(F) = pro(F), (20)

x A~

obtained from the isomorphisnfe* = n*p* and the adjunctions, is an iso-
morphism. Since the functors in (20) all preserve colimits, it suffices to check
that (20) is an isomorphism in cade is (the sheaf corresponding to) a basic
open seU; ¢. But mi,(Uic) is the set of connected componentsip‘f(Ui,c), and

these are exactly the basic open Séts= {« | a(i1) = g1, ..., a(i,) = g}, for
g = (g1, ..., 8) € C, C G, hence are in bijective correspondence with elements
of C, = p*(C) = p*¢i(Ui.c) by (15). D

5. Proof of the Theorem

We will now prove the theorem, stated in the introduction and repeated here
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THEOREM 5.1. For any sheaf of Abelian groupd in 7, the morphismg:
Sh(X7) — 7 induces an isomorphism*: H* (7, A) — H"(X+, ¢*A), for any
n>=0.

Forn = 0, this follows from

LEMMA 5.2. The inverse image functgr*: 7 — Sh(X ) is full and faithful.

Proof. The statement of the lemma is equivalent to the assertion that the counit
of the adjunctionp,¢*(E) — E is an isomorphism, for every she&fon 7. It
suffices to check this for the stalks at each small ppirBut there we have

v (E), = p*pp*(E)
= m(i,)*¢*(E) (by Corollary 4.6)
= mn*(E,) (byLemma4.l)

= E,,

the latter since E(G ,) is connected (Lemma 3.3). O

Later, we will have to compare th&@ech complex of an open cover i to its
inverse image along the map: En(G,) — X, wherep is any small point of the
toposT . We will use the following simple observation

LEMMAG.3. LetU,,...,U, Cc U C X be basic open sets, and &t i;l(U)

be a connected component. Then the connected componép’cswlfﬂ --NUy,)
contained inV are the nonempty intersections N---NV,, whereV; C Vis a
component of, *(U;).

Proof. We already observed (e.g. in the proofs of 4.1 and 4.5) that for any

basic open sdl/ C X, the connected componentsigf-(U) are basic open seis

in En(G ). These basic open sets in &h,) are all connected (Lemma 3.3) and
closed under intersection. The lemma follows immediately from this. O

LEMMA 5.4. Let ! be any injective Abelian sheaf in. LetU C X be a basic
open set, and letl be a cover ot/ by basic open sets. Theti(U, ¢*(1) | U) =0
forn > 0.

Proof. Write U = {U, | 0 € X}, andN,(U) = ZUO.M Us,.., Where the sum
is over all(n + 1)-tuples of indices, an@,, ., = U,, N --- N U,,. Viewing each
Us..g, s an object of StX), we see thatv,(U) is a simplicial object in SEX).
The Cech complexC" (U, ¢*(I) | U) computing H(U, ¢*(I) | U) can now be
described as

C" (U, ¢™(I) [ U) = Homgpcx) (N, (W), ¢*(1))

= Homy (o N, (W), 1),

the latter by the adjunction of 4.3. To prove the lemma, it thus suffices to show
that the associated chain compléikpy, N,(U)] of Abelian groups in7 is exact
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atn > 0. Itis enough to check this for the stalk at each small ppirBut
ZIp Ny (W)]p = Zlg(N,(W))p]
= Z[m(i,)*N,(W], (by Corollary 4)
which is the chain complex of the simplicial set) (N.(U)). Now

i, (N, (W))
= {(0g...0,, W) | W a connected component x';;fl(UUO___Un)}.

For each connected componéntc i;l(U), let Uy be the cover oV by connec-
ted component$V C i (Us), forallo € . By Lemma 5.3, (Ne(W)) is the

disjoint sum of theCech nerves of these covets,, and these nerves are acyclic
by Proposition 3.5. Thusi, (N.(U)) is acyclic also, and the lemma is proved.

Proof of Theorenb.1. By general homological algebra, it suffices to show that
for any injective Abelian group in 7 the sheaf cohomology groups' £X, ¢*(1))
vanish forn > 0. By Lemma 5.4, the sheaf*(I) | U is ‘Cech-acyclic’ for
each basic open sét C X. The result follows by applying Cartan’s criterion
[1], Proposition V.4.3, [3], Théoreme 5.9.2. O

As stated in Section 1, the argument actually proves the somewhat stronger asser-
tion that the higher right derived functorsf. Sh(X) — 7 vanish. Before stating
this as Corollary 5.6 below, we observe the following corollary.

COROLLARY 5.5. Let E be any sheaf (of sets) #fi. Then in the pullback of topoi

Sh(p*E) ——+ Sh(X)

o b

7/E T

the mapyg induces isomorphismd” (7 /E, A) — H"(p*(E), ¢3(A)), for any
Abelian sheafd in 7 /E.

HereT /E denotes the ‘induced topos’ ([1], Exposé IV.5)1fobjects overr,
and7 /E — T is the canonical morphism (loc. cit. (5.2.1)).

Proof. We claim that the mapg is again of the formp: Sh(Xs) — T
so that Corollary 5.5 is actually a special case of Theorem 5.1. More precisely,
¢p:Sh(p*E) — T /E is precisely the map SX /) — T /E, for a suitable
choice of the various parameters. Indeed, supposés defined using the set of
small points#, the objectG so that subsheaves 6f* generatej, and the index
setl. ThenH = (G x E — E) is an object off /E so that subsheaves &f"
generatey / E. Moreover, the points af /E are in bijective correspondence with
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pairs(p, e), wherep is a point of7 ande € E,. For such a paitp, ¢), the stalk
of an object(f: F — E) at(p,e) is given by(f: F — E)(,.o = f,(e) C E,,.
In particular,H(, ., = G, for eache. Now for the set of small points ¢f /E we
can take all these paifp, ¢) wherep € £, and we can then take the same index
setl.

The space (7, k) defined from these choices then is the space of trigles, «),
wherep is a small point of/", e € E,,, anda € En(H, .)) = En(G,). But this is

exactly the space*(F) defined in Section 2. Further details are straightforward.

COROLLARY 5.6. For any Abelian sheafd in 7, and anyn > 0, (R"¢,) X
(p*A) = 0.

Proof. As before, it suffices to prove this fer injective. For an arbitrary sheaf
B on X, R'g.(B) is the associated sheaf of the preshgaf> H" (¢*(E), 7*(B))
(wheren: ¢*(E) — X is the sheaf projection); see [1], Proposition V.5.1 and [7],
Lemma 8.18. FoB = ¢*(I) where! is injective, the result thus follows from
Corollary 5.5. O

6. Etale Cohomology

By way of example, we will give an explicit description of the spaGein the case
where7 is the étale topos over a scheme. The main reference for this section is
Grothendieck’s Exposé VIl in [1]. For basic properties of strictly Henselian local
rings and strict Henselization, see [11].

Fix aground fieldk, and a schem& (overk). Let Y be the étale site ovef,
and letYg; be the associated étale topos. For a pging Y, k(y) denotes the
residue field of the local rin@y.,, andk(y) its separable closure. The Galois group
Gal(k(y)/k(y)) is denoted by, .

The functorA on Ye which associates to each obje€tZ — Y of the étale
site the ringl’(Z, f*(Oy)) is a sheaf, and defines a local ridgin the toposYst.
The functorA"s on Y which associates tg: Z — Y theringI'(Z, Oz) is again
a sheaf, and a strictly Henselian local ring¥ig [5]. The extensiomA — APsis
a universal strict Henselization 6fy in the toposYe. The sheafA™ will play the
role of the object.

The étale topos has enough points. We recall from [1], Exposé VIII, that each
pointy € Y defines first a geometric poift Speck(y)) — Y of the scheme’,
and then a point oj@gtopdéét, whose inverse image functor is the composition

T oy Ye — Speck(y))s — 4. and denoted” — Fy. By loc. cit., Corol-
laire VI11.3.6, the set of all these points is jointly conservative. So we can take this
set of pointsy € Y for the setP.

Consider again the extensioh — A" in the toposﬁ;. As explained in [1],
Exposé VIII.4, for anyy € Y the stalk mapAy — Ags is a (the) strict Henselization
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of Oy, = Ay, relative to the separable closuréy) — k(y). Thus we will write
Oy, for A, and we will identify Oy , with a subset of9}*,.

By the unlversal property of the strict Hensellzatlon [4], Section 18, [11] Sec-
tion VII1.2, the groupr, acts om?fy, say from the left. The local rin@y,, C (9 Yy
is fixed under this action.

Let I be a set whose cardinality is at least as big as that of all these strict
Henselizationg9}s,.

We can now describe the spake= X of Theorem 5.1 in this special case
whereT = Ye. Lety € Y, and consider all functions (‘enumerationg’)dom(a) —
(9“s defined on a subset dam) C 7; and with the property that—2(b) is infinite
for eachb € Ohsy Call two such enumerationg and 8 equivalent,a ~ g, if
dom(w) = dom(B), and if there is & e m, so thatg - (i) = (i) for each
i € dom(«). The points of the spac¥ are defined to be equivalence classes of
pairs(y, ), with (y, @) equivalent taz, g) iff y = z anda ~ 8.

In this particular case, the topology of the spatedefined in general in Sec-
tion 2, can be described more explicitly by using standard étale extensions. Fix for
this an affine ope = SpecR) of Y and (for some:) polynomialsps, ..., p, in
R[Ty, ..., T,] such that the determinant déy of the Jacobiary = (dp;/0T});«
is invertible inR[T4, ..., T,1/(p1, ..., p,). Moreover, we fix a finite sequence of
indicesi = (iq, ..., i,). Together these data define the open set

= {(y,a)|yeU,is,..., i, € dom),
andp;(a(iy), ..., a(i,) =0fork=1,...,n}.

Note that this makes sense, since eagchas coefficients iR, and R maps to the
localization R, = Oy, and then to®}®,. Thus p, can be evaluated at the tuple
(a(iq), ..., a(iy)). These open sets of the forvhgenerate the topology ax.

The constructlon of Section 2 gives for each étale slieaf Yy a sheafp*(E)
on this topological spac¥, with stalksg*(E), «) = Ey. Our theorem asserts that
there is a natural isomorphisnt'H, A) = H" (X, ¢*A), for any Abelian sheaf
onYg and anyn > 0.
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