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to its present-day, human-altered state. Given the scarcity of data on recent extinctions in the

CK:::e'::tsi; n palacobiology; extinctions; oceans, geohistorical records are critical for documenting human-driven extinctions and
extirpations; Quaternary; marine habitats extinction threats in the marine realm. The historical perspective can provide two key insights.

First, geohistorical records archive the state of pre-industrial oceans at local, regional and
Corresponding author: global scales, thus enabling the detection of recent extinctions and extirpations as well as shifts

Michat Kowalewski;

Email: mkowalewski@flmnh.ufl.edu in species distribution, abundance, body size and ecosystem function. Second, we can untangle

the contributions of natural and anthropogenic processes by documenting centennial-to-
millennial changes in the composition and diversity of marine ecosystems before and after the
onset of major human impacts. This long-term perspective identifies recently emerging
patterns and processes that are unprecedented, thus allowing us to better assess human threats
to marine biodiversity. Although global-scale extinctions are not well documented for brack-
ish and marine invertebrates, geohistorical studies point to numerous extirpations, declines in
ecosystem functions, increases in range fragmentation and dwindling abundance of previously
widespread species, indicating that marine ecosystems are accumulating a human-driven
extinction debt.

Impact statement

Whereas only a few marine species have gone globally extinct due to human activities, an
increasing number of ocean-dwelling lifeforms are on decline. However, most scientific surveys
and monitoring efforts only cover the last several decades and are thus insufficient to fully assess
long-term human impacts on the marine biosphere. The late Quaternary fossil record and other
geohistorical archives fill this gap by documenting marine biodiversity losses that have already
taken place, pinpointing ecological shifts that exceed natural variability and improving our
ability to identify species facing extinction threats. Whereas data and strategies focusing on
present-day biodiversity will remain the critical dimension of conservation and ecosystem
management, geohistorical approaches can augment those efforts by documenting biodiversity
losses and threats that would not and could not have been discovered otherwise and by providing
direct insights into the transition of the pre-human biosphere into its current state.
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Figure 1. Comparison of four major invertebrate phyla (arthropods, cnidarians, echinoderms and molluscs) across marine, brackish, freshwater, and terrestrial systems as recorded
in the IUCN Red List Database (IUCN, 2023a). (a) The total number of species reported in the database for each of the four systems (numbers indicate the total number of species).
(b) The Red List status of invertebrate species grouped into four broad categories (‘Extinct’, ‘Endangered’, ‘Lower Risk’, and ‘Unknown’) tallied separately for each system. The broad
categories were derived by pooling IUCN categories as follows: (1) “Unknown” — “Data Deficient”; (2) “Extinct” — “Extinct”, “Extinct in the Wild”; (3) “Endangered” — “Critically
Endangered”, “Endangered”, “Vulnerable”; and (4) “Lower Risk” — “Near Threatened”, “Lower Risk/near threatened”, “Lower Risk/conservation dependent”, “Lower Risk/least

concern”, “Least Concern”. See Supplementary Material for additional information.

recent eco-environmental changes in selected regions, even though
those changes may have been ongoing for much longer and affect-
ing other regions of the world.

Placing neontological observations in the context of the long-
term dynamics of ecosystems is a prerequisite for assessing human
impacts on our biosphere (Pandolfi et al., 2020). Conservation
palaeobiology is an emerging geohistorical approach developed
towards this goal (e.g., Flessa, 2002; Kowalewski, 2004; Froyd and
Willis, 2008; Dietl and Flessa, 2011, 2020; Tyler and Schneider,
2018; Kiessling et al., 2019; Turvey and Saupe, 2019; Dillon et al.,
2022; Nawrot et al., 2023). By using geohistorical archives (e.g.,
sediment cores, surficial skeletal assemblages, archaeological mid-
dens, geochemical proxies, ancient DNA) from the most recent
centuries and millennia, conservation palaeobiology aims to
document temporal trajectories in eco-environmental patterns,
assess the timing, magnitude and forcing of past ecosystem
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changes and elucidate processes associated with the transition of
the pre-human biosphere to its current state. In addition, conser-
vation palaeobiology provides a direct strategy for assessing
deeper historical roots that underlie current extinction threats
(e.g., habitat loss and fragmentation, range contractions, popula-
tion declines) and may ultimately result in future extinctions
(Saupe et al., 2019).

Over the last several decades, geohistorical approaches have
been applied to study human impacts on terrestrial (e.g., Gorham
et al., 2001; Behrensmeyer and Miller, 2012; Wood et al., 2012;
Lyons et al., 2016; Barnosky etal., 2017; Jackson et al., 2017; Koch
et al., 2017; Terry, 2018; Smith et al., 2022), freshwater (e.g.,
Brown et al, 2005; Smol, 2008; Erthal et al.,, 2011; Kusnerik
et al, 2022; Czaja et al,, 2023) and marine (e.g., Kowalewski
et al., 2000, 2015; Jackson et al., 2001; Kidwell, 2007; Aronson,
2009; TomaSovych and Kidwell, 2017; Hyman et al, 2019;
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Cybulski et al., 2020; Albano et al., 2021; Dillon et al., 2021; Hong
etal., 2021; Rivadeneira and Nielsen, 2022; Meadows et al., 2023;
Scarponi et al., 2023) ecosystems. The above citations are only a
fraction of novel studies aimed at establishing pre- Anthropocene
baselines or improving the management and restoration of nat-
ural habitats by employing geohistorical data. Here, we focus on
documenting how geohistorical approaches can improve our
understanding of extinctions and extinction threats in the marine
realm.

Most of the recent extinctions have been documented for ter-
restrial organisms, which are the main focus of extinction studies,
while relatively less is known about other taxa, especially marine
invertebrates (McKinney, 1998; Régnier et al., 2015; but see Cowie
et al, 2022). Nonetheless, despite a multitude of anthropogenic
impacts such as deoxygenation, heat stress, acidification, overfish-
ing and pollution that led to significant range contractions and
extirpations at regional scales (Scheffer et al., 2005; Jackson, 2008;
Pusceddu et al., 2014), only a few species of marine organisms have
been deemed extinct (del Monte-Luna et al., 2009; Dulvy et al.,
2009; Régnier et al., 2015; Briggs, 2017; Cowie et al., 2022; del
Monte-Luna et al., 2023). Nevertheless, many marine ecosystems
have been degraded, and many marine organisms face extinction
threats (e.g., Edgar et al., 2005; Lotze et al., 2011; McCauley et al,,
2015; Penn and Deutsch, 2022). Consequently, the relatively low
number of marine extinctions may reflect the dearth of conserva-
tion assessments for marine species, especially when compared to
the notably more extensively studied terrestrial organisms, espe-
cially vertebrates (Webb and Mindel, 2015; but see Cowie et al.,
2022).

A comparison of four widespread and diverse invertebrate phyla
(Arthropoda, Cnidaria, Echinodermata, and Mollusca) listed in the
International Union for Conservation of Nature’s (IUCN) Red List
database (IUCN, 2023a) is consistent with previous studies (e.g.,
Webb and Mindel, 2015) in demonstrating that terrestrial and
freshwater invertebrates (arthropods and molluscs) are represented
much more comprehensively than their marine and brackish coun-
terparts (Figure 1a). In fact, only one marine and no brackish
invertebrate species are reported as having gone extinct after
1,500 CE (the year IUCN uses as a cut-off for listing species as
extinct; Figure 1b). However, consistent with the recent literature,
the database identifies numerous marine invertebrates as endan-
gered, indicating that our neontological knowledge of marine
extinction threats is growing. Here, we will consider how geohis-
torical archives can augment our understanding of marine extinc-
tions and extinction threats.

One obvious caveat applies to the IUCN analysis above. The
IUCN sampling coverage varies greatly across systems, and thus,
the absence of extinctions in the systems with a more limited IUCN
assessment may reflect undersampling. In particular, the brackish
system (n = 95 species) is poorly sampled. When other systems are
sample standardised to the sample size of the smallest system
(n = 95 species), the probability of detecting at least one extinction
event is relatively high for freshwater systems (~1% of the assessed
species classified as extinct) and high for terrestrial systems (~2.5%
of the assessed species classified as extinct) but low for the marine
system (~0.1% assessed species classified as extinct). The probabil-
ities of detecting at least one extinction are 0.63, 0.91 and 0.11,
respectively (see Supplementary Material). A total of 95 species
should be enough to detect extinct species in brackish systems
(detection probability >0.99) only if extinction rates exceeded 5%.
This caveat itself involves a caveat, however. The above estimates

https://doi.org/10.1017/ext.2023.22 Published online by Cambridge University Press

rely on an assumption that assessed species are a random sample of
all species in a system.

Extinction terminology

To minimise terminological ambiguity, we provide explicit defin-
itions of extinction types. In its strictest formal definition, extinc-
tion is typically understood as a complete and irreversible
disappearance of a species on a global scale. However, geographic
range contractions, population declines or shifts in functional traits
can undermine ecosystem health and services as much as global
extinctions. Past mass extinctions may have been mass rarity
events, with rarity being practically equivalent to extinctions, in
terms of both ecological consequences as well as the resulting fossil
record of biodiversity (Hull et al., 2015). Building on terminology
reviewed in previous studies (Estes et al., 1989; Carlton et al., 1999;
McConkey and O’Farrill, 2015; McCauley et al., 2015), we distin-
guish here three main categories of extinctions.

Extinction — A total disappearance of a species. Also referred to
as “global extinction” (Estes et al., 1989).

Extirpation — A local or regional disappearance of a species still
occurring elsewhere (“local extinction” sensu Estes et al., 1989).
Extirpations can lead to the fragmentation of geographic ranges and
range contractions. However, not all extirpations lead to the decline
in geographic range extent. For example, human harvesting of large
limpets such as Scutellastra mexicana resulted in the demise of
many (but not all) local populations along Mexico’s coast (Carballo
et al., 2020). Consequently, the northern latitudinal range of this
species has not contracted notably despite those numerous extir-
pations. Similarly, the latitudinal range of the iconic marine mam-
mal (Dugong dugon) was not reduced by its human-driven
extirpation from the Spermonde Archipelago in central-western
Sulawesi (Moore et al., 2017).

Ecological Extinction — Ecological decline of a species that is still
present but very rare and no longer plays a significant ecological
function or interacts significantly with other species (McConkey
and O’Farrill, 2015). Ecological extinctions may lead to the extinc-
tions of other species in the community (Siterberg et al., 2013).
Ecological extinction is usually driven by “decimation”, a dramatic
decline in population density. Such decline can also lead to a drop
below an abundance level at which a species can be economically
harvested, referred to as “commercial extinction” (Carlton et al.,
1999; McCauley et al., 2015). A significant decline in abundance
tends to correlate with range contractions (Worm and Tittensor,
2011). Ecological extinction can also be driven by changes in
functional traits of a species. For example, the loss of larger size
classes and older age cohorts can diminish the role a species plays in
the ecosystem (e.g., Norkko et al., 2013; Hoéevar and Kuparinen,
2021). In many studies, the term “functional extinction” is equiva-
lent to “ecological extinction” (e.g., McConkey and O’Farrill, 2015;
Ebenman et al., 2017), but it has also been used to denote a
permanent lack of reproductive or recruitment success (see Jari¢
et al., 2016 and references therein).

Extinction Debt — This conceptual addendum to the extinction
terminology posits that biodiversity loss lags anthropogenic envir-
onmental pressures (e.g., habitat fragmentation; Tilman et al., 1994;
but see MacArthur, 1972). Human-driven ecosystem perturbations
can increase the probability of species extinction and induce
“extinction debts” when population sizes decline below their func-
tioning thresholds (Malanson, 2008). However, intrinsic species
traits (e.g., dispersal capacity, longevity, genetic plasticity), (meta)
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population dynamics (e.g., degree of connectivity) and species
interactions can delay species disappearance. Thus, ecosystems
tend to accumulate extinction debts during and after a perturbation
(Hanski and Ovaskainen, 2002). As species go extinct, the “debt” is
progressively paid off, and ecosystems shift towards a new equilib-
rium state. Although neontological data suggest that the time
needed to pay off the debt, known as “relaxation time”, can range
from only a few years to several centuries (Forman and Godron,
1986), the fossil record demonstrates that a lag between environ-
mental perturbations and resulting extinctions can reach even
2 million years (O’Dea et al., 2007; O'Dea and Jackson, 2009).
The magnitude of the debt in an ecosystem depends on the number
of affected species. Whereas both theoretical and empirical
approaches for detecting extinction debts have been developed
(Kuussaari et al., 2009; Figueiredo et al., 2019), quantifying extinc-
tion debts and relaxation times has proven challenging. The
extinction-debt investigations have focused on continental settings,
and only a few studies have dealt with marine ecosystems (see
Briggs, 2011). Yet, the concept of extinction debt is valuable in its
potential to identify extinction threats, forecast future extinctions
and assess the common drivers (the trifecta of habitat destruction,
climate change and invasive species).

The concept of extinction debt may be spatially and temporally
scalable (e.g., “mass extinction debt” concept in Spalding and
Hull, 2021), allowing to use geohistorical data for predicting
future extinction risks. Palacontological and other geohistorical
investigations can act synergistically with ecological monitoring
or theoretical models by providing historical estimates of the
onset of ecosystem decline and magnitude of extinction debt that
accumulated in the past. Documenting when the ecosystem
decline started and estimating the extent of losses that have
already occurred can help to evaluate relaxation times more
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precisely. Finally, documenting historical changes in ecosystems,
which often reflect responses to natural (non-anthropogenic)
processes, can also allow us to disentangle natural and anthropo-
genic drivers of extinctions.

Geohistorical perspectives on extinctions and extinction
threats

The value of geohistorical approach resides in its potential to detect
extinctions, extirpations and ecosystem changes not discoverable
by neontological data. For example, modern biomonitoring data
focused on a particular clade may indicate that one of the two
species disappeared (50% extinction), but the fossil record may
demonstrate that three additional species existed in pre-industrial
times. Thus, the within-clade extinction magnitude may be 80%
rather than 50% of the species (Figure 2a). Seabirds inhabiting
oceanic islands are a good example of underestimating human-
driven extinctions, with more than 20 species lost worldwide during
the Holocene (Tyrberg, 2009; Ramirez et al., 2010). For instance,
out of four shearwater species (genus Puffinus) breeding on the
Canary Islands, two went extinct during the Holocene (Ramirez
et al., 2010; Rando and Alcover, 2010). However, these extinctions
are not included in the TIUCN Red List database, which uses 1500 CE
as the cut-off year, even though those extinctions were linked to
aboriginal colonisation of the archipelago and the introduction of
exotic species following European settlement in the fourteenth
century (Rando and Alcover, 2008, 2010). More generally, birds
inhabiting islands, including both marine and land species, repre-
sent a remarkable example of how geohistorical data can transform
our understanding of the timing and magnitude of human-driven
extinctions. Based on zooarchaeological data, it has been estimated
that as many as 2,000 bird species from Pacific tropical islands may
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Figure 2. Conceptualillustration of how geohistorical data augment our understanding of global extinctions, extirpations, and ecological extinctions. In all examples, geohistorical
knowledge indicates significant losses that would not be discoverable using modern scientific data alone. (a) Extinctions - an example of a clade for which the extinction rate is much
higher once geohistorical data are considered (see text for a case example of the seabirds Puffinus). White bars indicate estimated stratigraphic ranges based on fossil occurrences
(black circles), crosses indicate terminal extinction events; (b) Extirpations - an example of range contraction that becomes apparent only after geohistorical data are included (see
text for case examples of seals and marine molluscs); (c) Ecological extinctions - examples of decimations (declines in population density) and functional shifts (e.g., shortened life
spans, diminished body size) that become apparent once the fossil record is considered (see text for a case example of Crassostrea virginica in Chesapeake Bay, USA).
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have been driven to extinction by prehistoric human activities
(Steadman, 1995, 2006).

Similarly, archaeological and palaeontological data have proven
useful in documenting past extirpation events and historical shifts
in geographic ranges of marine taxa, providing evidence for the
presence of aquatic species in regions from which they disappeared
long before we started to collect modern scientific data (Figure 2b).
For example, palaeobiological records from the Baltic Sea docu-
mented biogeographic shifts in several species of marine mammals
during the Holocene (Sommer and Benecke, 2003). One of these
species, the harp seal (Pagophilus groenlandicus), has been extir-
pated twice from the area (at the end of the Middle Holocene and
then again during the Medieval Warm Period), and, in both cases,
human activities and climate changes may have been contributing
factors (Glykou et al, 2021). These inferences were based on
integrated analyses of zooarchaeological, palaeoecological, radio-
metric and geochemical data (Glykou et al., 2021). Similarly,
radiocarbon-dated bones suggest that gentoo and chinstrap pen-
guins expanded their breeding distribution southwards in the
Antarctic peninsula within the past several decades (Emslie et al.,
1998). In contrast, the Adélie penguin has occupied the area for
centuries, including many currently abandoned colonies. Still, the
presence of this species may have been intermittent, possibly due to
climatic fluctuations related to the Little Ice Age (Emslie et al.,
1998). The extirpation of Adélie penguin colonies and the expan-
sion of gentoo and chinstrap penguins may have been related to
rapid regional warming (Emslie et al., 1998), likely linked to global
climate changes. These types of historical records are even more
readily available for marine invertebrates. For example, the analysis
of mollusc shell assemblages from radiometrically dated sediment
cores revealed that the commercially important oyster Ostrea edu-
lis, which was once dominant along Scottish coasts, disappeared
from the Firth of Forth in the nineteenth century due to bottom
trawling (Thurstan et al., 2013). Those examples document extir-
pations that were likely linked to human activities, but many would
have remained undetected without geohistorical data.

The historical perspective is particularly valuable in the case of
ecological extinctions and resulting shifts in ecosystem functioning,
which may be both pervasive and underreported in the marine
realm (McCauley et al., 2015). In such cases, geohistorical data can
correct modern perceptions of changes in the distribution and
functional role of species (Figure 2c) and facilitate identifying
extinction threats. For example, palaeoecological, historical and
modern survey data demonstrated that the decline of Caribbean
acroporid corals began in the 1950s, two decades before the onset of
systematic monitoring efforts in the region (Cramer et al,, 2020).
Extensive U-Th dating indicated that acroporid corals from the
Great Barrier Reef also had started declining before monitoring
efforts were initiated (Clark et al., 2017). These efforts allowed for
establishing more reliable baselines for future monitoring (Clark
et al, 2017). Similarly, comparisons of modern and Pleistocene
populations of the oyster Crassostrea virginica in Chesapeake Bay
sampled from comparable environments revealed that this species
could live much longer, grow to significantly larger sizes and
achieve higher population densities than previously recognised
based on monitoring surveys (Kusnerik et al., 2018; Lockwood
and Mann, 2019). Without considering the Pleistocene fossil rec-
ord, the magnitude of recent changes in lifespan and population
structure of this species, attributed to the preferential harvest of
larger oysters and disease-related die-offs (Andrews, 1996; Lock-
wood and Mann, 2019), would have been underestimated. These
changes in the functional ecology of oyster reefs affected their
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filtering capacity, estimated to be an order of magnitude greater
in the past (Lockwood and Mann, 2019), and thus had a major
impact on ecosystem services.

As discussed further below, archaeological data, palaconto-
logical records and historical documents provide numerous
examples of human-driven declines in species abundance or shifts
in species functional traits. In many cases, decimations and func-
tional losses took place or were initiated long before we started
collecting rigorous scientific data (e.g., Jackson et al., 2001; Lotze
et al., 2006; Dulvy et al., 2009).

Fidelity of geohistorical archives

The use of geohistorical archives to assess extinctions and extinc-
tion threats relies on the assumption that the subset of biota
preserved in palaeontological, archaeological and other geohisto-
rical records is an adequate and representative surrogate for all taxa.
Numerous case studies and meta-analyses suggest that geohistori-
cal archives provide meaningful estimates of key ecosystem prop-
erties, including diversity, community composition, relative
abundances, food web structure or even spatial ecological gradients
(e.g., Kidwell, 2001, 2007; Kidwell and Holland, 2002; Tomasovych
and Kidwell, 2009; Tyler and Kowalewski, 2017, 2023; Roopnarine
and Dineen, 2018; Hyman et al., 2019; Pruden et al., 2021). In this
context, it is useful to ask how accurately fossil archives would
depict the conservation status of species included in the [IUCN Red
List database.

For the four major invertebrate taxa considered here (Figure 1),
each species can be scored in terms of its fossilisation potential
based on the presence and attributes of a preservable skeleton.
Here, we classified all species (Supplementary Appendix 4) into
three preservational categories: 0 — none or low (organisms with
no biomineralised skeleton or with microscopic skeletal parts
only), 1 — intermediate (organisms with weakly biomineralised
skeletons or with multi-elemental skeleton prone to disarticula-
tion), 2 — high (organisms with heavily biomineralised skeletons).
The preservational potential categories were assigned at the
“order” level, based on dominant skeletal type within a given
group. Category 2 was used as “preservable taxa” in the analysis
presented on Figure 3 (see Supplementary Material for additional
details). These data can be used to evaluate if the current Red List
assessment of all taxa is tracked adequately by the subset of taxa
that could be recovered from the fossil record. We compared the
distribution of species across the IUCN categories in the subset of
taxa with a high fossilisation potential to the distribution based on
the entire dataset (Figure 3). The analyses excluded brackish
species because nearly all of them belong to the preservable
category, and thus, the data subset is nearly identical to the entire
dataset. For marine invertebrate species listed in the Red List, most
species have a high potential of preservation (Figure 3a), which is
not surprising given that most mollusc species and some arthro-
pod and cnidarian groups have sturdy biomineralised skeletons
and high fossilisation potential. Even for freshwater and terrestrial
species, a substantial subset of taxa should be frequently preserved
as fossils. Consequently, the preservable species are a robust
predictor of all species when it comes to their conservation status,
including marine (Figure 3b vs. 3e), freshwater (Figure 3c vs. 3f)
and terrestrial (Figure 3d vs. 3g) systems. Note that the observed
high fidelity is statistically inevitable: data subsets are expected to
correlate with entire datasets unless a given subset is a very small
portion of all data or represents a highly biased sample of that
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Database were accessed on 2/20/2023 (IUCN, 2023a).

dataset. However, this is the gist of the argument: in most cases, a
preservable subset of taxa is fractionally large enough and
unbiased enough to be expected to represent a reasonable proxy
of the whole.

Whereas taxonomic fidelity of fossil archives is likely to be high,
geohistorical samples tend to be affected by temporal mixing (time
averaging; reviewed by Kidwell, 2013; Kidwell and Tomasovych,
2013; Tomasovych et al., 2023). As the rates with which skeletal
remains are permanently buried is slow relative to the generation
times of most organisms, remains of individuals that died at dif-
ferent times tend to accumulate on and within the seabed and can
be mixed with older hardparts exhumed from deeper sediment
layers by bioturbation or physical reworking. Due to time aver-
aging, even the most finely resolved fossil samples may contain
specimens that lived decades, centuries or even millennia apart, and
the scale and structure of temporal mixing may vary across sedi-
ment layers, core segments or taxa (e.g., Kowalewski et al., 1998,
2018; Kosnik et al., 2009, 2015; Scarponi et al., 2013; Terry and
Novak, 2015; Nawrot et al., 2022). In addition to reducing temporal
resolution, time averaging can produce spurious patterns in the
fossil record by increasing sample-level diversity, decreasing com-
positional turnover between fossil assemblages and obscuring
abrupt regime shifts (Kidwell and Tomasovych, 2013; Tomasovych
et al,, 2020). Consequently, reconstructing historical patterns and
processes can be challenging and often needs to be augmented by
age dating of individual fossils so the data can be properly
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interpreted (Tomasovych et al., 2023). This will be further illus-
trated by multiple case studies discussed below.

Another challenge involves estimating population density and
biomass from fossil archives. The abundance of fossils is controlled
not only by productivity but also by net accumulation rates, inten-
sity of mixing processes and the resulting time averaging (Kidwell,
1986). And whereas numerical estimates of population density are
possible in certain cases (e.g., Kowalewski et al., 2000; Tomasovych
etal,, 2019a), they usually require extensive age dating of individual
specimens to “unmix” time-averaged assemblages, or samples from
depositional settings characterised by exceptional temporal reso-
lution (e.g., deep sea basins with high sedimentation rates). Simi-
larly, translating skeletal estimates of body size into biomass can
also be challenging because it is often difficult to establish a robust
correlation between body size estimated from skeletal remains and
the biomass of soft tissue (Powell and Stanton, 1985). Although
such models have been developed for some groups, such as mol-
luscs (e.g., Meadows, 2019) or fish (e.g., Granadeiro and Silva,
2000), they are frequently species-specific. Nevertheless, as illus-
trated in numerous examples below, these limitations can often be
minimised, and robust numerical estimates can be derived from
palaeontological and archaeological archives.

Finally, palaeontological archives available for sampling tend to
be spatially and temporally discontinuous. However, the spatio-
temporal coverage of those archives is still orders of magnitude
better than the coverage provided by those few ecological
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monitoring time series that extend back in time for more than just
the last few decades. For example, few rigorous quantitative surveys
of marine habitats have been conducted in the nineteenth and early
twentieth centuries, resulting in a very spotty spatial knowledge of
those relatively recent ecosystems. We cannot retrospectively sur-
vey the mostly unstudied nineteenth-century ecosystems, but
palaeontological and archaeological archives are still accessible to
sampling for many of those ecosystems and can serve as surrogate
proxies for monitoring data for many regions and time intervals.

Extinctions
Neontological knowledge of marine extinctions

The International Union for Conservation of Nature (IUCN) is a
reference standard, with assessments completed for 150,300 species
(IUCN, 2023b). In the IUCN Red List, less than 1% of surveyed
species are considered extinct in the wild (1,245 of over 150,388
examined; IUCN, 2023c, accessed April 26, 2023). If we consider
“possibly extinct” taxa in the Red List, the magnitude does not
change substantially (<2%, IUCN, 2023c). As mentioned above (see
also Figure 1), most of the extinct species represent terrestrial or
freshwater taxa. For the marine and brackish realms, Red List
reports only 20 extinct species (Table 1), including 15 vertebrates
(9 birds, 4 mammals and 2 fish species), 1 species of algae and, at
most (see Cowie et al., 2022), 4 invertebrates (all 4 representing
intertidal or brackish gastropods). Of these 20 extinct species, the
larger vertebrates — for example, the iconic Steller’s Sea Cow
(Hydrodamalis gigas) — were rapidly driven to extinction due to

overhunting during the colonial period (Estes et al., 2016). In
contrast, the only plant classified as extinct (the alga Vanvoorstia
bennettiana) went extinct due to land use and pollution (Woinarski
et al.,, 2019).

Notably, the extinctions reported so far are restricted to species
that lived in coastal or brackish settings, which is not surprising
given that coastal zones are the most severely impacted part of the
marine realm (Halpern et al., 2008), are more easily accessible for
inventory studies than offshore settings and have higher sampling
coverage than continental margins or bathyal settings (O’Hara
et al., 2020). But even in the case of coastal habitats, the human-
driven extinctions primarily affected terrestrial dwellers of the
coasts and islands, especially along the modern-time colonisation
routes. For example, the ground doves from the Mascarene archi-
pelago (the Dodo and its sister taxon, the Solitaire) were wiped out
by European colonisers during the early modern time (e.g., Cheke,
2008; Cheke and Hume, 2008), but there are no records of any
marine extinctions from the same region. This information is
consistent with the notion that marine extinctions substantially
lag terrestrial extinctions (Dulvy et al., 2009; McCauley et al., 2015).
Alternatively, however, the lag may reflect the dearth of conserva-
tion assessments in the marine realm (Webb and Mindel, 2015).
That is, we may have been much better at documenting the demise
of ground doves and butterflies than sponges and snails.

Although the recent fossil record provides data on marine
species that went extinct in the late Quaternary (e.g., the flightless
marine duck Chendytes lawi from California; Jones et al., 2021 or
shearwater species from the Canary Islands mention above), and
thus co-existed with early human populations, the actual causes of

Table 1. The list of marine species currently classified as ‘extinct’ according to the IUCN Red List (IUCN, 2023b)

Species Class

Common name

Vanvoorstia bennettiana

Floridoephyceae

Seaweed

Neomonachus tropicalis Mammalia Caribbean Monk Seal
Zalophus japonicus Mammalia Japanese Sea Lion
Hydrodamalis gigas Mammalia Steller’s Sea Cow
Neovison macrodon Mammalia Sea Mink
Camptorhynchus labradorius Aves Labrador Duck
Prosobonia cancellata Aves Christmas Sandpiper
Bulweria bifax Aves Small Saint

Urile perspicillatus Aves Spectacled Cormorant
Zapornia monasa Aves Kosrae Crake
Pterodroma rupinarum Aves Large Saint Helena Petrel
Haematopus meadewaldoi Aves Canarian Oystercatcher
Pinguinus impennis Aves Great Auk

Mergus australis Aves Merganser

Prototroctes oxyrhynchus

Actinopterygii

New Zealand Grayling

Psephurus gladius Actinopterygii Chinese Paddlefish
Collisella edmitchelli® Gastropoda Limpet

Lottia alveus Gastropoda Eelgrass Limpet
Omphalotropis plicosa Gastropoda —

Littoraria flammea Gastropoda Periwinkle

2Lottia edmitchelli is currently recognised as the valid name for this limpet species.
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the disappearance of those species may be difficult to discern,
making the role of humans uncertain. These interpretative chal-
lenges potentially affect multiple species of marine invertebrates
that went extinct in the late Quaternary, including, for example, the
clam Coanicardita californica, the whelk Pusio fortis or the limpet
Lottia edmitchelli (Harnik et al., 2012; Cowie et al., 2022). In fact,
Cowie et al. (2022) argued that there is only one well-documented
case of human-driven extinction in marine invertebrates (Lottia
alveus).

Empty shells: A hidden record of Holocene extinctions?

Empty shells of molluscs have been an important source of bio-
diversity data, as they are routinely included in taxonomic studies
and diversity surveys at local and regional scales (e.g., Mikkelsen
and Bieler, 2000; Bouchet et al., 2002; Warwick and Light, 2002;
Bieler and Mikkelsen, 2004; Zuschin and Oliver, 2005). According
to Mikkelsen (2011), the majority of new modern bivalve species
named between 2000 and 2009 were described from empty shells.
Moreover, a survey of shelled marine gastropod species reported in
2006 revealed that 80% of species descriptions were restricted to
shell morphology (Bouchet and Strong, 2010). Even when a region
is studied over a longer time period, the significance of empty shells
for estimating diversity remains impressively high. After 25 years of
intensive exploration in New Caledonia, as many as 73% of 1,409
turrid gastropod species were only documented by empty shells,
and 34% were known from a single specimen (Bouchet et al., 2009).

Are all those species known only from empty shells still around?
Or are all those species extinct or extirpated, and, if so, what were
the causes of their demise and when exactly did they disappear?
These alternative explanations are difficult to resolve because many
of these species are extremely rare. Nevertheless, the possibility that
at least some of the species known only from empty shells are now
extinct, or at least locally extirpated, cannot be ruled out (see also
Diamond, 1987), especially given that even well-preserved shells
accumulating on the seafloor can be hundreds to thousands of years
old (e.g., Flessa and Kowalewski, 1994; Kidwell, 1998; Dexter et al.,
2014; Butler et al., 2020; Ritter et al., 2023; Tomasovych et al., 2023).
To our knowledge, the data on the “empty shell species” are not
being systematically collected, and specimens representing those
species have not been subject to radiocarbon dating, which could
potentially provide useful chronological constraints for those taxa.
Currently, it remains unclear whether the prevalence of “empty
shell species” in mollusc biodiversity studies reflects a long tail of
rare species or represents the yet unacknowledged record of hidden
extinctions and extirpations.

Whereas new species descriptions and occurrence records based
on “empty shells” are pervasive among molluscs, they are unlikely
to occur among many other common groups with biomineralised
skeletons. Many of those taxa, such as stony corals and echinoids,
are much less diverse than molluscs, so it is less likely that echinoid
tests or coral fragments encountered on modern seafloor may
represent unknown species. Also, unlike molluscs, for which many
species have been defined based on shell characters only, many
other marine taxa require soft tissue analysis for species-level
identification. This requirement makes it less likely that a new
species could be erected based solely on skeletal remains or that
they would be used in monitoring surveys to establish the presence
of a species. In the case of corals, the further limitation stems from
the fact that the diagnostic features of corallites degrade rapidly
after death (Greenstein and Pandolfi, 1997).
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However, molluscs may not be the only group affected by the
“empty shells” syndrome. Some subsets of benthic foraminifera and
brachiopod species were also identified from dead material only
(Logan et al., 2008; Milker and Schmiedl, 2012). Murray (2007)
estimated that dead-only species of benthic foraminifers may have
represented ~5% out of the ~2,140 documented species. Moreover,
even when the type material of many species is based on live-
collected individuals, the present-day species-level distribution
maps and estimates of geographic or bathymetric range sizes are
frequently based on the combination of live-collected individuals
and dead-collected skeletal remains, including surveys of molluscs
(e.g., Dijkstra and Maestrati, 2010), brachiopods (e.g., Bitner and
Logan, 2016) and bryozoans (e.g., Di Martino and Rosso, 2021).
The use of dead individuals in recent surveys may overestimate the
present-day geographic or bathymetric ranges of marine species
and thus underestimate the frequency of extirpations or ecological
extinctions.

Deep-time approaches

Although this review deals with near-time approaches that focus on
the late Quaternary transition of the marine biosphere from pre-
human to human times, the deep-time fossil record can also be
useful in assessing or predicting modern extinctions and extinction
threats. In the geological past, short periods of rapid global warming
and acidification (10° year) are increasingly employed as ancient
analogs of near-future outcomes (e.g., Kiessling et al., 2023). The
biological record of these deep-time events can inform us about the
most widespread processes that may be driving extinctions during
hyperthermal events (e.g., Benton, 2018; Foster et al., 2018). For
example, assessing simulated impacts of global warming on marine
invertebrates against empirical patterns recovered from the fossil
record of several deep-time hyperthermal events suggests that
ongoing warming has the potential to annihilate endemic taxa in
cold-water habitats within a single century (Reddin et al., 2022).

Other deep-time approaches have focused on assessing extinc-
tion rates and extinction selectivity. In particular, the background
extinction rates estimated from the fossil record have been used as a
benchmark for assessing if recent species are disappearing at an
abnormally high pace (e.g., Pimm et al., 1995; Barnosky et al., 2011;
Harnik et al., 2012; Lamkin and Miller, 2016; Cowie et al., 2002). In
addition, the spatial and taxonomic selectivities of past extinctions
have been used as predictors of extinction vulnerability for present-
day species and habitats (e.g., Harnik, 2011; Harnik et al., 2012;
Finnegan et al., 2015; Collins et al., 2018). Finally, the deep fossil
record has been used to test the predictive power of species-area
relationships (SAR) models for estimating extinction rates due to
habitat loss (see Preston, 1962; Rybicki and Hanski, 2013). For
example, in the Pliocene succession of San Joaquin (California),
SAR model predictions for biodiversity shifts, expected due to sea-
level changes, underestimated the species loss observed in the fossil
record (Pruden and Leighton, 2018).

Extirpations

A complete extirpation of a species from a given region is difficult to
prove because once the species is rare, it would hardly be recorded
anymore. A recent reassessment of the IUCN Red List indicated
that overfishing drove over one-third of all sharks and rays towards
global extinction (Dulvy et al., 2021), but while such commercial
extinctions are well documented, the complete disappearance from
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a given region is rarely certain. For example, following the collapse
of the once economically important angel shark Squatina squatina
in the northern Adriatic Sea, the species was never caught in
scientific surveys. However, fishermen reported that the species
was still observed but rarely (Fortibuoni et al., 2016). Although
geohistorical data cannot assist with those challenges, they can be
invaluable by identifying extirpation events that occurred before
systematic bio-inventorying efforts started.

Unknown or poorly known extirpation events can be detected
using data derived from archaeological middens, the late Quater-
nary fossil record or ancient DNA. These methods can be particu-
larly effective when used jointly. For example, archaeological and
ancient DNA data demonstrated that both right and grey whales
occurred in the Strait of Gibraltar region during the Roman period
and that grey whales still occurred along the Asturian coast during
pre-Roman times (Rodrigues et al., 2018). These data document
extirpation events that would remain unknown if our knowledge
were to be derived from neontological data alone.

Geohistorical data can also aid in assessing the potential role of
humans in driving extirpation events. For example, combined use
of ancient DNA and radiocarbon dating revealed that the genetic
diversity of Atlantic grey whale, restricted today to the North
Pacific, declined gradually in the mid-Holocene long before the
onset of intensive commercial whaling, indicating that this extir-
pation event was likely precipitated by Holocene climate changes or
other ecological causes (Alter et al., 2015). This is in contrast to the
case of right whales, which were the main whaling target in the
North Atlantic until becoming commercially extinct in the mid-
eighteenth century (Rodrigues et al., 2018).

The disappearance of less charismatic animals widely preserved
in the fossil and archaeological record can be readily documented
by geohistorical data (e.g., benthic mollusc shells, fish otoliths and
bones). For example, data derived from historical records, archaeo-
logical middens, death assemblages (i.e., surface accumulations of
skeletal remains) and radiometrically dated sediment cores dem-
onstrate that oyster reefs underwent extirpation in the late nine-
teenth and twentieth centuries in many temperate regions,
including the coast of Victoria, Australia (Ford and Hamer,
2016), Tasmania (Edgar and Samson, 2004), eastern Scotland
(Thurstan et al, 2013) and the northeastern Adriatic Sea
(Gallmetzer et al., 2019). Similarly, an analysis of death assemblages
revealed that epifaunal suspension feeders (scallops, brachiopods)
were abundant on the southern California mainland shelf during
the late Holocene (with standing density of at least 20 individuals/
m?) but were subsequently extirpated (except for shelf-edge relic
populations), most likely, due to the nineteenth-century increase in
sedimentation and turbidity induced by agricultural land use
(Tomasovych and Kidwell, 2017).

Geobhistorical insights not only can help us to detect extirpation
events but can also be used to reconstruct shifts in functional traits
and life history characteristics of species with rapidly declining
populations, thus providing baseline data needed to improve the
management of such species during restoration efforts. For
example, sclerochronological analyses of prehistoric otoliths
revealed major changes in growth rate and maturation time of an
endangered marine fish Totoaba macdonaldi, endemic to the Gulf
of California, caused by upstream diversions of the Colorado River
flow (Rowell et al., 2008), illustrating the value of such historical
approaches for revising our understanding of the ecology of endan-
gered species now only represented by remnant populations.

On occasions, especially when aided by geochronological age
dating, geohistorical data can refute human-induced stressors as a
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cause of extirpation. For example, age dating of valves of the
semelid deposit-feeder bivalve Ervilia purpurea in the Persian Gulf
implied a boom-and-bust population dynamics, suggesting that its
current absence in the living assemblage of the region is unlikely to
be linked to the onset of oil platform production in the twentieth
century (Albano et al., 2016).

In summary, a growing body of literature demonstrates that
conservation palaeobiology approaches not only allow us to detect
unknown extirpation events and provide information for species
and ecosystem management but also make it possible to assess the
role that human activities may have played in driving those events.

Ecological extinctions
Decimations

In contrast to extinctions or extirpations that are difficult to detect
conclusively, geohistorical archives provide direct records of local
or regional population size trajectories of formerly abundant spe-
cies that became decimated. And given that the late Quaternary
fossil record of marine environments is globally widespread and
well-resolved stratigraphically, it can provide an impressive spatio-
temporal coverage of formerly abundant organisms that started to
decline decades, centuries or even millennia before rigorous bio-
inventorying efforts ensued.

For example, sedimentary cores collected across multiple
regions of the northern Adriatic Sea documented that over the past
two centuries, multiple, formerly abundant suspension-feeding or
herbivorous molluscs declined in abundance due to trawling, pol-
lution and eutrophication (Gallmetzer et al., 2019; TomasSovych
etal., 2019a, 2020). In fact, a regional shell bed, formed by shells of
mollusc species that were decimated during the nineteenth and
early twentieth century, is still present just below the seafloor across
large portions of the NE Adriatic shelf (Gallmetzer et al., 2019;
Tomasovych et al., 2019a). This is a forceful testament to a highly
diverse regional benthic ecosystem that perished before we started
assembling a rigorous scientific knowledge of the region’s seafloor.
These major regional changes to benthic ecosystems could not have
been detected based on biomonitoring surveys, which only started
in the twentieth century.

In many cases, geohistorical studies not only document species
declines that predate modern biomonitoring efforts but can provide
estimates of the natural range of variability, which can then be used
to gauge the significance of human-induced decimations. For
example, the decline in the diversity and percent cover of reef corals
induced by pollution, heat stress, overfishing and acidification are
well documented (Jackson et al., 2001; Pandolfi et al., 2003; Aron-
son and Precht, 2006; Precht et al., 2020). But how do they compare
to natural variability in coral cover? After all, Holocene-scale
studies document significant declines in abundance and carbonate
production of corals over the past millennia that were unrelated to
anthropogenic impacts and driven by climatic and sea-level fluc-
tuations (Perry and Smithers, 2010; Toth et al.,, 2012, 2018; Yan
etal,, 2019; Leonard et al., 2020). These natural changes can serve as
a benchmark to demonstrate that the magnitude and extent of
losses of coral habitats and their diversity driven by human activ-
ities do typically exceed the natural range of variability (Pandolfi
and Jackson, 2006; Cybulski et al., 2020; O’Dea et al., 2020; see also
Cramer et al., 2017, Muraoka et al., 2022). Similarly, sedimentary
cores from the coastal Adriatic habitats indicated that shifts in
mollusc communities during the ice ages over the last
125,000 years were much less dramatic than changes in relative
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species abundance that took place in the last centuries (Kowalewski
et al., 2015). These data also demonstrated that those mollusc
communities were spectacularly resilient to major climate and
sea-level changes in the late Quaternary (Kowalewski et al. 2015;
Scarponi et al., 2022) but not to late Holocene human impacts
(Scarponi etal., 2023). These examples highlight the unique value of
geohistorical estimates in assessing if a given human-induced eco-
system shift is a truly significant event or falls within the natural
range of long-term ecosystem variability.

Even for species with low preservation potential, long-term
population dynamics can often be inferred from indirect proxies,
especially if such species modify their environment in a way that
leaves strong signatures in the sedimentary record. For example,
geochemical biomarkers such as sterols and stable nitrogen isotopes
(8"°N) derived from bird guano and preserved in coastal pond
sediments can be used to track shifts in colony size of nesting
seabirds and seaducks (e.g., Hargan et al, 2019; Duda et al,
2020). By applying this approach to dated lake sediment cores,
Duda et al. (2020) demonstrated that the world’s largest colony of a
threatened Leach’s Storm-petrel (Hydrobates leucorhous; Baccalieu
Island, Canada) was smaller than today and fluctuated in size for
most of its 1,700-year history, putting recent declines observed
since the 1980s in a broader historical context. Lake sediment
records of nitrogen isotopes and other geochemical proxies have
also been used to reconstruct centennial-scale changes in popula-
tion size of anadromous fish such as sockeye salmon (Oncor-
hynchus nerka) and link those changes to climate and fishing
pressures (Finney et al., 2000).

Relative estimates of decimations

It is instructive to examine specific strategies used to quantify
decimations and identify ecological extinctions. In general, geohis-
torical studies compare living communities with either surficial
death assemblages or Holocene records from cores and outcrops
(e.g., Kidwell, 2007; Kowalewski et al., 2015; Albano et al., 2016;
Hyman et al,, 2019; Sander et al.,, 2021). These efforts are often
supplemented with radiometric dating, stable isotope analyses or
ancient DNA sampling (e.g., Kowalewski et al., 2000; Sivan et al.,
2006; Tomasovych et al,, 2019a; Dillon et al., 2021). In addition,
some studies also combine fossil and archaeological records to
detect formerly abundant or habitat-forming species known to be
rare or absent today (Rick et al., 2016; Farifias-Franco et al., 2018).

When using geohistorical records, decimations can be inferred
indirectly by measuring the decline in the relative abundance of a
species in a series of palaeontological samples (Figure 2c). This
approach is straightforward to implement in practice and can show
that a given taxon declined in ecological importance relative to
other taxa but does not provide numerical estimates of pre-impact
population size or average density — information that may be crucial
for guiding restoration efforts.

Despite those limitations, changes in relative abundance among
preservable marine taxa not only provide records of ecological
extinctions predating modern bio-inventorying but can also poten-
tially reveal selective decimations that preferentially affected certain
functional groups and shifted communities into new functional
states (Kidwell, 2008; Steger et al., 2021). For example, the youngest
stratigraphic record indicates that, during the last two centuries, the
species sensitive to pollution or hypoxia (including foraminifera,
ostracods, molluscs and corals) declined in abundance and geo-
graphic extent, while those that were tolerant to various stresses
concurrently increased in dominance (Gooday et al., 2009). These
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patterns were observed in many regions of the world, primarily
based on data from sediment cores collected in river-dominated
coastal environments. The non-exhaustive examples include
hypoxia-related changes in (1) benthic foraminifera from the Lou-
isiana shelf (Blackwelder et al., 1996; Osterman et al., 2005; Platon
et al., 2005), the North Sea (Polovodova et al., 2011; Dolven et al.,
2013; Nordberg et al.,, 2017), the Tagus Delta (Bartels-Jonsdottir,
2006) and the Gulf of St. Lawrence (Thibodeau et al., 2006; Geno-
vesi et al., 2011); (2) ostracods from the Chesapeake Bay (Cronin
and Vann, 2003); (3) molluscs from the Gulf of Trieste
(Tomasovych et al., 2020); and (4) corals from China’s Greater
Bay Area (Cybulski et al., 2020). Whereas many of these habitats
were also exposed to eutrophication or oxygen depletion due to
natural climatic variability over the past millennia, the magnitude
of the resulting ecosystem changes was typically much less pro-
nounced when compared to changes induced by recent anthropo-
genic impacts (Cooper and Brush, 1993; Osterman et al., 2009; Li
etal, 2011).

Numerical estimates of decimations

In contrast to relative assessment, numerical estimates of decima-
tion provide direct estimates of the decline in abundance, often
estimated comparatively as changes in the population density
(number of specimens per unit of area) or other units that can be
simultaneously measured for modern and fossil taxa. Such numer-
ical estimates are much more informative than relative assessments
but are much more challenging to derive and require multiple
assumptions that can be partly constrained by age dating and by
other methods (species lifespan estimates, rates of disintegration of
skeletal remains in the surface layer, and net sediment accumula-
tion rate; TomaSovych et al, 2023). Nevertheless, multiple
examples of numerical assessments have been published over the
last two decades, demonstrating that these strategies are feasible
and can provide quantitative estimates of changes in marine popu-
lations. These strategies tend to be idiosyncratic, being tailored to
unique aspects of each case study. And even though those estimates
tend to be approximate, they allow us to detect major ecosystem
changes. Moreover, in cases of major shifts in species abundance,
often by multiple orders of magnitude, the somewhat elevated
imprecision of numerical estimates derived from geohistorical
archives is typically inconsequential. It is also noteworthy that
numerical estimates are typically derived in a maximally conserva-
tive manner (e.g., Kowalewski et al., 2000).

One of the earliest direct estimates was derived for benthic
ecosystems of the Colorado River delta, which was drastically
altered due to the construction of numerous dams in the upstream
parts of the river (Fradkin, 1996). A combination of field surveys,
field sampling, numerical dating and oxygen isotope analyses of
shell material provided a strategy for estimating the past population
density of benthic molluscs (Kowalewski et al., 2000). Using the
maximally conservative estimates that yielded minimised estimates
of past population density, geohistorical data suggested that during
the last millennium, the intertidal population density averaged at
least 50 adult molluscs m™2. In contrast, the surveys of the modern
intertidal zone yielded an estimate of 3 molluscs m 2, suggesting an
almost 20-fold decline in mollusc abundance. These data also
indicated that restoration efforts did not bring the local benthic
productivity back to its pre-industrial levels. Subsequent conserva-
tion palaeobiology studies in the delta area also demonstrated that
geohistorical approaches can be used to estimate how the shutdown
of the river affected water flow (Dettman et al., 2004), life history of
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aquatic organisms (Rowell et al, 2008), predation processes
(Cintra-Buenrostro et al., 2005) and net carbon emission (Smith
et al., 2016).

Similarly, Lockwood and Mann (2019) compared the density
of living oyster populations from the Chesapeake Bay to fossil
populations of the Pleistocene age. However, due to time aver-
aging, live and fossil populations were not directly comparable
because Pleistocene shells of oysters occurring together in situ
likely record a mix of multiple generations, thus providing mis-
leadingly high estimates of standing population density. Because
dating methods available for Pleistocene deposits do not offer a
sufficient resolution to correct for time averaging, dead-live ratios
in modern oyster reefs were used to derive adjusted (and highly
conservative) estimates of Pleistocene population densities. The
resulting density estimates for live oysters in the Pleistocene
record were an order of magnitude higher than those obtained
for modern oyster populations from the same area. The Pleisto-
cene estimates also notably exceeded the threshold density of
50 oysters m > used in Chesapeake Bay as a benchmark for a fully
recovered oyster population.

Age dating of skeletal remains provides key information on
parameters needed to reconstruct population density because
age-frequency distributions are informative about disintegration
rates, net sediment accumulation rates and time averaging. For
example, Tomasovych et al. (2017) investigated whether high dens-
ities of the opportunistic, hypoxia-tolerant bivalve Varicorbula
gibba — induced by eutrophication in the northern Adriatic Sea
during the late twentieth century — were novel or had analogs over
the past 500 years. Taking into account the disintegration rate of
bivalve remains and net sediment accumulation rate (estimated on
the basis of age model), assuming a maximum lifespan equal to 5 yr.
in a core with cross-sectional area of 0.04 m> they estimated that
maxima in abundances of this species correspond to a standing
density of 1,250-1,500 individuals/m?, a density similar to times of
V. gibba outbreaks observed today. In contrast, radiometric age
dating revealed that one of the major contributors to carbonate
sands in the northern Adriatic Sea, the bivalve Gouldia minima,
which was abundant in the last few thousand years, declined to
almost zero abundance over the past two centuries due to the
anthropogenically driven loss of algal and seagrass meadows
(Tomasovych et al., 2019a). A similar approach used to infer past
population densities also detected unusually high densities of the
deposit-feeding bivalve Nuculana taphria on the southern Califor-
nia shelf during the Holocene, followed by a two-order-
of-magnitude decline in its abundance during the twentieth century
(Tomasovych et al., 2019b).

A different approach relies on using accumulation rates of
skeletal elements, estimated based on core age models, as a proxy
for species abundance. For example, Dillon et al. (2021) compared
shark denticle assemblages from a mid-Holocene Caribbean reef
with those found in modern death assemblages. In this case,
Uranium-Thorium and calibrated radiocarbon dating of coral
pieces were used to estimate the time encompassed by the sediment
samples and calculate reef accretion rates. The denticle accumula-
tion rates standardised for reef accretion rates suggested that sharks
were over three times more numerous before humans began using
marine resources in Caribbean Panama. Similar strategy was used
to document historical declines in sea urchin (Cramer et al., 2017)
and parrotfish populations (Muraoka et al., 2022) on Caribbean
coral reefs, as well as long-term fluctuations in pelagic fish popu-
lations based on scale and otolith deposition rates (e.g., Field et al,,
2009; Finney et al., 2010; Jones and Checkley, 2019).
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In addition to direct numerical estimates, the magnitude and
timing of population decline in the past can be estimated using
numerical age dating. For example, dating revealed that the bivalve
Glycymeris nummaria appeared in the Eastern Mediterranean in
large numbers 5,000-5,500 years ago and almost ceased to exist
1,500-1,000 years ago, probably due to the ongoing impoverish-
ment of nutrient flux and reduction in marine productivity when
the sea level rise in the late Holocene slowed down and reached
modern levels (Sivan et al., 2006).

The above examples suggest that numerical estimates of deci-
mations as well as the timing of proliferation and decimation events
can be estimated from geohistorical records, given assumptions
about lifespan, disintegration of skeletal remains and net sediment
accumulation rate. These declines can assist us in identifying
extinction threats that have deep historical roots.

Shift in functional traits

A decline in ecosystem services provided by a species can occur not
only due to decimation but also because of shifts in its functional
traits (Figure 2c). The most common functional losses involve
demographic changes, which can result in the loss of large-size
classes and older or more reproductively active age cohorts.
Although such changes are rarely invoked in the context of eco-
logical extinctions, in size-structured populations, different life
stages or age classes can interact with different subsets of species
in a community and play different ecological roles, and thus, their
selective removal may lead to functional loss (Ebenmman et al.,
2017). For instance, experimental evidence suggests that deep-
burrowing adult stages of large, long-lived bivalves provide key
ecosystem functions in soft-sediment habitats but take years to
recover following local disturbances such as seasonal hypoxia
(Norkko et al., 2013). Decrease in body size and other life-history
changes induced by fishing may shift the ecological niches and
functional roles of harvested species, destabilising food webs and
potentially triggering trophic cascades (Hocevar and Kuparinen,
2021).

Life-history changes can be inferred using geohistorical
approaches by surveying size frequency distributions of fossil
populations and by examining growth rates and longevity, which
can be assessed using sclerochronological approaches (e.g., Good-
win et al., 2001; Rowell et al., 2008; Lockwood and Mann, 2019). In
addition, the fossil and archaeological records provide numerous
examples of studies documenting major shifts in functional traits
that could be linked to human activities, especially selective har-
vesting (e.g., Limburg et al., 2008; O’Dea et al., 2014; Rick et al,,
2016; Ruga et al., 2019; Assumpgdo et al., 2022; reviewed by Sullivan
et al.,, 2017). Whereas in many cases human activities resulted in
shorter lifespans and slower growth rates of marine organisms, this
was not always the case. For example, archaeological data suggest
that the construction of clam gardens (intertidal rock-walled ter-
races) by indigenous people resulted in the increased growth rates
and size at the time of death of maricultured clams (e.g., Toniello
et al, 2019).

The Chesapeake oyster study mentioned above (Lockwood and
Mann, 2019) provides a forceful case example in which the Pleis-
tocene fossil record was used to show that populations of oysters in
the past included a higher proportion of large individuals, with the
largest size classes notably exceeding the largest live oysters
observed today. Integration of data on population density and
demography of Pleistocene oysters suggested that filtration rates
for those populations were an order of magnitude higher than those
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estimated for modern populations (Lockwood and Mann, 2019),
thus providing direct estimates of the decline in ecosystem services
due to shifts in functional traits.

Concluding remarks

The review of the marine conservation palaeobiology literature
demonstrates the potential of geohistorical approaches for assess-
ing recent extinctions and extinction threats while also highlighting
the strengths and limitations of those approaches.

Firstly, the existing literature demonstrates that, despite spatial
and temporal gaps, geohistorical archives provide a comprehensive
spatial and environmental coverage of marine systems at coarser
observational scales. That is, the palacontological and archaeo-
logical samples can be acquired for many regions and habitats of
the world. This is particularly valuable in those areas that either lack
any past ecological surveys or have been surveyed only in the last
few decades. In all such regions, skeletal remains are likely to exist
on the seafloor and should allow for bio-inventorying of taxa that
were common in the area in the last centuries or millennia.

Secondly, the conservation palaeobiology studies demonstrate
that geohistorical approaches are applicable to many groups of
organisms, including molluscs, corals, ostracods, foraminifera, fish
and marine mammals, to list just a few examples. Moreover, they
represent a substantial fraction of all taxa and often can serve as
surrogate proxies for the entire communities to which they belong
(e.g., Tyler and Kowalewski, 2017, 2023; Kokesh et al., 2022; and
references therein). This is important because taxa with an excellent
fossil record, such as molluscs, may help elucidate biodiversity
dynamics in marine ecosystems during and before the early modern
times. And whereas the biodiversity losses following human migra-
tions are well documented for conspicuous, iconic taxa (e.g., mega-
faunal extinctions in North America; Meltzer, 2020), a more
comprehensive understanding that encompasses all taxa remains
elusive (see also Cowie et al., 2022).

Thirdly, rapid advances in dating techniques and instrumenta-
tion allow for dating smaller aliquots at a faster pace and lower
costs, making it feasible to date hundreds of specimens in single
projects. Age dating of shells or bones will continue to uncover
extinctions and extirpations in the recent past and help us to assess
if humans may have played a significant role in those events. And
whereas conservation palaeobiology studies often encounter diffi-
culties in determining the human role in past extinction events, the
age distributions of dated specimens can potentially estimate the
precise timing of extinctions and extirpation events and provide
numerical assessments of decimations, which in turn can help us to
identify extinction threats. The literature also suggests that geohis-
torical archives are a great resource for understanding the recent
past and identifying human-driven changes that have already
occurred but would be difficult to elucidate without palaeonto-
logical or archaeological data.

Finally, most geohistorical studies, including many examples
highlighted in this review, indicate that many ecosystems have
deteriorated in terms of taxonomic and functional diversity, spatial
range and continuity, and functional ecology of individual species.
Those geohistorical data indicate that marine ecosystems have been
accumulating a human-driven extinction debt for centuries or even
millennia.

In summary, despite various limitations and assumptions that
underlie conservation palaeobiology strategies, geohistorical arch-
ives represent a wealth of data that complement ecological and
conservation efforts and will likely continue to play an important
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role in assessing extinctions, extirpations, ecological extinctions,
extinction debts and extinction threats.

Future research directions

Conservation palaeobiology is a relatively new research direction so
the trivial notion that we need more case studies is germane here.
This is especially so for the marine realm, for which only a few
groups of organisms, most notably molluscs and corals, have been
studied more extensively using geohistorical approaches. And even
in the case of molluscs or corals, the geohistorical coverage is still
limited and primarily focused on coastal systems. However, given
the rapid growth of conservation palaeobiology research, we expect
that new case studies will be added at an accelerating pace. In
addition to the obvious need for more case studies across regions,
ecosystem types and organismal groups, several research themes
are particularly noteworthy.

«  Global scale meta-analyses — Currently, there are too few case
studies for any marine ecosystem type or any fine-scale groups
(e.g., genera, families) of marine organisms to allow for any
robust meta-analyses on global or multi-regional scales (with a
notable exception of a live-dead meta-analysis of benthic mol-
lusks, see Kidwell, 2008). However, with new case studies being
added every year, there is a good prospect that such larger-scale
comparative analyses will become feasible in the foreseeable
future. Already there exist multiple geohistorical case studies
focused on closely related marine species making it possible to
seek common patterns and processes, as in the case of declines in
abundance of acroporid corals in the Caribbean (Cramer et al.,
2020) and Great Barrier Reef (Clark et al,, 2017). In both regions,
the decline started decades before the onset of monitoring efforts
in the 1970s and 1980s.

o Geochronology — There is a steady increase in the number of
studies that use age dating (especially U-Th, '*C), and these
dating methods are becoming increasingly affordable and
require smaller aliquots thus allowing for dating smaller speci-
mens (e.g., Bright et al,, 2021). The dating of large samples of
marine skeletal remains is needed for many systems and groups
of organisms to better understand the temporal resolution and
coverage of geohistorical data (Zuschin, 2023). For example,
recent efforts to date echinoids yielded disparate estimates of
time averaging: subdecadal for large sand dollars (Kowalewski
et al., 2018) but multi-centennial for minute clypeasteroids
(Nawrot et al., 2022). The echinoid conundrum illustrates the
need for extensive dating across taxa and depositional systems
to develop a more robust understanding of the temporal reso-
lution of geohistorical data.

o “Empty shell” species — Recent studies on molluscs and for-
aminifera suggest that some unknown fraction of the present-
day marine species were described from skeletal remains of
organisms. Given that many skeletal remains can reside on
seafloors for centuries or millennia, the “empty shell” species
may alternatively represent a record of rare extant species,
species that went extinct due to natural processes, or species
that disappeared due to human activities. Studies that would
focus on understanding how pervasive are "empty shell” spe-
cies for various groups of marine organisms, as well as projects
focused on dating those species to assess their time distribu-
tion, could advance our understanding of the present-day
biodiversity in the marine realm and improve estimates of
recent extinctions.
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o Terrestrial-marine transitions - In coastal areas, targeted geo-
historical research in the marine realm could be used to com-
pare marine and terrestrial extinctions and extirpations for the
same coastal system. Exploring marine extinctions in regions
where early terrestrial extinctions attributed to humans have
been already documented — as in the example of the ground
doves from the Mascarene archipelago wiped out by colonisers
during the early modern time — would be particularly fruitful.

o Translating research into action — The biggest challenge of
conservation palaeobiology revolves around practical applica-
tions of geohistorical data. This is a two-pronged issue of being
able to translate scientific knowledge into appropriate conser-
vation actions and understanding what type of geohistorical
data would be most useful to practitioners (Dietl et al., 2019;
Kiessling et al., 2019). This issue is not specific to extinction-
focused studies but any geohistorical studies that aim to inform
conservation efforts. Whereas translating research into conser-
vation actions is beyond the scope of this review, it should be
considered explicitly in any studies that aim to use historical
data to assist present-day conservation efforts.
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