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GENERALIZED GREEN FUNCTIONS

AND UNIPOTENT CLASSES

FOR FINITE REDUCTIVE GROUPS, I

TOSHIAKI SHOJI

To George Lusztig on his sixtieth birthday

Abstract. The algorithm of computing generalized Green functions of a reduc-
tive group G contains some unknown scalars occurring from the Fq-structure of
irreducible local systems on unipotent classes of G. In this paper, we determine
such scalars in the case where G = SLn with Frobenius map F of split type or
non-split type. In the case where F is of non-split type, we use the theory of
graded Hecke algebras due to Lusztig.

§0. Introduction

Let G be a connected reductive group defined over a finite field Fq with

Frobenius map F . In [L1], Lusztig classified the irreducible characters of

finite reductive groups GF in the case where the center of G is connected.

Later in [L5], he extended his results to the disconnected center case. In

the course of the classification, in particular in the connected center case,

he defined almost characters of GF , which forms an orthonormal basis of

the space V(GF ) of class functions of GF different from the basis consisting

of irreducible characters. They are defined as explicit linear combinations

of irreducible characters, and the transition matrix between these two bases

are almost diagonal. So, the determination of the character values of irre-

ducible characters of GF is equivalent to that of almost characters.

On the other hand, Luszitg founded in [L3] the theory of character

sheaves, and showed that the characteristic functions of character sheaves

form an orthonormal basis of V(GF ). He conjectured that those functions

coincide, up to scalar, with almost characters (with an appropriate gen-

eralization of almost characters if the center is disconnected). Lusztig’s
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conjecture was proved by the author in [S3] in the case where the center is

connected. It was also proved for certain groups with disconnected center,

i.e., for Sp2n and (under a suitable modification for a disconnected group)

O2n with chFq 6= 2 by Waldspurger [W], for SLn by the author [S4] (with

chFq not too small), and independently, for SLn and SUn by Bonnafé [B]

(with q not too small).

If Lusztig’s conjecture is established, the computation of irreducible

characters of GF is reduced to the computation of characteristic functions of

character sheaves, and to the determination of scalars involved in Lusztig’s

conjecture. In [L3], Lusztig proved that the computation of the charac-

teristic functions of character sheaves are reduced to the computation of

generalized Green functions of various reductive subgroups of GF . Then

he showed that there exists a general algorithm of computing generalized

Green functions. More precisely, he showed that generalized Green func-

tions can be expressed as an explicit linear combination of various charac-

teristic functions χC′,E ′ of the G-equivariant local system E ′ on a unipotent

class C ′ in G. Up to scalar, χC′,E ′ can be easily described in terms of the

irreducible character of the component group AG(u) = ZG(u)/Z0
G(u) for

u ∈ C ′F corresponding to E ′. However, this scalar depends on the choice of

the isomorphism F ∗E ∼−→ E for a cuspidal pair (C, E) on a Levi subgroup L of

a parabolic subgroup P of G, and on the intersection cohomology complex

K induced from E � Q̄l on C × Z0
L (see (1.2.2)).

The purpose of this paper is to determine these scalars occurring in

the computation of generalized Green functions. In the case of Green func-

tions, this problem is equivalent to determining a representative u ∈ C ′F

such that the action of F on the l-adic cohomology group Hm(Bu, Q̄l) can

be described explicitly, where Bu is the variety of Borel subgroups of G

containing u, and m/2 = dimBu. It was shown in [S1], [S2] and [BS] that

there exists a unipotent element u ∈ C ′F , in the case where GF is of split

type, and G is not of type E8, such that F acts on Hm(Bu, Q̄l) by a scalar

multiplication qm/2. Such a unipotent element is called a split element.

Even in the remaining cases, the action of F can be described, and by using

this, Green functions of exceptional groups (F4, E6, E7 and E8) were com-

puted explicitly by [S1], [BS] for a good characteristic case. The case G2

had been computed by Springer [Spr] in an earlier stage. (Green functions

of exceptional groups in certain bad characteristic case were computed by

Malle [M] by a direct computation.)

In the case of generalized Green functions, one has to consider the
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cohomology group Hm
c (Pu, Ė), where Pu is a certain subvariety of parabolic

subgroups of G conjugate to P , and Ė is a local system on Pu determined

from the cuspidal pair (C, E) on a Levi subgroup L of P , andm/2 = dimPu.

We need to describe the action of F on such cohomology groups. This

problem is reduced to the case where G is simply connected, and simple

modulo center. In this paper, we discuss the case where G = SLn with

F of split type or non-split type. In the case where F is of split type, the

method employed here is to compare the Frobenius action in the case of SLn

with SLn−1, which is a natural generalization of the method in the case of

GLn. In the case of GLn with F of non-split type, the Frobenius action was

determined by investigating the action of F on H ∗(B, Q̄l) by making use of

the F -equivariant surjective map πu : Hm(B, Q̄l) → Hm(Bu, Q̄l) induced

from the inclusion Bu ↪→ B, where B is the flag variety of G. However, this

argument is not generalized to our case. Although we have a counter part

Pu1 of B, and a natural map πu : Hm
c (Pu1 , Ė) → Hm

c (Pu, Ė), there does

not exist an immersion Pu ↪→ Pu1 , and the surjectivity of πu is no longer

trivial. In order to overcome such difficulties, following the idea of Lusztig,

we appeal to the theory of graded Hecke algebra developed in [L7], which

makes it possible to compare the Frobenius actions via the isomorphism

H0
c (Pu1 , Ė) ' H

0
c (Pu, Ė) ' Q̄l.

The remaining cases where G 6= SLn will be treated in a subsequent

paper.

The author is grateful to G. Lusztig for stimulating discussions on

graded Hecke algebras.

§1. Preliminaries

1.1. Let G be a connected reductive algebraic group over a field k,

where k is an algebraic closure of a finite filed Fq of characteristic p. Let C

be a unipotent conjugacy class in G, and E an irreducible local system on

C which is G-equivariant for the conjugation action. E is called a cuspidal

local system on C if the following condition is satisfied: for any proper

parabolic subgroup P of G with Levi decomposition P = LUP and for

any unipotent element u ∈ L, we have H δ
c (uUP ∩ C, E) = 0, where δ =

dimC−dim(class of u in L) (cf. [L2, 2.4]). It is known by [L3, V, 23.1], that

if p is almost good then the above condition is equivalent to the condition

that H i
c(uUP ∩C, E) = 0 for any i (i.e., E is strongly cuspidal). We also say

that (C, E) is a cuspidal pair in G.
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Let NG be the set of pairs (C ′, E ′) up to G-conjugacy, where C ′ is a

unipotent class in G and E ′ is a G-equivariant irreducible local system on

C. We also denote by MG the set of triples (L,C, E) up to G-conjugacy,

where L is a Levi subgroup of a parabolic subgroup of G, and E is a cuspidal

local system on a unipotent class C of L. In [L2, 6.5], Lusztig has shown

that there exists a natural bijection

(1.1.1) NG '
∐

(L,C,E)∈MG

(NG(L)/L)∧,

which is called the generalized Springer correspondence between unipotent

classes and irreducible characters of various Coxeter groups. (For a finite

groupH, we denote byH∧ the set of irreducible characters ofH.) Note that

NG(L)/L is a Coxeter group with standard generators whenever (L,C, E) ∈
MG.

1.2. We describe the generalized Springer correspondence more pre-

cisely. Take (L,C, E) ∈MG. Let Z0
L be the connected center of L, and put

C̃reg = C · (Z0
L)reg ⊂ C̃ = C · Z0

L, where

(Z0
L)reg = {z ∈ Z0

L | Z
0
G(z) = L}.

We define a diagram

(1.2.1) C̃
α1←−−−− Ŷ

β1
−−−−→ Ỹ

π
−−−−→ Y,

where

Y =
⋃

x∈G

xC̃regx
−1 ⊂ G,

Ỹ = {(g, xL) ∈ G× (G/L) | x−1gx ∈ C̃reg},

Ŷ = {(g, x) ∈ G×G | x−1gx ∈ C̃},

and

α1(g, x) = x−1gx, β1(g, x) = (g, xL), π(g, xL) = g.

Then Y is a smooth, irreducible subvariety of G, and π is a principal cov-

ering of Y with group W = NG(L)/L. There is a canonical local system Ẽ
on Ỹ satisfying the property that β∗

1 Ẽ = α∗
1(E � Q̄l), where E � Q̄l is the

inverse image of E under the natural map C̃ = C × Z0
L → C. We define an

intersection cohomology complex K by

(1.2.2) K = IC(Y , π!Ẽ)[dimY ]
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and regard it as a perverse sheaf on G by extending by 0 outside of Y .

Lusztig showed that K is a G-equivariant semisimple perverse sheaf on G,

and that EndK ' Q̄l[W]. It follows that K can be decomposed as

(1.2.3) K '
⊕

E∈W∧

VE ⊗KE ,

where KE is a simple perverse sheaf on G such that VE = Hom(KE ,K) is

an irreducible W-module corresponding to E ∈ W∧.

Let Guni be the unipotent variety of G. Then K[−d]|Guni
turns out to

be a G-equivariant semisimple perverse sheaf on Guni, where d = dimZ0
L =

dimY − dim(Y ∩Guni). Hence it is decomposed as

(1.2.4) K[−d]|Guni
=

⊕

(C′,E ′)∈NG

V(C′,E ′) ⊗ IC(C
′
, E ′)[dimC ′],

where V(C′,E ′) is a multiplicity space for the simple perverse sheaf

IC(C
′
, E ′)[dimC ′] on Guni. Comparing (1.2.3) with (1.2.4), we see that

for each E ∈ W∧, there exists a pair (C ′, E ′) ∈ NG such that

(1.2.5) KE |Guni
' IC(C

′
, E ′)[dimC ′ + dimZ0

L].

The correspondence E 7→ (C ′, E ′) gives a bijection
∐

(L,C,E)(NG(L)/L)∧ →
NG in (1.1.1).

1.3. We now consider the Fq-structure on G. So assume that G

is defined over Fq with Frobenius endomorphism F : G → G. Then

F acts naturally on the set NG and MG by (C ′, E ′) 7→ (F−1C ′, F ∗E ′),
(L,C, E) 7→ (F−1L,F−1C,F ∗E), and the map in (1.1.1) is compatible with

F -action. Now assume that (L,C, E) ∈ MG is F -stable. Then we may

choose (L,C, E), as a representative of its G-conjugacy class, such that L

is an F -stable Levi subgroup of an F -stable parabolic subgroup P of G,

with FC = C, F ∗E ' E . We choose an isomorphism ϕ0 : F ∗E ∼−→ E which

induces a map of finite order on the stalk of E at any point of CF . Since the

diagram in (1.2.1), and so the construction of the complex K is compatible

with Fq-structure, ϕ0 induces a natural isomorphism ϕ : F ∗K ∼−→ K. We

consider the characteristic function χK,ϕ of K. The restriction of χK,ϕ on

Guni gives a GF -invariant function on GF
uni, which is the generalized Green

function QG
L,C,E ,ϕ0

(cf. [L3, II]).

Here F acts naturally on W, which induces a Coxeter group automor-

phism of order, say c. We consider the semidirect product W̃ =Wo(Z/cZ).
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If an irreducible representation VE ofW is F -stable, it can be extended to an

irreducible representation of W̃, in c different ways. Assume that E ∈ W∧

is F -stable. Then the corresponding (C ′, E ′) ∈ NG is also F -stable, and we

have F ∗KE
∼−→ KE . A choice of an isomorphism ϕE : F ∗KE

∼−→ KE induces

a bijection σE : VE → VE, which makes VE into an irreducible W̃-module

ṼE. We choose ϕE so that ṼE turns out to be a preferred extension of VE

(cf. [L3, IV, (17.2)]. By making use of ϕE : F ∗KE ' KE , we shall define an

isomorphism ψ : F ∗E ′ ∼−→ E ′ as follows; By (1.2.5), we have Ha0(KE)|C′ = E ′

for a0 = −dimZ0
L− dimC ′. We define ψ so that q(a0+r)/2ψ corresponds to

the map defined by ϕE : F ∗Ha0(KE) ∼−→ Ha0(KE), where

r = dimY = dimG− dimL+ dim(C × Z0
L),

and so

(1.3.1) a0 + r = (dimG− dimC ′)− (dimL− dimC).

We define a function Yj on GF
uni for each j = (C ′, E ′) ∈ NF

G by

Yj(g) =

{
Tr(ψ, g) if g ∈ C ′F ,

0 if g /∈ C ′F .

Then {Yj | j ∈ N
F
G } gives rise to a basis of the space of GF -invariant

functions on GF
uni. Now the computation of χK,ϕ is reduced to the com-

putation of χKE ,ϕE
for each F -stable irreducible character E of W. We

denote χKE ,ϕE
by Xj if E corresponds to j = (C ′, E ′) under the generalized

Springer correspondence. In [L3, V], Luszitg gave a general algorithm of

expressing Xi as an explicit linear combination of various Yj. Thus the

computation of χK,ϕ is reduced to the computation of Yj .

We shall describe the functions Yj . Let us choose u ∈ C ′F , and put

AG(u) = ZG(u)/Z0
G(u). Then F acts naturally on AG(u), and the set of

G-equivariant simple local systems on C ′ is in bijective correspondence with

the set of F -stable irreducible characters of AG(u). Let us denote by ρ the

irreducible character of AG(u) corresponding to E ′. Let σ be the restriction

of F on AG(u). Then ρ can be extended to an irreducible character of the

semidirect product ÃG(u) = AG(u) o 〈σ〉. We choose an extension ρ̃ of

ρ. E ′u has a structure of AG(u)-module affording the character ρ, which

is extended to the ÃG(u)-module affording ρ̃. We choose an isomorphism

ψ0 : F ∗E ′ ∼−→ E ′ by the condition that ψ0 induces an isomorphism on E ′u
corresponding to the action of σ on ρ̃.
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Since E ′ is a simple local system, there exists γ ∈ Q̄∗
l (depending on

the choice of ϕ0, u and ρ̃) such that ψ = γψ0. We define functions Y 0
j on

the set GF
uni in a similar way as Yj, but replacing ψ by ψ0. Then clearly we

have Yj = γY 0
j . We note that the functions Y 0

j are described in an explicit

way as follows. The set of GF -conjugacy classes in C ′F is in bijective

correspondence with the set of F -twisted conjugacy classes in AG(u). We

denote by ua a representative in the GF -conjugacy class contained in C ′F

corresponding to an F -twisted conjugacy class in AG(u) containing a. Then

we have

Y 0
j (g) =

{
ρ̃(aσ) if g is GF -conjugate to ua,

0 if g /∈ C ′F .

It follows from the above discussion that the computation of generalized

Green functions is reduced to the determination of the scalar constant γ

for each pair (C ′, E ′) ∈ NF
G . Let us choose v ∈ CF , and let ρ0 be the

F -stable irreducible character of AL(v) corresponding to E . Then as in the

discussion above, the isomorphism ϕ0 : F ∗E ∼−→ E is given by choosing an

extension ρ̃0 of ρ0 to the semidirect product ÃL(v) = AL(v) o 〈σ〉. Thus

γ is determined by v, ρ̃0, u, ρ̃, which we denote by γ = γ(v, ρ̃0, u, ρ̃). The

purpose of this paper is to describe the constants γ(v, ρ̃0, u, ρ̃) explicitly.

1.4. In order to make the Frobenius action more explicit, we shall

consider the following varieties. Put

Pu = {gP ∈ G/P | g−1ug ∈ CUP},

P̂u = {g ∈ G | g−1ug ∈ CUP},
(1.4.1)

and consider the diagram

(1.4.2) C
α

←−−−− P̂u
β

−−−−→ Pu

with

α : g 7−→ C-component of g−1ug ∈ CUP , β : g 7−→ gP.

We define a local system Ė on Pu by the property that α∗E = β∗Ė . Then

it is known by [L3, 24.2.5] that

(1.4.3) Ha0
u (K) ' Ha0+r

c (Pu, Ė).

It is also known by [L2, 1.2 (b)] that dimPu ≤ (a0 + r)/2. Since the left

hand side of (1.4.3) is non-zero by (1.2.5), we see that

(1.4.4) dimPu = (a0 + r)/2.
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Since P is F -stable, Pu, P̂u are F -stable, and the diagram in (1.4.2) is

compatible with Frobenius maps. Moreover, the isomorphism ϕ0 induces

an isomorphism ϕ̇0 : F ∗Ė ∼−→ Ė . This induces a linear map Φ on V =

Ha0+r
c (Pu, Ė). By (1.4.3), W acts on V . Also ZG(u) acts naturally on V ,

where Z0
G(u) acts trivially on it. Then it induces an action of AG(u), which

commutes with the action of W. Let ρ be an F -stable irreducible character

of AG(u) corresponding to E ′ as in 1.3, and Vρ the ρ-isotypic part of V .

Then Φ leaves Vρ stable. The previous discussion shows that Vρ can be

identified with ṼE ⊗ E
′
u, and Φ|Vρ coincides with σE ⊗ q

(q0+r)/2ψ. Thus the

map ψ can be described by investigating Φ on Ha0+r
c (Pu, Ė)ρ.

1.5. We show that the description of the mixed structure ψ : F ∗E ′ →
E ′ on C ′ is reduced to the case where G is simply connected, almost sim-

ple. In fact, let π : G → G′ = G/Z0
G be the natural homomorphism.

Then π induces a bijection between MG (resp. NG) and MG′ (resp. NG′)

which commutes with their Fq-structures. Hence we may assume that G is

semisimple. Let π̃ : G̃ → G be the simply connected covering of G. Then

(L,C, E) 7→ (π̃−1(L), C, π̃∗E) gives a bijection between the setMG and the

subset of M eG
on which ker π̃ acts trivially. Hence the mixed structure

ϕ0 : F ∗π̃∗E → π̃∗E for the pair (C, π̃∗E) on G̃ determines the mixed struc-

ture for the pair (C, E) on G. Similarly, π̃ induces a bijection between the

set NG and the subset of N eG
on which ker π̃ acts trivially, and so the mixed

structure of the pair (C ′, E ′) on G is determined by the mixed structure of

the pair (C ′, π̃∗E ′) on G̃. The procedure of determining the mixed structure

of (C ′, E ′) from that of (C, E) is parallel for G̃ and G.

It follows from the above discussion that we may assume G is simply

connected, semisimple. Then G is isomorphic to the direct product of sim-

ply connected, almost simple groups, with F -action. Now it is easy to see

that we are reduced to the case where G ' G1 × · · · ×Gr, with Gi a copy

of G1, and F acts on G as a cyclic permutation of all the factors. Then

G1 is F r-stable, and the setMF
G is in bijective correspondence with the set

MF r

G1
, via the correspondence (L,C, E) ↔ (L1, C1, E1), where

L = L1 × F
−r+1(L1)× · · · × F

−1(L1),

C = C1 × F
−r+1(C1)× · · · × F

−1(C1),

E = E1 � F r−1∗E1 � · · ·� F ∗E1.

Moreover, CF r

1 ' CF via v1 7→ v = (v1, F (v1), . . . , F
r−1(v1)). Then ϕ0 :
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F ∗E ∼−→ E is determined by ϕ1 : F r∗E1
∼−→ E1 as

(ϕ0)v = (ϕ1)v1 ⊗ (ϕ1)F r−1(v1) ⊗ · · · ⊗ (ϕ1)F (v1)

on Ev = (E1)v1 ⊗ (E1)F r−1(v1) ⊗ · · · ⊗ (E1)F (v1). Similarly, the mixed F -

structure of (C ′, E ′) ∈ NG is described by the mixed F r-structure of

(C ′
1, E

′
1) ∈ NG1 .

Thus, the determination of the mixed structure of (C ′, E ′) is reduced

to the case where G is an F -stable, simply connected, almost simple group.

1.6. Assume that G is almost simple and simply connected. Let g =

LieG be the Lie algebra of G. We further assume that p is good for G unless

G is of type A, and that p > n if G = SLn. Then by [BR], there exists

a logarithm map log : G → g satisfying the following properties; log is an

Ad(G)-equivariant morphism and log(1) = 0, d(log)1 : g→ g is the identity

map. In particular, for any closed subgroup H of G, log(H) ⊂ LieH ⊂ g.

Moreover, log |Guni
turns out to be an isomorphism Guni → gnil, where gnil

is the nilpotent variety of g.

Let L be an irreducible G-local system on a nilpotent orbit C in g. The

notion of cuspidal local system on C is defined in a similar way as in the

case of groups, i.e., L is said to be cuspidal or (C,L) is a cuspidal pair if for

any proper parabolic subalgebra p1 of g with nilpotent radical n1 and any

y ∈ p1, we have H i
c((y + n1) ∩ C,L) = 0 for any i. Then it is easily checked

(cf. [L4]) that log∗ gives a bijection between the set of cuspidal pairs in G

and the set of cuspidal pairs in g.

Let (L,C, E) ∈ MG, and (C,L) the corresponding cuspidal pair in

l = LieL, where C = log−1(C), E = log∗ L. We put p = Lie(P ) and

nP = LieUP . Let C′ = log(C ′) be a nilpotent orbit in g. For each y ∈ C ′,

put

Py = {gP ∈ G/P | Ad(g)−1y ∈ C + nP },

P̂y = {g ∈ G | Ad(g)−1y ∈ C + nP}.
(1.6.1)

Then by using a similar diagram as in (1.4.2), one can define a local system

L̇ on Py. It is easy to see that log gives an isomorphism P̂u
∼−→ P̂y with

y = log(u), and so induces an isomorphism Pu
∼−→ Py. Then we have

log∗ L̇ = Ė . It follows that we have a canonical isomorphism

(1.6.2) Ha0+r
c (Pu, Ė) ' H

a0+r
c (Py, L̇).
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In the case where G has an Fq-structure with Frobenius map F , g has

also an action of F , and we may assume that log is F -equivariant. Then

the isomorphism (1.6.2) is compatible with Fq-structures. We denote by

the same symbol Φ the linear map on Ha0+r
c (Py, L̇) obtained as in the case

of Ha0+r
c (Pu, Ė). Hence the linear map q(a0+r)/2ψ on Eu can be described

in terms of the Frobenius action Φ on Ha0+r
c (Py, L̇)ρ.

§2. Graded Hecke algebras

2.1. The graded Hecke algebra H was introduced by Lusztig [L7],

which is a degenerate version of affine Hecke algebras. In this section, fol-

lowing [L7] we review the definition of H and its representations on equiv-

ariant K-homology groups. In [L7], H is constructed as an algebra over C,

but here we regard it as the algebra over Q̄l so that one can relate it to

l-adic cohomology groups.

Let Φ be a root system with a set of simple roots Π = {α1, . . . , αm} and

W the Weyl group of Φ with corresponding simple reflections {s1, . . . , sm}.

We assume that the root lattice ZΦ is embedded in a vector space h∗ over

Q̄l. The action of W on ZΦ makes h∗ into a W -module. (Hence h∗ has

a direct sum decomposition, one summand being W -invariant, the other

having Π as a basis.) Let S be the symmetric algebra of h∗ ⊕ Q̄l. We

denote r = (0, 1) ∈ h∗⊕ Q̄l, so that S = S(h∗)⊗ Q̄l[r]. W acts naturally on

S so that r is left invariant by W . We denote by ξ 7→ wξ the action of W

on S. Let c1, . . . , cm be integers ≥ 2 such that ci = cj whenever si and sj

are conjugate in W . Let e be the neutral element of W . Lusztig showed in

[L7, Theorem 6.3] that there is a unique structure of associative Q̄l-algebra

on the Q̄l-vector space H = S⊗ Q̄l[W ] with unit 1⊗ e such that

(i) ξ 7→ ξ ⊗ e is an algebra homomorphism S→ H,

(ii) w 7→ 1⊗ w is an algebra homomorphism Q̄l[W ]→ H,

(iii) (ξ ⊗ e) · (1⊗ w) = ξ ⊗ w, (ξ ∈ S, w ∈W ),

(iv) (1⊗si)(ξ⊗e)−(siξ⊗e)(1⊗si) = cir
ξ − siξ

αi
⊗e, (ξ ∈ S, 1 ≤ i ≤ m).

H is called a graded Hecke algebra attached to W with parameters ci.

It follows from (iv) that r is in the center of H.

2.2. The discussion in [L7] is concerned with algebraic groups over C.

Hence the equivariant K-homology is defined for the varieties over C. Since
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we treat algebraic groups over finite fields, we need to construct the equiv-

ariant K-homology based on the l-adic cohomology groups. Fortunately,

the basic properties established in Section 1 in [L7] work well also for our

situation, by a suitable modification. We give some comments below.

Let G be an affine algebraic group over k, and let X be a k-variety on

which G acts algebraically. As in [L7], for each integer m ≥ 1, there exists a

smooth irreducible variety Γ with free G-action such that Γ → G\Γ has a

locally trivial principalG-fibration, and thatH i(Γ, Q̄l) = 0 for i = 1, . . . ,m.

(As in [L7, 1.1], we embed G as a closed subgroup of GLr, and consider the

embedding

(2.2.1) G ⊂ GLr × {e} ⊂ GLr ×GLr′ ⊂ GLr+r′ .

Then Γ = ({e} × GLr′)\GLr+r′ for large r′ (2r′ ≥ m + 2), with the left

action of G on Γ , satisfies the required condition.) For a G-variety X, we

consider ΓX = G\(Γ ×X) (the quotient by the diagonal action of G). Then

for an G-equivariant local system L on X, there exists a unique local system

ΓL on ΓX such that π∗(ΓL) = p∗L, where π : Γ × X → G\(Γ × X) is a

natural map, and p : Γ ×X → X is a projection. Then as in [L7], we define

Hj
G(X,L) = Hj(ΓX, ΓL), HG

j (X,L) = H2d−j
c (ΓX, ΓL

∗)∗,

where d = dim(ΓX), and the upper-script ∗ denotes the dual local system

or the dual vector space. (We understand that H j
G(X,L) = Hj(X,L) and

HG
j (X,L) = H2 dimX−j

c (X,L∗)∗ in the case where G = {e}.) We write

them as Hj
G(X), HG

j (X) if L is a constant sheaf Q̄l. Also we write H i
c(X),

Hi(X) instead of H i
c(X, Q̄l), H

i(X, Q̄l).

By cup-product, H∗
G(X) =

⊕
j H

j
G(X) becomes a graded Q̄l-algebra

with 1, and

H∗
G(X,L) =

⊕

j

Hj
G(X,L), HG

∗ (X,L) =
⊕

j

HG
j (X,L)

become graded H∗
G(X)-modules.

We write H∗
G,H

G
∗ instead of H∗

G(point), HG
∗ (point). Then the map

X → point defines a Q̄l-algebra homomorphism ε : H∗
G → H∗

G(X) preserv-

ing the grading. Via the map ε, H∗
G(X,L), HG

∗ (X,L) can be regarded also

as H∗
G-modules.
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2.3. Let T be a torus andX(T ) be its character group. The arguments

in 1.10 in [L7] do not hold in that form. We modify them as follows. In the

case where T ' Gm is the one dimensional torus, it can be verified directly

by the definition that H∗
T ' Q̄l[x], a polynomial ring with one variable,

with x ∈ H2
T . Since H∗

G×G′ ' H∗
G ⊗ H

∗
G′ , we see that H∗

T ' S(V ∗), the

symmetric algebra of a Q̄l-vector space V ∗ = Q̄l ⊗Z X(T ). In particular,

we have

H2j
T ' S

j(V ∗), H2j+1
T = 0,

and we may identify H2
T with V ∗. (Sj(V ∗) denotes the degree j-part of

S(V ∗).)

For χ ∈ X(T ), let kχ be the T -module k with the T -action by (t, z) 7→
χ(t)z. Let i : {0} ↪→ k, π : k → {0} be the obvious maps. Then π∗ is an

isomorphism, and the composition

HT
∗ ({0})

i!−−−−→ HT
∗ (kχ)

(π∗)−1

−−−−→ HT
∗ ({0})

is H∗
T -linear of degree 2. Since HT

∗ ({0}) ' H∗
T as H∗

T -modules, (π∗)−1 ◦ i! is

given by multiplication by an element c(χ) ∈ H2
T (cf. [L7, 1.10]). The map

c : X(T )→ H2
T = V ∗, χ 7→ c(χ) gives an injective group homomorphism.

Assume that G is an algebraic group such that G0 is a torus T . Then

W = G/G0 acts naturally on H∗
T , preserving the grading (see [L7, 1.9]). W

acts also on X(T ), and we have

(2.3.1) The map c : X(T )→ H2
T = V ∗ is W -equivariant.

In fact, take Γ on which G acts freely. Then, for a representative ẇ ∈ G

of w ∈ W , the map Γ × kχ → Γ × kw(χ), (g, x) 7→ (ẇg, x) induces a map

fw : T\(Γ × kχ) → T\(Γ × kw(χ)), which makes the following diagram

commutative.

HT
∗ ({0})

i!−−−−→ HT
∗ (kχ)

(π∗)−1

−−−−→ HT
∗ ({0})

w

y
y(f∗

w)−1

yw

HT
∗ ({0})

i!−−−−→ HT
∗ (kw(χ))

(π∗)−1

−−−−→ HT
∗ ({0}).

(2.3.1) follows from this.

It follows from (2.3.1) that we have

(2.3.2) H∗
T ' S(Q̄l ⊗Z X(T ))
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as graded W -modules.

We don’t know whether the counter part of 1.11 in [L7] holds in our

setting. However, the following related fact holds.

Lemma 2.4. Assume that G is a connected algebraic group. Let Gr

be a maximal reductive subgroup of G, and T a maximal torus of Gr. Let

W = NGr(T )/T be the Weyl group of Gr. Then W acts naturally on H∗
T ,

and the natural map H∗
G → H∗

T (cf. [L7, 1.4 (g)]) induced from the inclusion

T ↪→ G gives an isomorphism

H∗
G
∼−−→ (H∗

T )W .

Proof. By [L7, 1.4 (h)], we know that H∗
G
∼−→ H∗

Gr
. Hence it is enough

to show the lemma in the case where G is reductive. Assume that G = Gr.
Let m be a large integer and let Γ be an irreducible, smooth variety with
a free G-action such that H i(Γ ) = 0 for 1 ≤ i ≤ m. We consider the map
f : T\Γ → G\Γ , which is a locally trivial fibration with fibre isomorphic
to T\G. We have a spectral sequence

(2.4.1) Hp(G\Γ,Rqf∗Q̄l) =⇒ Hp+q(T\Γ ).

The map f is W -equivariant with respect to the trivial action of W on
G\Γ , and the left action of W on T\Γ , and so Rqf∗Q̄l has a structure
of W -sheaf, which induces an action of W on Hp(G\Γ,Rqf∗Q̄l). W acts
naturally on Hp+q(T\Γ ), and by taking the W -invariant parts in (2.4.1),
we have a spectral sequence

(2.4.2) Hp(G\Γ,Rqf∗Q̄l)
W =⇒ Hp+q(T\Γ )W .

Since f is a locally trivial fibration, Rqf∗Q̄l is a local system with fibre
Hq(T\Γ ). We may assume that Γ = ({e} ×GLr′)\GLr+r′ as in 2.2. Then
f is GLr+r′ -equivariant, and so Rqf∗Q̄l is a GLr+r′ -local system on the
space G\Γ (with respect to the right action of GLr+r′). Now GLr+r′ acts
transitively on G\Γ with a stabilizer of a point isomorphic to G × GLr′ .
Since G is connected, we see that Rqf∗Q̄l is a constant sheaf Hq(T\Γ ). It
follows that

Hp(G\Γ,Rqf∗Q̄l) ' H
p(G\Γ )⊗Hq(T\G)

and we have

Hp(G\Γ,Rqf∗Q̄l)
W ' Hp(G\Γ )⊗Hq(T\G)W
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since W acts trivially on Hp(G\Γ ). It is known that H∗(T\G) is a graded
regular W -module, and

Hq(T\G)W =

{
Q̄l if q = 0,

0 otherwise.

Hence the spectral sequence (2.4.2) collapses, and we have

(2.4.3) Hp(G\Γ ) ' Hp(T\Γ )W .

This isomorphism is induced from the natural map H p(G\Γ )→ Hp(T\Γ ).
SinceHp

G = Hp(G\Γ ), andHp
T = Hp(T\Γ ) by definition, the lemma follows

from (2.4.3).

For later discussion, we note the following.

Corollary 2.5. Assume that G is connected reductive, and let T ,

W be as before. Let L be a Levi subgroup of a parabolic subgroup of G
containing T . Assume further that L contains a cuspidal pair as in 1.1.
Put W = NG(Z0

L)/L = NG(L)/L. Then the image of the natural map

H∗
G → H∗

Z0
L

coincides with (H∗
Z0

L

)W .

Proof. The inclusions Z0
L ↪→ T ↪→ G induces the maps H∗

G → H∗
T →

H∗
Z0

L

. Put V ∗ = Q̄l⊗ZX(T ), V ∗
1 = Q̄l⊗ZX(Z0

L). Then by (2.3.2), the map

H∗
T → H∗

Z0
L

is nothing but the natural map ϕ : S(V ∗) → S(V ∗
1 ) obtained

from the restriction map X(T ) → X(Z0
L). Now W , W acts naturally on

S(V ∗), S(V ∗
1 ), respectively. Since W ' NW (WL)/WL, ϕ induces a map

ϕ̃ : S(V ∗)W → S(V ∗
1 )W . By [L7, Proposition 2.6], Z0

L coincides with a
maximal torus of a certain connected reductive subgroup H of G, andW is
regarded as the Weyl group ofH. Thus in view of Lemma 2.4, it is enough to
show that ϕ̃ is surjective. This is equivalent to the fact that V1/W → V/W
is a closed embedding, where V is the dual space of V ∗ which is identified
with the Lie algebra of the torus TQ̄l

over Q̄l, and similarly for V1. But
by using the classification of the triple (L,C, E) ∈ MG, it is checked that
V1/W → V/W is a closed embedding. Thus the corollary follows.

2.6. 1.12 (a), (b) in [L7] were deduced by using 1.11 there. Here we

show the corresponding facts by using 2.3 as follows.

https://doi.org/10.1017/S0027763000009338 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009338


GENERALIZED GREEN FUNCTIONS 169

(2.6.1) Let G be an algebraic group such that G0 is a central torus in G.

Then we have

H∗
G ' H

∗
G0 .

In fact, by [L7, 1.9 (a)], we have

H∗
G ' (H∗

G0)
G/G0

.

But H∗
G0 ' S(V ∗) with V ∗ = H2

G0 , and the action of G/G0 on S(V ∗) is

determined by the action of G/G0 on X(G0) by (2.3.2). By our assumption,

G/G0 acts trivially on X(G0), and so on S(V ∗). This implies that H∗
G '

S(V ∗) ' H∗
G0 , and (2.6.1) follows.

(2.6.2) In the same setting as above, let E be an irreducible representation

of G/G0 over Q̄l. Then we have

HG
∗ (point, E ⊗E∗) ' HG0

∗ .

The proof is similar to [L7, 1.12 (b)], by making use of (2.6.1).

2.7. We return to the setting in 1.1, and consider a connected reduc-

tive algebraic group G, and its Lie algebra g. We further assume that G

is almost simple, simply connected. Let Gm be the multiplicative group

of k. Then G acts on g by the adjoint action, and G ×Gm acts on g by

(g1, t) : x 7→ t−2 Ad(g1)x. For x ∈ g, we denote by ZG(x) the stabilizer of x

in G, and by MG(x) the stabilizer of x in G×Gm. Hence

MG(x) = {(g1, t) ∈ G×Gm | Ad(g1)x = t2x}.

We assume that p is large enough so that Jacobson-Morozov’s theorem

and Dynkin-Kostant theory hold for g, (e.g., p > 3(h − 1), where h is the

Coxeter number of W , [C, 5.5]). Then, for each nilpotent element y ∈ g,

there exists a Lie algebra homomorphism φ : sl2 → g, and elements y−,

h ∈ g such that

y = φ

(
0 1
0 0

)
, y− = φ

(
0 0
1 0

)
, h = φ

(
1 0
0 −1

)
.

Thus we have [h, y] = 2y, [h, y−] = −2y−, [y, y−] = h. Moreover, we

have a decomposition g =
⊕

i gi, where gi is the i-eigenspace of adh :

g → g. In particular, note that y ∈ g2, y
− ∈ g−2. One can define an
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algebra homomorphism ρ′ : Gm → Aut g by ρ′(t)z = tiz for z ∈ gi. Since

the identity component of Aut g coincides with adG = G/ZG, ρ′(Gm) is

a one-dimensional torus in adG. By taking the identity component of

π−1(ρ′(Gm)) for π : G → adG, one obtains a one parameter subgroup

ρ : Gm → G such that ρ′ = π ◦ ρ.
We put

ZG(φ) = ZG(y) ∩ ZG(y−),

MG(φ) = {(g1, t) ∈ G×Gm | Ad(g1)y = t2y, Ad(g1)y
− = t−2y−}.

It is known that ZG(φ) is a maximal reductive subgroup of ZG(y). It is easy

to check that (g1, t) 7→ (g1ρ(t), t) gives isomorphisms of algebraic groups

(2.7.1) ZG(y)×Gm
∼−−→MG(y), ZG(φ)×Gm

∼−−→MG(φ).

HenceMG(φ) is also a maximal reductive subgroup ofMG(y). It also follows

from (2.7.1) that the embedding ZG(y) ↪→ MG(y) by g1 7→ (g1, 1) induces

an isomorphism

ZG(y)/Z0
G(y) ∼−−→MG(y)/M0

G(y).

This implies that the G-orbit of x ∈ g is also a G ×Gm-orbit, and a G-

local system on a nilpotent G-orbit in g is automatically a G ×Gm-local

system. In later discussions, we use the notation M(y), M 0(y), etc. instead

of MG(y), M0
G(y), etc. by omitting the subscript G if there is no fear of

confusion.

2.8. Under the setting in 1.1, let p, l, nP be the Lie algebras of P , L,

UP so that p = l ⊕ nP . Let z be the Lie algebra of Z0
L. We assume that

(L,C, E) ∈ MG, and let (C,L) be the corresponding cuspidal pair on l (cf.

1.6). Let

(2.8.1) ġ = {(x, gP ) ∈ g×G/P | Ad(g−1)x ∈ C + z + nP },

and π : ġ → g be the first projection. G × Gm acts on ġ by (g1, t) :

(x, gP ) 7→ (t−2 Ad(g1)x, g1gP ), and π is G×Gm-equivariant. We consider

the diagram

C
α

←−−−− ̂̇g = {(x, g) ∈ g×G | Ad(g−1)x ∈ C + z + nP }
β

−−−−→ ġ,

where α(x, g) = prC(Ad(g−1)x), β(x, g) = (x, gP ). Here α, β are G×Gm-

equivariant with respect to the action of G × Gm on C given by (g1, t) :
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x 7→ t−2x, and the action of it on the middle term given by (g1, t) : (x, g) 7→
(t−2 Ad(g1)x, g1g). Since L is an L-local system, there exists a unique local

system L̇ on ġ such that α∗L = β∗L̇. By 2.7, L is L×Gm-equivariant, and

so is G×Gm-equivariant with respect to the above action. Hence L̇ turns

out to be G×Gm-equivariant.

Let L̇∗ be the dual local system of L̇, and consider K = π!(L̇
∗). Then

it is shown in [L7, 3.4] that K[δ] is a G×Gm-equivariant perverse sheaf on

g with a canonical W action, where δ = dim(g/l) + dim(C + z).

Let X be an algebraic variety with a given morphism m : X → g. We

consider the fibre product Ẋ = X ×g ġ with the cartesian diagram

(2.8.2)

Ẋ
ṁ

−−−−→ ġ

π′

y π

y

X
m

−−−−→ g

Then m∗K is a complex with W-action, and it induces a natural W-action

on the cohomologies

(2.8.3) H
j
c(X,m

∗K) ' H
j
c(X,π

′
!ṁ

∗L̇∗) ' Hj
c (Ẋ, ṁ

∗L̇∗).

We further assume that X is a G′-variety, where G′ is a connected

closed subgroup of G ×Gm, and that m is compatible with G′-actions. If

we choose a smooth irreducible variety Γ with a free G′-action as in 2.2,

the cartesian diagram (2.8.2) is lifted to the cartesian diagram

Γ Ẋ
Γ ṁ
−−−−→ Γ ġ

Γ π′

y Γ π

y

ΓX
Γ m
−−−−→ Γ g

As in 2.2, we have a local system Γ L̇
∗ on Γ ġ, and a perverse sheaf (up to

shift) ΓK on Γg which inherits aW-action fromK. Since ΓK = (Γπ)!(Γ L̇
∗),

as in (2.8.3) we have natural W-actions on cohomologies

H
j
c(ΓX, (Γm)∗(ΓK)) ' H

j
c(ΓX, (Γπ

′)!(Γ ṁ)∗Γ L̇
∗) ' Hj

c (Γ Ẋ, (Γ ṁ)∗Γ L̇
∗).

Hence we have an action of W on the equivariant homology

HG′

j (Ẋ, L̇) = H2d−j
c (Γ Ẋ, Γ L̇

∗)∗,

where d = dim(Γ Ẋ). (Here we write ṁ∗L̇∗, (Γ ṁ)∗Γ L̇
∗, etc. as L̇∗, Γ L̇

∗, etc.

by abbreviation.)
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2.9. We fix an element x0 ∈ C and a Lie algebra homomorphism φ0 :

sl2 → l such that φ0 ( 0 1
0 0 ) = x0. As in [L7, 2.3 (b)], we have

(2.9.1) Z0
L(φ0) = Z0

L.

It follows that Z0
L(φ0) is central in ZL(φ). Hence by (2.7.1), we see that

(2.9.2) M 0
L(φ0) ' Z0

L × Gm, and M0
L(φ0) is contained in the center of

ML(φ).

Put h∗ = Q̄l ⊗Z X(Z0
L). The h∗ is a Q̄l-space of dimQ̄l

h∗ = dimk z, on

which W acts naturally. We define a symmetric algebra S over Q̄l by

S = S(h∗ ⊕ Q̄l) = S(h∗)⊗ Q̄l[r],

where Q̄l[r] is the polynomial ring with an indeterminate r corresponding to

(0, 1) ∈ h∗ ⊕ Q̄l. We now consider the equivariant cohomology H ∗
G×Gm

(ġ).

As in [L7, Proposition 4.2], we have an isomorphism

(2.9.3) H∗
G×Gm

(ġ) ' S

as graded algebras. In particular, H j
G×Gm

(ġ) = 0 for odd j. For the proof,

the argument in [L7] implies that

H∗
G×Gm

(ġ) ' H∗
ML(φ0).

Then by using (2.6.1) and (2.9.2), combined with (2.3.2), we have

H∗
ML(φ0) ' H

∗
M0

L
(φ0) ' H

∗
Z0

L
×Gm

= S.

Hence (2.9.3) follows.

Let X̃ be a G′-variety (G′ is a connected closed subgroup of G×Gm),

with a given G′-equivariant morphism m̃ : X̃ → ġ. m̃∗L̇ is a G′-local

system on X̃, which we denote by L̇ by abbreviation. Now m̃∗ induces

an algebra homomorphism H∗
G′(ġ) → H∗

G′(X̃). By combining the natural

homomorphism H∗
G×Gm

(ġ) → H∗
G′(ġ) (cf. [L7, 1.4 (g)]), we have a homo-

morphism H∗
G×Gm

(ġ) → H∗
G′(X̃). Since HG′

∗ (X̃, L̇) is a H∗
G′(X̃)-module

by 2.2, HG′

∗ (X, L̇) has a structure of a left H∗
G×Gm

(ġ)-module. Thus by

(2.9.3), HG′

∗ (X̃, L̇) turns out to be an S-module.
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2.10. Let π : ġ → g be as in 2.8. Then for each y ∈ gnil, π
−1(y)

coincides with Py in (1.6.1). The variety X = {y} is invariant under the

action of M 0(y) ⊂ G × Gm. Let G′ be a connected closed subgroup of

M0(y). By applying 2.8 to the inclusion m : X ↪→ g together with Ẋ = Py,

we see that HG′

∗ (Py, L̇) has a naturalW-action. By applying 2.9 for X̃ = Ẋ ,

HG′

∗ (Py, L̇) has a natural S-action. It also has a structure of H ∗
G′-module

by 2.2.

We consider the graded Hecke algebra H = S ⊗ Q̄l[W] as defined in

2.1, where S is as in 2.9, with a natural action of the Coxeter group W.

Lusztig proved the following theorem.

Theorem 2.11. (Lusztig [L7, Theorem 8.13]) There is a unique H-

module structure on H
M0(y)
∗ (Py, L̇) such that the actions of S and W are

given as in 2.10. (The integers ci are determined according to the cuspidal

pair (C,L). See [L7, 2.13] for explicit values for ci.) Moreover, the H-module

structure commutes with the H∗
M0(y)-module structure on H

M0(y)
∗ (Py, L̇).

Remark 2.12. The arguments used in [L7] to prove the theorem are
valid also for our setting in almost all cases, by taking 2.3–2.7 into account.
We give further comments on the discrepancies of the arguments.

(a) In [L7, 4.3], the property of the image H∗
G×Gm

→ H∗
M0

L
(φ0)

is used.

For this we appeal to Corollary 2.5.
(b) In the proof of Proposition 7.2 in [L7], a property of simply con-

nected space is used, which is not valid in the positive characteristic case.
As in 7.1, we consider a connected algebraic group M , and an M -variety
X, M -equivariant local system E on X. Let Γ be an irreducible, smooth
variety with a free M -action as before. Let f : M\(Γ ×X)→M\Γ be the
locally trivial fibration. We consider the Leray-Serre spectral sequence

Hp
c (M\Γ,Rqf!(ΓE

∗)) =⇒ Hp+q
c (M\(Γ ×X), Γ E

∗).

We show that

(2.12.1) Ep,q
2 = Hp

c (M\Γ,Rqf!(ΓE
∗)) = Hp

c (M\Γ )⊗Hq
c (X, E∗).

(In [L7], this is obtained as a consequence of the fact that M\Γ can be
chosen to be simply connected.) We consider the cartesian diagram

Γ ×X
π

−−−−→ M\(Γ ×X)

ef

y
yf

Γ
eπ

−−−−→ M\Γ.
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Now ΓE
∗ on M\(Γ ×X) satisfies the property that Q̄l �E

∗ = π∗(ΓE
∗). By

the base change theorem, we have π̃∗Rqf!(ΓE
∗) ' Rqf̃!π

∗(ΓE
∗). It is easy to

see that Rqf̃!(Q̄l �E
∗) is an M -equivariant constant sheaf, and Rqf!(ΓE

∗) is
obtained from it as the unique quotient. Thus, Rqf!(ΓE

∗) is also a constant
sheaf with the stalk Hq

c (X, E∗). This implies (2.12.1).
Once this is established, the other parts in the proof of Proposition 7.2

work without change.

2.13. We return to the setting in 2.10. Let T (y) be a maximal torus

of M0(y) and W (y) the Weyl group of a maximal reductive subgroup of

M0(y) with respect to T (y). Then by (2.3.2) and Lemma 2.4, H ∗
M0(y) can

be identified with S(V ∗)W (y), where V ∗ = Q̄l ⊗Z X(T (y)). Hence H∗
M0(y)

may be regarded as the coordinate ring of an affine algebraic variety (over

Q̄l) V1 = V/W (y), where V is the dual space of V ∗. Then for each v ∈ V1,

one obtains an algebra homomorphism H∗
M0(y) → Q̄l, f 7→ f(v). We denote

the thus obtained H∗
M0(y)-module Q̄l by (Q̄l)v. It is known by [L7, 8.6] that

H
M0(y)
∗ (Py, L̇) is a finitely generated projective H∗

M0(y)-module. It follows

that H
M0(y)
∗ (Py, L̇) may be regarded as a space of sections of algebraic

vector bundle E over V1, where the fibre of E at v ∈ V1 is given by

(2.13.1) Ev = (Q̄l)v ⊗H∗

M0(y)
H

M0(y)
∗ (Py, L̇).

Put M(y) = M(y)/M
0(y). Then the finite group M(y) acts on H∗

M0(y) as a

Q̄l-algebra automorphism, and acts on H
M0(y)
∗ (Py, L̇) compatible with the

action of H∗
M0(y). Also this action of M(y) on H

M0(y)
∗ (Py, L̇) commutes

with the action of H. The action of M(y) on H∗
M0(y) induces an action

of M(y) on V1, and E turns out to be an M(y)-equivariant vector bundle

over V1. For each v ∈ V1, we denote by M (y, v) the stabilizer of v in M(y).

Then M(y, v) acts naturally on Ev.

Let M(y, v)∧ be the set of irreducible representations of M(y, v) up to

isomorphisms. For each ρ ∈ M(y, v)∧, put Ev,ρ = (ρ∗ ⊗ Ev)
M(y,v), where

ρ∗ is the dual representation of ρ. Then Ev,ρ is an H-module, and Ev is

decomposed as

Ev =
⊕

ρ∈M(y,v)∧

ρ⊗Ev,ρ.

The action of M(y) on Py, L̇, L̇∗ induces an action of M(y) on

H∗
c (Py, L̇), H∗

c (Py, L̇
∗), hence on H

{e}
∗ (Py, L̇) = H∗

c (Py, L̇
∗)∗. It is known
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by [L7, 8.10] that Ev,ρ 6= 0 if and only if ρ occurs in the restriction of M(y)-

module H
{e}
∗ (Py, L̇) to M(y, v). The H-modules Ev,ρ are called standard

modules.

Remarks 2.14. (i) Standard modulesEv,ρ are parametrized in [L7] (i.e.,
in the setting that G and g are defined over C) as Eh,r0,ρ in terms of the pair
(h, r0) ∈ g⊕C such that [h, y] = 2r0y with h semisimple. This is also pos-
sible in our situation, though we cannot use the Lie algebra g over k. Since
p is good, we have corresponding objects GC, gC, and the parametrization
of nilpotent orbits and the structure of M(y) are the same for gC also. If
we consider the maximal torus T (y)C in M(y)C corresponding to T (y) in
M(y), the space V ∗ may be identified (under a choice of an isomorphism
Q̄l ' C) with the dual of the Cartan subalgebra h(y)C of a maximal reduc-
tive subalgebra m(y)C,r of m(y)C = LieM(y)C with the action of W (y).
Then the action of M(y) on S(V ∗)W (y) coincides with the action of M(y)
on S(h(y)∗C)W (y) ' S(m(y)∗C,r)

M0(y)C . Here

m(y)C = LieM0(y)C = {(x, r0) ∈ gC ⊕C | [x, y] = 2r0y}.

Moreover, the action of M(y) on S(m(y)∗C,r) is induced from the action of

M(y)C, (g1, t) : (x, r0) 7→ (t−2 Ad(g1)x, t
−2r0). Hence V1 is identified with

the set of semisimple M 0(y)C-orbits on m(y)C. This implies, in our case,
that Ev,ρ may be expressed as Eh,r0,ρ, and M(y, v) as M(y, h, r0), if (h, r0)
is a semisimple orbit in gC ⊕C corresponding to v ∈ V1.

(ii) Standard modules play a crucial role in the representation theory
of H. The structure of H-module Ev,ρ was studied throughly in [L8], [L9].
However, the result in [L7] is enough for our purpose.

In view of the above remarks, the following result of Lusztig can be

applied to our setting.

Theorem 2.15. ([L7, Theorem 8.17]) Let (h, r0) ∈ gC ⊕C be a semi-

simple element such that r0 6= 0. Then

(i) Let Y(h,r0) = {x ∈ gC | [h, x] = 2r0x}. Then Y(h,r0) consists of

nilpotent elements, and ZGC
(h) acts (by the adjoint action) on Y(h,r0)

with finitely many orbits.

(ii) Let y be an element in the unique open dense orbit in Y(h,r0). Then

(h, r0) ∈ m(y)C. Let ρ ∈ M(y, h, r0)
∧ be such that Eh,r0,ρ 6= {0}.

Then Eh,r0,ρ is a simple H-module.
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2.16. Here we summarize the properties connecting the equivariant

homology with the ordinary cohomology. Let M be a connected algebraic

group, X an M -variety and E an M -equivariant local system on X. We

consider HM
∗ (X, E). For each i, we define F i as the H∗

M -submodule of

HM
∗ (X, E) generated by

⊕
j≤iH

M
j (X, E). Then F i gives a filtration F 0 ⊆

F 1 ⊆ · · · and F i = 0 for i < 0. Put Πi = HM
i (X, E)/HM

i (X, E)∩F i−1. We

have a natural injection Πi → F i/F i−1 as Q̄l-spaces. Since F i/F i−1 is an

H∗
M -module, this is extended to an H∗

M -linear map

(2.16.1) H∗
M ⊗Q̄l

Πi −→ F i/F i−1.

The natural homomorphism HM
i (X, E)→ H

{e}
i (X, E) is zero on HM

i (X, E)
∩ F i−1, and it factors through a Q̄l-linear map

(2.16.2) Πi −→ H
{e}
i (X, E).

Lusztig showed in [L7, 7.2] that the maps (2.16.1) and (2.16.2) are isomor-

phisms whenever Hodd
c (X, E) = 0, and in that case we obtain an isomor-

phism

(2.16.3) H∗
M ⊗Q̄l

H
{e}
i (X, E) ∼−−→ F i/F i−1.

We now consider the case where X = Py, E = L̇ and M = M 0(y).

It is known that Hodd
c (Py, L̇) = 0 by [L3, V, 24.8], and so the previous

argument can be applied. We consider Ev as in (2.13.1) and H∗
M0(y)-module

(Q̄l)v . We define an Q̄l-space F i
v by F i

v = (Q̄l)v ⊗H∗

M0(y)
F i. Then F i

v is

naturally identified with a quotient of
⊕

j≤iH
M0(y)
j (Py, L̇). We denote by

fi : F i−1
v → F i

v the natural map induced from F i−1 ↪→ F i. It follows from

(2.16.3) we have an exact sequence of Q̄l-spaces

(2.16.4) F i−1
v

fi
−−−−→ F i

v −−−−→ H
{e}
i (Py, L̇) −−−−→ 0.

In particular, we have

(2.16.5) F 0
v ' H

{e}
0 (Py, L̇).

2.17. We consider the Fq-structure on the equivariant homology. As-

sume that G and X are defined over Fq with Frobenius map F , and G

acts on X over Fq. Let E be an G-equivariant local system on X such

https://doi.org/10.1017/S0027763000009338 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009338


GENERALIZED GREEN FUNCTIONS 177

that F ∗E ' E . We fix an isomorphism ϕ : F ∗E ∼−→ E . Then ϕ induces

natural linear isomorphisms on HG
∗ (X, E), H∗

G(X, E), etc. In fact, one can

choose a G-variety Γ so that Γ is defined over Fq. (We may assume that

G is an F -stable closed subgroup of some GLr. The case where GLr has

a split Fq-structure, the construction of Γ in 2.2 works well. If GLr is

of non-split type, we choose F = σ0F0, where F0 is a split Frobenius,

and σ0 is an automorphism of GLr defined by σ0(g) = tg−1. By choos-

ing similar Frobenius maps for GLr′ and GLr+r′ , the inclusions in (2.2.1)

are F -equivariant. Hence Γ = {e} × GLr′\GLr+r′ is defined over Fq.)

Then the maps π : Γ × X → ΓX, p : Γ × X → X are defined over Fq.

Hence ΓE inherits an Fq-structure of E , which induces a linear map on

Hj
G(X, E) = Hj(ΓX, ΓE). The thus obtained linear map is independent

of the choice of Γ . In fact, if Γ ′ is another choice, we have an isomor-

phism Hj(ΓX, ΓE)
∼−→ Hj

Γ×Γ ′(Γ×Γ ′X, Γ×Γ ′E), etc. as in [L7, 1.1], which are

compatible with the induced F -actions on them.

§3. G = SLn with F of split type

3.1. In this section, we assume that p is arbitrary, and consider G =

SLn with the standard Frobenius map F on G, i.e., for g = (gij) ∈ G,

F (g) = (gq
ij). Let V = kn with the standard basis e1, . . . , en and we identify

SLn with SL(V ).

Let g = sln be the Lie algebra of G, and we denote by F the corre-

sponding Frobenius map on g. The unipotent classes in G and nilpotent

orbits in g are parametrized by partitions of n, via Jordan normal form.

Let λ = (λ1, λ2, . . . , λr) be a partition of n, and let Cλ (resp. Cλ) be the

corresponding unipotent class in G (resp. nilpotent orbit in g). Each Cλ is

F -stable, and we construct a specific nilpotent transformation y = yλ ∈ C
F
λ

by defining a basis {yafj | 1 ≤ j ≤ r, 0 ≤ a < λj} of V obtained from the

standard basis as follows;

(3.1.1) yafj = ei with i = λ1 + · · ·+ λj−1 + a.

Then uλ = yλ + 1 ∈ CF
λ . The element yλ ∈ C

F
λ (resp. uλ ∈ C

F
λ ) is called

the split element corresponding to λ.

3.2. By [L2], [LS], the generalized Springer correspondence for the

case where G = SLn is described as follows. Let n′ be the largest divisor

of n which is prime to p. Then the center ZG is a cyclic group of order

n′. For a divisor d of n′, consider a Levi subgroup L of P of the type
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Ad−1× · · · ×Ad−1 (n/d-factors). Let C be the regular unipotent class in L.

Then for v ∈ C, AL(v) = ZL/Z
0
L ' Z/dZ. Let E be an L-equivariant local

system on C corresponding to a character ρ0 of AL(v) of order d. Then

(C, E) is a cuspidal pair on L, and any cuspidal pair on a Levi subgroup

of a parabolic subgroup of G is obtained in this way. Hence for a Levi

subgroup L determined by d, there exist exactly ϕ(d) cuspidal pairs in L,

where ϕ is the Euler function.

Let K be as in (1.2.2) with respect to the cuspidal pair (C, E) on

L. Let C ′ be a unipotent class in G corresponding to a partition λ =

(λ1, λ2, . . . , λr). Then for u ∈ C ′, AG(u) is a cyclic group of order n′
λ,

where n′λ is the greatest common divisor of n′, λ1, λ2, . . . , λr. Let E ′ be the

local system on C ′ corresponding to ρ ∈ AG(u)∧. The condition for C ′

such that IC(C ′, E ′) is a component of K (up to shift) is that each λi is

divisible by d. In this case n′
λ is divisible by d, and we have a surjective

homomorphism AG(u) → AL(v) which factors through the natural maps

ZG → AG(u) and ZG → AL(v). Let ρ ∈ AG(u)∧ be the character obtained

as the pull back of ρ0 ∈ AL(v)∧. Then IC(C ′, E ′) is the unique component

in K whose support is C
′
.

Now W = NG(L)/L is isomorphic to the symmetric group Sn/d. The

irreducible character E = Eµ ∈ S∧
n/d corresponding to (C ′, E ′) under the

generalized Springer correspondence is given by µ = (λ1/d, λ2/d, . . . ).

3.3. We fix an F -stable Borel subgroup B of G and an F -stable maxi-

mal torus contained in B, where B (resp. T ) is the subgroup of G consisting

of upper triangular matrices (resp. diagonal matrices). We fix d as in 3.2,

and put t = n/d. Let P = LUP be the parabolic subgroup of G containing

B, where L is the Levi subgroup of P containing T of type Ad−1×· · ·×Ad−1,

(t-times). Hence P , L and UP are all F -stable. Let (C, E) be the cuspidal

pair in L corresponding to ρ0 ∈ AL(v)∧ as in 3.2, and (C,L) the corre-

sponding objects in l. The unipotent class C in L can be identified with

C1 × · · · × Ct in SLd × · · · × SLd with Ci regular unipotent in SLd. We

choose v = v0 ∈ C
F so that v0 is a product of split elements in CF

i , and

let y0 = v0 − 1 the corresponding element in CF . Let ÃL(v0) be as in 1.3.

Since AL(v0) is abelian, ρ0 ∈ AL(v)∧ is linear. We choose an extension

ρ̃0 so that ρ̃0(σ) = 1. This corresponds to an isomorphism ϕ0 : F ∗E ∼−→ E

which induces the identity map on the stalk Ev0 .

Let λ = (λ1, . . . , λr) be a partition of n such that all the λi are divisible

by d, and u = uλ the split unipotent element in GF . As in the case of (C, E),
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we choose an extension ρ̃ of ρ ∈ AG(u)∧ corresponding to E ′ by the condition

that ρ̃(σ) = 1, and consider γ = γ(v, ρ̃0, u, ρ̃) as in 1.3. Passing to the Lie

algebra situation, we consider y = yλ ∈ gF and y0 ∈ C
F . Under this setting,

we write γ as γ = γ(y0, ρ̃0, y, ρ̃). We consider the subvariety Py of G/P as

given in (1.6.1). As in 1.6, the map ϕ0 induces a linear isomorphism Φ on

Ha0+r
c (Py, L̇). We have

Theorem 3.4. Assume that p is arbitrary, and let G = SLn with the

standard Frobenius map F . Then Φ acts on Ha0+r
c (Py, L̇) = Ha0+r

c (Py, L̇)ρ
as q(a0+r)/2 times identity. In particular, we have γ(y0, ρ̃0, y, ρ̃) = 1.

3.5. The remainder of this section is devoted to the proof of Theo-

rem 3.4. Since the second statement easily follows from the first one, we

concentrate to the proof of the first statement. First we note that Py may

be identified with the set Fy of partial flags

D = (Vd ⊂ V2d ⊂ · · · ⊂ V(t−1)d),

such thatD is y-stable and that y induces a regular nilpotent transformation

on Vid/V(i−1)d for each i ≥ 1. (Here Vj denotes a subspace of V with

dimVj = j.)

Let Gy be the set of d-dimensional subspaces Vd of V such that Vd is y-

stable and that y acts as a regular nilpotent transformation on Vd. We have

a natural surjective map p : Fy → Gy by p(D) = Vd. Then Gy is identified

with the variety P(Ker yd) −P(Ker yd−1); for each v ∈ Ker yd −Ker yd−1,

the space spanned by v, yv, . . . , yd−1v gives an element in Gy. We have a

filtration of Gy

Gy = G0 ⊃ G1 ⊃ · · · ,

where Gi − Gi+1 ' As−i with dimGy = s = d(dimKer y) − 1. Here Gi is

defined by P(Ui) − P(Ker yd−1) for a certain subspace Ui of Ker yd con-

taining Ker yd−1 such that Ker yd = U0 ⊃ U1 ⊃ · · · . Let us choose a

non-zero vector wi ∈ Ui − Ui+1 for each i. We can choose some ej as wi.

As in the case of Bu for GLn, one can define a map f (i) : As−i → Z eG
(y),

v 7→ f
(i)
v such that f

(i)
v · wi = v for v ∈ Ui − Ui−1, under the identification

P(Ui)−P(Ui−1) ' As−i. (Here G̃ denotes GLn.) Let V
(i)
d be the element

in Gy corresponding to wi. Then y induces a nilpotent transformation y on

V = V/V
(i)
d , which corresponds to a partition λ′ of n− d obtained from λ

https://doi.org/10.1017/S0027763000009338 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009338


180 T. SHOJI

by replacing some λj by λj − d. Moreover, p−1(V
(i)
d ) is isomorphic to Fy,

the corresponding variety for SL(V ), under the correspondence

D = (V
(i)
d ⊂ V2d ⊂ · · · ⊂ V(t−1)d) 7−→ D = (V 2d ⊂ · · · ⊂ V (t−1)d)

with V jd = Vjd/V
(i)
d . As in the case of GLn, by using the map f (i) : A

s−i →
ZG̃(y), we have an isomorphism

(3.5.1) p−1(V
(i)
d )× (Gi − Gi+1) ' p

−1(Gi − Gi+1), (D, v) 7−→ f (i)
v ·D.

Note that Fy and Gy have natural Fq-structures inherited from G/P . Then

Gi are all F -stable, and the isomorphism in (3.5.1) is F -equivariant.

3.6. Let Q be the maximal parabolic subgroup of G containing P of

type An−d−1 × Ad−1. Let G be the set of subspaces of dimension d in V .

Then G may be identified with G/Q and Gy is a locally closed subvariety

of G. The map p : Fy → Gy is obtained from the map G/P → G/Q by

restricting it to Py, which we also denote by p. Now, V
(i)
d ∈ Gy corresponds

to gQ ∈ G/Q for some g = gi ∈ G and p−1(V
(i)
d ) may be identified with

p−1(gQ), where

p−1(gQ) = {xP ∈ gQ/P | Ad(x)−1y ∈ C + nP}.

We may choose g so that gP ∈ Py.

We note that Q/P is isomorphic to M/PM , where M is the subgroup

of G isomorphic to SLn−d, and is isogeneous to a component of the Levi

subgroup of Q containing T . Then PM = P ∩M is the parabolic subgroup

of M of type Ad−1 × · · · × Ad−1, (t − 1 factors), and LM = L ∩M is the

Levi subgroup of PM . The regular nilpotent orbit C in l can be written

as C = CM × Ct, where CM is the regular nilpotent orbit in LieLM = lM
and Ct is the regular nilpotent orbit in the t-th component of l. Since

Ad(g)−1y ∈ C + nP , one can write Ad(g)−1y = y′ + z′ with y′ ∈ m and

z′ ∈ Ct + nQ. (Here m = LieM and nQ = LieUQ.) Set

PM
y′ = {xPM ∈M/PM | Ad(x)−1y′ ∈ CM + nPM

},

P̂M
y′ = {x ∈M | Ad(x)−1y′ ∈ CM + nPM

}.

We note that

(3.6.1) The map xPM 7→ gxP gives an isomorphism PM
y′ ' p−1(gQ).
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In fact, since M normalizes CtUQ, we have Ad(x)−1z′ ∈ Ct + nQ. Then

the condition Ad(gx)−1y ∈ C+nP is equivalent to the condition Ad(x)−1y′ ∈

CM + nPM
. (3.6.1) follows from this.

By (3.6.1), one can define an injective map ι : PM
y′ → Py. Similarly,

P̂M
y′ is isomorphic to the set {x′ ∈ gM | Ad(x′)−1y ∈ C + nP} which is a

subset of P̂y. Hence we have an injective map ι̂ : P̂M
y′ → P̂y. Now it is easy

to see that the following diagram commutes.

(3.6.2)

C
α

←−−−− P̂y
β

−−−−→ Py

ι′

x
xι̂

xι

CM
α′

←−−−− P̂M
y′

β′

−−−−→ PM
y′ .

Here the left vertical map is an injection ι′ : CM → C, x 7→ (x, y′′), where

y′′ is the projection of z′ ∈ Ct + nQ to Ct, i.e., the projection of Ad(g)−1y ∈

C + nP on Ct. The horizontal maps α′, β′ are defined in a similar way as α

and β by replacing G by M .

Let L and L̇ be local systems on C and Py, respectively, as in 1.6. We

denote by LM and L̇M similar objects for CM and PM
y′ as L, L̇ for C and

Py. Then LM coincides with (ι′)∗L. This implies, by (3.6.2), that

(3.6.3) ι∗L̇ = L̇M .

Put

Yy = {xQ ∈ G/Q | Ad(x)−1y ∈ m + Ct + nQ},

Ŷy = {x ∈ G | Ad(x)−1y ∈ m + Ct + nQ}.

Then Yy is isomorphic to Gy. We consider the subset Yi of Yy corresponding

to Gi. Since Gi − Gi+1 coincides with the set {f
(i)
v · wi | v ∈ As−i}, one

can write as Yi − Yi+1 = {f
(i)
v giQ | v ∈ As−i}. Then we have the following

commutative diagram

(3.6.4)

Ct
eα

←−−−− Ŷy

eβ
−−−−→ Yyx

x
x

{y′′i } ←−−−− f (i)(As−i)gi −−−−→ Yi − Yi+1.
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Here y′′i = y′′ is as in (3.6.2), and α̃(x) is the Ct-component of Ad(x)−1y ∈
m + Ct + nQ, β̃(x) = xQ. All the vertical maps are natural inclusions and

the lower horizontal arrows are the restrictions of upper ones. Note that

the right lower horizontal map is an isomorphism since Yi − Yi+1 ' As−i.

Let Lt be the cuspidal local system on Ct. Then we have a local system

L̇t on Yy by the condition that α̃∗Lt = β̃∗L̇t. Since Lt is a local system of

rank 1, it follows from (3.6.4) that

(3.6.5) The restriction of L̇t on Yi − Yi+1 is the constant sheaf Q̄l.

We now consider the commutative diagram

(3.6.6)

C
α

←−−−− P̂y
β

−−−−→ Pyx
x

x

CM × {y
′′
i }

α′′

←−−−− β−1(p−1(Yi − Yi+1))
β′′

−−−−→ p−1(Yi − Yi+1).

Here all the vertical maps are natural inclusions, and the horizontal maps

α′′ and β′′ are the restrictions of α and β. By (3.5.1), we have

p−1(Yi − Yi+1) ' P
M
y′ × (Yi − Yi+1),

β−1(p−1(Yi − Yi+1)) ' P̂
M
y′ × f (i)(As−i)gi,

(3.6.7)

and under the above isomorphisms, the maps α′′, β′′ are given as

α′′(x, f (i)
v gi) = (α′(x), y′′i ), β′′(x, f (i)

v gi)) = (β′(x), v)

for x ∈ PM
y′ , v ∈ Yi − Yi+1 ' As−i.

Now the restriction of L to CM×{y
′′
i } is a local system LM �Q̄l. Hence

by making use of (3.6.6) and (3.6.7), we have

(3.6.8) Under the isomorphism p−1(Yi − Yi+1) ' P
M
y′ × (Yi − Yi+1), the

restriction of L̇ on p−1(Yi − Yi+1) coincides with L̇M � Q̄l.

It follows from (3.6.8) that we have an isomorphism

(3.6.9) Hk
c (p−1(Yi − Yi+1), L̇) ' Hk′

c (PM
y′ , L̇M ),

where k ≡ k′ (mod 2). Then using the locally trivial filtration of Py =

p−1(Y0) ⊃ p
−1(Y1) ⊃ · · · , and by induction on the rank of G, we see that

(3.6.10) Hodd
c (p−1(Yi), L̇) = 0

for any i ≥ 0.
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3.7. We are now ready to prove Theorem 3.4. Put m = a0 + r. First

we note the following.

(3.7.1) Hm
c (Py, L̇) = Hm

c (Py, L̇)ρ, and the map Φ acts on Hm
c (Py, L̇) as a

scalar multiplication.

In fact, it follows from Section 2 that Hm
c (Py, L̇) has a natural struc-

ture of W × AG(y)-module, which is compatible with the isomorphisms

(1.4.3) and (1.6.2). Hence by the generalized Springer correspondence, it is

decomposed as

Hm
c (Py, L̇) '

⊕

ρ′∈AG(y)∧

Vy,ρ ⊗ ρ
′,

where Vy,ρ′ is an irreducible W-module whenever it is non-zero. Now the

explicit description of the generalized Springer correspondence in the case

of SLn (see 3.2) shows that ρ is the unique character such that Vy,ρ 6= 0.

Hence Hm
c (Py, L̇) = Hm

c (Py, L̇)ρ. Since AG(y) is abelian, Hm
c (Py, L̇) is

an irreducible W-module. It is easy to see that the map Φ on Hm
c (Py, L̇)

commutes with the action of W. Hence Φ is a scalar multiplication, and so

(3.7.1) holds.

Note that in the discussion of 3.5 and 3.6, Gy, Yy, etc. have natural Fq-

structures. We may choose the filtration of Gy and Yy compatible with the

Fq-structure, i.e., all the Yi and Ŷy are F -stable. Then all the diagrams and

formulas there hold with Fq-structure. We consider the top piece Y0−Y1 of

the filtration of Yy. In this case, we may choose g = g0 = 1 in the discussion

in 3.6, and so y is decomposed as y = y′ + z′ with y′ ∈ m and z′ ∈ Ct + nQ.

Hence y′ (resp. y′′) is the projection of y on m (resp. on Ct). Since y is a

split element, y′, y′′ are also split. Let

m′ = (dimM − dim Cy′)− (dimLM − dim CM ),

where Cy′ is the nilpotent orbit in m containing y ′. Since C is the regular

nilpotent orbit in l, we see easily that m = 2dimBy, where By is the

variety of Borel subgroups whose Lie algebra contains y. Similarly, we

have m′ = 2dimBM
y′ . Then by using the locally trivial filtration of By, we

see that

(3.7.2) m−m′ = 2ddim Ker y = 2s.

In fact, assume that y = yλ with λ = (λ1, . . . , λk). By using the locally triv-

ial filtration arising from the maximal parabolic subgroup P1 of G with Levi
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subgroup L1 of type An−2, one obtains that dimBy−dimBL1
y1

= dimKer y,

where y1 is a nilpotent element in LieL1 of type λ′ = (λ1, . . . , λk − 1).

In the same way, one can find a nilpotent element y2 ∈ LieL2 with type

(λ1, . . . , λk − 2) such that dimBL1
y1
− dimBL2

y2
= dimKer y, where L2 is a

Levi subgroup of the maximal parabolic subgroup P2 of L1. Repeating this

procedure, one can find similar formulas for L1 ⊃ L2 ⊃ · · · ⊃ Ld with

BLd
yd

= BM
y′ . (3.7.2) follows from this.

Since Y0 − Y1 ' As, we have an isomorphism with Fq-structures

(3.7.3) Hm
c (p−1(Y0 − Y1), L̇) ' Hm′

c (PM
y′ , L̇M )[s]

as a special case of (3.6.9), where [s] is the Tate twist. (The compatibility of

the Frobenius actions comes from the discussion in 3.6 by noticing that y ′′

is a split element in Ct.) Let ΦM be the map on Hm′

c (PM
y′ , L̇M ) defined in a

similar way as Φ. By induction on the rank of G, we may assume that ΦM

acts on Hm′

c (PM
y′ , L̇M ) as a scalar multiplication by qm′/2. Then by (3.7.3),

Φ acts on Hm
c (p−1(Y0 − Y1), L̇) as a scalar multiplication by qm/2. Now

by using the cohomology long exact sequence with respect to the closed

immersion p−1(Y1) ⊂ p
−1(Y0) = Pu, together with (3.6.10), we see that the

natural map

Hm
c (p−1(Y0 − Y1), L̇) −→ Hm

c (Py, L̇)

is injective. This proves the theorem since Φ acts on Hm
c (Py, L̇) by a scalar

multiplication by (3.7.1).

§4. G = SLn with F of non-split type

4.1. In this section, we assume that G = SLn is as in Section 3, and

that p is large enough so that the argument in Section 2 can be applied

(e.g., p > 3(n − 1)). Let F = σF0 be the twisted Frobenius map on G,

where F0 is the standard Frobenius map over Fq as in 3.1, and σ is the

graph automorphism on G of order 2. Here we take σ : G → G defined

by σ(g) = w0
tg−1w−1

0 for g ∈ G (w0 is the permutation matrix in GLn

corresponding to the longest element in Sn, and tg means the transpose of

the matrix g = (gij)). Then B and T in 3.3 are F and F0-stable.

Unipotent classes in G are all F -stable. In order to describe elements in

CF for each unipotent class C, we introduce a sesqui-linear form as follows.

Let V ' kn be as in 3.1, and V0 the Fq2-subspace of V generated by {ei}.
We define a sesqui-linear form 〈 , 〉 on V0 by 〈

∑
i aiei,

∑
j bjej〉 =

∑
i aib

q
n−i.

Then it is easy to see that for g ∈ GF 2
0 , g ∈ GF if and only if 〈gv, gw〉 =
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〈v, w〉 for any v, w ∈ V0. Let g be the Lie algebra of G, on which F acts

naturally. Then for x ∈ gF 2
0 , x ∈ gF if and only if 〈xv,w〉 + 〈v, xw〉 = 0 for

any v, w ∈ V0.

4.2. For a partition λ = (λ1, . . . , λr) of n, we shall construct a nilpo-

tent element yλ ∈ gF . First we note that there exist basis vectors

f
(i)
j (1 ≤ i ≤ r, 1 ≤ j ≤ λi)

of V0 satisfying the property that

〈f
(i)
j , f

(i′)
k 〉 =





1 if i = i′, j + k = λi + 1 and j 6= k,

±1 if i = i′, j + k = λi + 1 and j = k,

0 otherwise.

In fact, we can choose f
(i)
j = ek for some k if λi is even. If λi is odd, put

λi = 2ti+1. Then f
(i)
j is of the form ek if j 6= ti+1, and we can choose f

(i)
ti+1

from one of the vectors ek ±
1
2en−k+1 with 2k 6= n+ 1 (note that p > 2), or

el with n = 2l + 1.

Put ti = [λi/2] ([ ] is the Gauss symbol) for each λi. We now define a

nilpotent transformation yλ ∈ gF 2
on V0 by

yλf
(i)
j =





f
(i)
j+1 if 1 ≤ j ≤ ti − 1,

εif
(i)
j+1 if j = ti,

−f
(i)
j+1 if ti + 1 ≤ j ≤ λi − 1,

0 if j = λi,

where εi = 1 if λi is even, and εi = 〈f
(i)
j+1, f

(i)
j+1〉 if λi is odd. Then

(4.2.1) {yj
λf

(i)
1 | 1 ≤ i ≤ r, 0 ≤ j ≤ λi − 1}

gives a basis of V0 satisfying the relation

(4.2.2) 〈yj
λf

(i)
1 , yλi−j+1

λ f
(i)
1 〉 = (−1)jai, (ai = ±1)

and 〈yj
λf

(i)
1 , yk

λf
(i′)
1 〉 = 0 for all other pairs. It follows from this that yλ ∈ gF .

Let d be as in 3.2, and assume that d ≥ 2. We assume that the partition

λ satisfies the condition that all the parts λi are divisible by d. We shall

https://doi.org/10.1017/S0027763000009338 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009338


186 T. SHOJI

construct a nilpotent element y1 ∈ gF of type ν = (d, . . . , d) associated to

yλ. We define a map y1 on V0 by

(4.2.3) y1f
(i)
j =

{
0 if j ≡ 0 (mod d),

yλf
(i)
j otherwise.

Then in view of (4.2.2), it is easy to check that y1 leaves the form 〈 , 〉
invariant, and we have y1 ∈ gF .

4.3. Let L be a Levi subgroup of the standard parabolic subgroup P

of G of type Ad−1 × · · · × Ad−1 (t = n/d-factors). (Here P and L are as

in 3.1 with respect to F0, P is σ-stable, σ permutes the i-th factor and

(t− i+1)-th factor, etc.) Thus P and L are F -stable. Let C be the regular

nilpotent orbit in l. We choose a representative y0 ∈ C
F in the following

way; we define a basis {e
(i)
j | 1 ≤ i ≤ t, 1 ≤ j ≤ d} of V0 by e

(i)
j = e(i−1)d+j .

Then in the case where t is even, or t is odd and i 6= (t+ 1)/2, we define

y0e
(i)
j =





e
(i)
j+1 if 1 ≤ i ≤ [t/2], j 6= d,

−e
(i)
j+1 if t− [t/2] + 1 ≤ i ≤ t, j 6= d,

0 if j = d.

If t is odd and i = (t + 1)/2, let V1 be the subspace of V spanned by e
(i)
j

with 1 ≤ j ≤ d. We define y0|V1 as a regular nilpotent element yλ ∈ slFd as

in 4.2.

Let (C,L) be the cuspidal pair in l corresponding to an F -stable char-

acter ρ0 of AL(y0). We have a natural homomorphism AL(y0) → AG(y0).

Since AG(y0) is a cyclic group of order d, this gives an isomorphism compat-

ible with F -action. Thus ρ0 is regarded as an F -stable character of AG(y0).

Since y0 and y1 are conjugate under G, there exists c1 ∈ AG(y0) (up to

F -conjugacy) such that y1 is obtained from y0 by twisting by c1. Since ρ0

is F -stable, the value ρ0(c1) is well-defined. This value is determined by

y1, hence by yλ, which we denote by ηλ. Let γ(y0, ρ̃0, yλ, ρ̃) be the scalar

defined by choosing the extensions ρ̃0, ρ̃ in a similar way as the case of split

F (cf. 3.3). Put m = a0 + r as before. We have the following theorem.

Theorem 4.4. Assume that p is large enough so that Dynkin-Kostant

theory can be applied. Let w0 be the longest element in W. Then Φw0 acts

on Hm
c (Pyλ

, L̇) = Hm
c (Pyλ

, L̇)ρ as a scalar multiplication by ηλ(−q)m/2. In

particular, γ(y0, ρ̃0, yλ, ρ̃) = ηλ(−1)m/2.
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4.5. The remainder of this section is devoted to the proof of the theo-

rem. If we notice that the preferred extension ṼE of VE is given by defining

the action of σ ∈ W̃ by the action of w0 ∈ W, the second statement fol-

lows easily from the first one. So we concentrate on the proof of the first

statement. For y1 of type (d, . . . , d), we construct a sl2-triple {y1, y
−
1 , h1}

as follows. On each Jordan block, y1 can be expressed as a matrix of degree

d with respect to the basis in (4.2.1) as

Y =




0

1
. . .
. . . 0

1 0



.

We define matrices Y −,H of degree d by

Y − =




0 1 · (d− 1)
0 2(d− 2)

0
. . .
. . . (d− 1) · 1

0



,

H =




1− d
3− d

. . .

d− 1


 .

Then [H,Y ] = 2Y , [H,Y −] = −2Y , [Y, Y −] = H. Thus by combining these

matrices for all the Jordan blocks, one obtains y−1 , h1 ∈ g satisfying the

property that [h1, y1] = 2y1, [h1, y
−
1 ] = −2y−1 , [y1, y

−
1 ] = h1 as asserted. It

follows easily from the construction that y−1 , h1 ∈ gF .

We define a transversal slice Σ with respect to the orbit through y1 in

g by Σ = y1 +Zg(y
−
1 ). Hence Σ is F -stable. We have the following lemma.

Lemma 4.6. Let yλ be as in 4.2. Then we have yλ ∈ Σ
F .

Proof. We write yλ as yλ = y1 + y. It is enough to show that y ∈
Zg(y

−
1 ). Now y is a nilpotent transformation on V0 determined by the

condition that
y : yj

λf
(i)
1 7−→ yj+1

λ f
(i)
1
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for j ≡ 0 (mod d), and it maps all other yj
λf

(i)
1 to 0. Since y−1 maps yj

λf
(i)
1

to yj−1
λ f

(i)
1 up to scalar if j 6≡ 1 (mod d), and to 0 if j ≡ 1 (mod d). we see

easily check that y−1 ◦ y = y ◦ y−1 = 0 on V0. Hence y ∈ Zg(y
−
1 ).

4.7. By using the sl2-triple {y1, y
−
1 , h1}, one can define a Lie algebra

homomorphism φ1 : sl2 → g as in 2.7. The construction of sl2-triple given

in 4.5 works well for yλ in general, and one gets the sl2-triple containing

yλ. We denote by φλ the homomorphism sl2 → g obtained from it. Thus

ZG(φ), MG(φ), are defined as in 2.7 for φ = φ1, φλ.

Let π : ġ→ g be as in 2.8. Then Py ⊂ ġ, and the local system L̇ on Py

can be extended to a local system on ġ (cf. 2.8), which we denote also by

L̇ as in 2.8. Put K1 = π!L̇. K1 is essentially the same as K = π!L̇
∗ in 2.8,

and so K1[δ] is a perverse sheaf on g with a canonical W-action, where δ is

as in 2.8. By making use of the transversal slice Σ, we show the following

proposition.

Proposition 4.8. There exist natural maps of W-modules, which

make the following diagram commutative.

H
i(g,K1)

π1
//

πλ

��

Hi
c(Py1 , L̇)

ξλuukk
k
k
k
k
k
k
k
k
k
k
k
k

Hi
c(Pyλ

, L̇)

Moreover, the map ξλ is equivariant with respect to the actions of Φ on both

cohomologies.

Proof. By the inclusion {yλ} ⊂ Σ ⊂ g, we have the canonical maps

H
i(g,K1) //

��

H
i(Σ,K1)

uull
l
l
l
l
l
l
l
l
l
l
l
l

Hi
yλ

(K1)

(4.8.1)

Since K1 is a W-complex with respect to the trivial action of W on g,
the above maps are W-equivariant. Since K1 = π!L̇, we have

Hi
yλ

(K1) ' H
i
c(Pyλ

, L̇)
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by the proper base change theorem. On the other hand, K1[δ] is a perverse
sheaf on g. Since the morphism G × Σ → g is smooth with all fibres of
pure dimension equal to dimZG(y1), by a similar argument as in [L6, 3.2],
K1[dimΣ]|Σ is a perverse sheaf on Σ. Σ is stable under the Gm-action (t :
x 7→ ti−2x for each x ∈ gi with respect to the grading g =

⊕
gi associated

to φ1 : sl2 → g), and contracts to y1 ∈ Σ. Since K1 is Gm-equivariant, the
canonical map H

i(Σ,K1)→H
i
y1

(K1) gives rise to an isomorphism

H
i(Σ,K1) ' H

i
y1

(K1) ' H
i
c(Py1 , L̇).

The proposition follows from this.

For the special case where i = 0, we have the following more precise

result.

Lemma 4.9. The maps π1, πλ in Proposition 4.8 give isomorphisms

H
0(g,K1) ' H

0
c (Py, L̇) ' Γ (C,L)

for y = y1, yλ. In particular, ξ0
λ : H0

c (Py1 , L̇) → H0
c (Pyλ

, L̇) is an isomor-

phism.

Proof. We consider the following commutative diagram

(4.9.1)

C
α

←−−−− ̂̇g′ β
−−−−→ ġ′

π
−−−−→ g

j̄

x bj

x
xj

xid

C
α

←−−−− ̂̇g β
−−−−→ ġ

π
−−−−→ g

where the lower horizontal maps are as in 2.8, and

ġ′ = {(x, gP ) ∈ g×G/P | Ad(g−1)x ∈ C + z + nP},

̂̇g′ = {(x, g) ∈ g×G | Ad(g−1)x ∈ C + z + nP }

and α, β and π are maps defined in a similar way as α, β and π. ĵ, j
are open immersions, and π is proper. Now the local system L̇ on ġ is
determined by the condition that α∗L = β∗L̇. Since the square in the left
hand side in (4.9.1) is cartesian, ĵ!(α

∗L) ' α∗(j̄!L). The middle square is
also cartesian, and we have

β
∗
(j!L̇) ' ĵ!(β

∗L̇) ' ĵ!(α
∗L) ' α∗(j!L).
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By the definition of the direct image with compact support, we have π!L̇ =
π∗(j!L̇). Then

H
0(g,K1) = H

0(g, π!L̇)

= H
0(g, π∗(j!L̇))

' H0(ġ′, j!L̇).

Similarly, by using the open immersion

j : Py ↪−→ Py = {gP ∈ G/P | Ad(g−1)y ∈ C + nP },

we see that H0
c (Py, L̇) ' H0(Py, j!L̇) for y = y1, yλ. It follows that the

maps π1, πλ in Proposition 4.8 for i = 0 are nothing but the restriction
Γ (ġ′, j!L̇) → Γ (Py, j!L̇) of the global section of the sheaf j!L̇ on ġ′ for
y = y1, yλ. But since β

∗
(j!L̇) ' α∗(j̄!L), we have

Γ (ġ′, j!L̇) ' Γ (C, j̄!L) ' Γ (Py, j!L̇).

Finally, we note that j̄!L ' j̄∗L since L is the cuspidal local system and so
is clean ([L7, 2.2]). Hence

Γ (C, j !L) ' Γ (C, j∗L) ' Γ (C,L)

as asserted.

4.10. Let φ0 : sl2 → l ⊂ g be the Lie algebra homomorphism such that

φ0 ( 0 1
0 0 ) = y0 constructed as in 4.3. Thus φ0 is F -equivariant with respect

to the twisted Frobenius action on sl2. Put G0 = Z0
G(φ0) and T0 = Z0

L(φ0).

Then G0 and T0 are F -stable. It is checked that G0 is isomorphic to SLt,

and F acts as a twisted Frobenius endomorphism on SLt. By (2.9.1) we

have T0 ' Z0
L, and under the identification G0 ' SLt, T0 coincides with

a maximally split maximal torus of SLt, and W = NG(Z0
L)/L is naturally

isomorphic to the Weyl group of G0 with respect to T0.

F acts naturally on W ' St, as a conjugation by w0 ∈ W, where w0 is

the longest element in W. Thus Fw0 acts trivially on W. By 2.17, F acts

naturally on H∗
T0

=
⊕

iH
2i
T0
' S(h∗), where h∗ = Q̄l⊗ZX(T0). W also acts

on H∗
T0

, which coincides with the action of W on S(h∗) induced from the

action of W on X(T0) (cf. (2.3.2)). We have the following lemma.

Lemma 4.11. Fw0 acts on H2i
T0

as a scalar multiplication by (−q)i.
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Proof. Fw0 commutes with the graded algebra structure of H ∗
T0

. Since
H∗

T0
is generated by H2

T0
, it is enough to show that Fw0 acts on H2

T0
as a

scalar multiplication by −q. We show this by modifying the arguments used
in the proof of Lemma 2.4. Let Γ be as in the proof of Lemma 2.4 (with
respect to G0). We consider the locally trivial fibration f : T0\Γ → G0\Γ .
We may assume that Γ is defined over Fq, and f is F -equivariant. We
consider the spectral sequence

(4.11.1) Hp(G0\Γ,R
qf∗Q̄l) =⇒ Hp+q(T0\Γ ),

which have natural actions of W (cf. 2.4) and of F . Let θ be the reflection
representation of W. Then (4.11.1) implies a spectral sequence

Hp(G0\Γ,R
qf∗Q̄l)θ =⇒ Hp+q(T0\Γ )θ,

where Xθ denotes the θ-isotypic subspace for a W-module X. As in 2.4, we
have

Hp(G0\Γ,R
qf∗Q̄l) ' H

p(G0\Γ )⊗Hq(T0\G0),

and so
Hp(G0\Γ,R

qf∗Q̄l)θ ' H
p(G0\Γ )⊗Hq(T0\G0)θ

since W acts trivially on Hp(G0\Γ ). Now it is known that
⊕

iH
2i(T0\G0)

is a graded regular representation of W, and that

Hq(T0\G0)θ =

{
Hq(T0\G0) if q = 2,

0 if q < 2.

Since H∗(T0\Γ ) = H∗
T0
' S(h∗), we have H2(T0\Γ )θ = H2(T0\Γ ). More-

over, H0(G0\Γ ) = H0
G = Q̄l be Lemma 2.4. It follows that

H2(T0\Γ ) ' H2(T0\G0).

This isomorphism is compatible with the actions of F and W. It is well-
known that Fw0 acts as a scalar multiplication −q on H2(T0\G0) =
H2(B0\G0), where B0 is the F -stable Borel subgroup of G0 containing T0.
Hence Fw0 acts similarly on H2

T0
= H2(T0\Γ ). This proves the lemma.

4.12. We consider the equivariant homology H
M0(yλ)
∗ (Pyλ

, L̇∗), where

M0(yλ) = M0
G(yλ). By results in Section 2, the graded Hecke algebra

H = S ⊗ Q̄l[W] acts on H
M0(yλ)
∗ (Pyλ

, L̇∗), where S = S(h∗) ⊗ Q̄l[r] as
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defined in 2.9 with S(h∗) in 4.10. We shall construct a standard H-module

Ev,ρ′ obtained from H
M0(yλ)
∗ (Pyλ

, L̇∗) for a certain pair (v, ρ′). Let y be the

nilpotent element in gC corresponding to yλ ∈ g. We choose y−, h0 ∈ gC

such that {y, y−, h0} forms an sl2-triple. Put h = h0, r0 = 1. Then

(h, r0) ∈ m(y)C with h semisimple. We denote by v an element in H ∗
M0(yλ)

corresponding to the M 0(y)-orbit of (h, r0). Let ρ be the irreducible char-

acter of AG(yλ) as in 4.3. Since AG(yλ) ' M(yλ) ' M(y), one can regard

ρ as a character of M(y). Let ρ∗ be the dual representation of ρ.

Under the notation in Remark 2.14 and Theorem 2.15, we note that

(4.12.1) Let v be as above. Then Ev,ρ′ is a simple H-module, where ρ′ is

the restriction of ρ∗ on M(y, v).

It is enough to show that (h, r0) satisfies the property in Theorem 2.15.

By Dynkin-Kostant theory, y is contained in the open dense orbit in

Y(h,r0) = g2 (the graded space with respect to h) under the action of ZGC
(h).

It remains to show that ρ′ occurs in H
{e}
∗ (Pyλ

, L̇∗). But this is clear since

Hm
c (Pyλ

, L̇) = Hm
c (Pyλ

, L̇)ρ. Thus (4.12.1) holds.

4.13. The Fq-structure ϕ0 : F ∗L ∼−→ L induces a linear isomorphism Φ

onH∗
c (Pyλ

, L̇). ϕ0 also induces a linear isomorphism Ψ onH
M0(yλ)
∗ (Pyλ

, L̇∗)
satisfying the following property; by [L6, 7.2, (d)], there exists a Q̄l-linear

isomorphism

(4.13.1) Q̄l ⊗H∗

M0(yλ)
H

M0(yλ)
∗ (Pyλ

, L̇∗) −→ H
{e}
∗ (Pyλ

, L̇∗),

where Q̄l is regarded as an H∗
M0(yλ)-module via the canonical map

H∗
M0(yλ) → H∗

{e} = Q̄l. F acts naturally on H∗
M0(yλ) and on H∗

{e}, and

the last map is F -equivariant with respect to the trivial action on Q̄l. Thus

Ψ induces a linear map Ψ on the left hand side of (4.13.1). The Q̄l-linear

map in (4.13.1) is compatible with Ψ and the map Φ∗ on H
{e}
∗ (Pyλ

, L̇∗) =

H∗
c (Pyλ

, L̇)∗, where Φ∗ is the transposed inverse of Φ.

Note that Hm
c (Pyλ

, L̇) is an irreducible W-module. Since Φw0 com-

mutes with all the elements in W, we see that Φw0 acts on Hm
c (Pyλ

, L̇) as

a scalar multiplication. Then we have the following lemma.

Lemma 4.14. Assume that Φw0 acts on Hm
c (Pyλ

, L̇) by a scalar mul-

tiplication by ζ. Then Φw0 acts on H0
c (Pyλ

, L̇) by a scalar multiplication

by ζ(−q−1)m/2.
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Proof. Let v = (h, r0) be as in (4.12.1). Let γv : H∗
M0(yλ) → Q̄l be

the algebra homomorphism corresponding to v (cf. 2.13). Since M 0(yλ) is
F -stable, F acts naturally on H∗

M0(yλ) such that Ψ(mx) = F (m)Ψ(x) for

m ∈ H∗
M0(yλ) and x ∈ H

M0(yλ)
∗ (Pyλ

, L̇∗). Since M 0
G(yλ) ' Z0

G(yλ)×Gm, we

have H∗
M0(yλ) ' S(h∗1)

W1⊗Q̄l[r], where W1 is the Weyl group of a reductive

group Z0
G(φλ) and h∗1 = Q̄l⊗ZX(T1) with a maximally split maximal torus

T1 of Z0
G(φλ). We note that

(4.14.1) The maximal ideal Kerγv in H∗
M0(yλ) is generated by homogeneous

polynomials.

In fact, by the previous argument, we may replace H ∗
M0(yλ) by

S(m(y)∗C,r)
M0(y), and v by (h, r0) ∈ m(y)C,r. It is enough to show that

if a polynomial function f on m(y)C,r which is invariant under the action of
M0(y) vanishes on (h, r0), then its homogeneous parts also vanish at (h, r0).
But the Gm-action on m(y)C implies that t : (h, r0) 7→ (t−2h, t−2r0). Since
f is invariant under M 0(y), we see that f vanishes also on (t−2h, t−2r0) for
any t ∈ C∗. It follows that each homogeneous part of f also vanishes at
(h, r0) as asserted.

Next we note that

(4.14.2) The maximal ideal Ker γv is F -stable.

Let w1 be the longest element in W1. As in Lemma 4.11, Fw1 acts
on S(h∗1)i (the i-th homogeneous part) as a scalar multiplication by (−q)i.
Hence F acts on S(h∗1)

W1
i by a scalar multiplication by (−q)i. Also, F acts

on Q̄l[r]i as a scalar multiplication by qi. Since Ker γv is a homogeneous
ideal, F stabilizes Ker γv. Hence (4.14.2) holds.

Now Ev,ρ′ is obtained as the quotient of H
M0(yλ)
∗ (Pyλ

, L̇∗)ρ′ by the

H-submodule Iv = Ker γv · H
M0(yλ)
∗ (Pyλ

, L̇∗)ρ′ . Since Ker γv is F -stable,
we see that Iv is Ψ-stable. Thus Ψ induces a linear map on Ev,ρ′ . We

consider the filtration F 0 ⊆ F 1 ⊆ · · · of H
M0(yλ)
∗ (Pyλ

, L̇∗) as in 2.16. Then
each F i, as well as its ρ′-isotypic part F i

ρ′ , is Ψ-stable. Then (F i
ρ′)v is also

Ψ-stable since it is the quotient of F i
ρ′ by F i

ρ′ ∩ Iv. By (2.16.5) and by

our assumption, Ψw0 acts on the non-zero space F 0
v = (F 0

ρ′)v as a scalar

multiplication by ζ−1. This implies that Ψw0 acts on H
M0(yλ)
0 (Pyλ

, L̇∗)
modulo Iv by ζ−1. On the other hand, since Ev,ρ′ is a simple H-module,

H
M0(yλ)
∗ (Pyλ

, L̇∗)ρ′ is generated by H
M0(yλ)
0 (Pyλ

, L̇∗)ρ′ mod Iv as an H-
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module. Since r acts as a scalar multiplication by r0 on Ev,ρ′ , the action
of H on Ev,ρ′ is given by the action of S(h∗) = H∗

T0
and of W. Note that

Ψw0(ξx) = Fw0(ξ)Ψw0(x) for ξ ∈ S, x ∈ H
M0(yλ)
∗ (Pyλ

, L̇∗). The action

of W preserves the grading of H
M0(yλ)
∗ (Pyλ

, L̇∗), and Ψw0 commutes with

W. It follows, by Lemma 4.11 that Ψw0 acts on H
M0(yλ)
m (Pyλ

, L̇∗)ρ′ modulo
Iv as a scalar multiplication by ζ−1(−q)m/2. Let fm be the map Fm−1

v →
Fm

v as in 2.16, which is M(yλ, v)-equivariant. Since (Fm
v )ρ′/(Im fm)ρ′ is

regarded as a natural quotient of H
M0(yλ)
m (Pyλ

, L̇∗)ρ′ modulo Iv, Ψw0 acts

on (Fm
v )ρ′/(Im fm)ρ′ as ζ−1(−q)m/2. Since H

{e}
m (Pyλ

, L̇∗) is isomorphic to

Fm
v / Im fm by (2.16.4), we see that Ψw0 acts on H

{e}
m (Pyλ

, L̇∗)ρ′ by a scalar
multiplication by ζ−1(−q)m/2, which coincides with the action of Φ∗w0 on

it. We claim that H
{e}
m (Pyλ

, L̇∗) = H
{e}
m (Pyλ

, L̇∗)ρ′ . In fact,

H{e}
m (Pyλ

, L̇∗) = H0
c (Pyλ

, L̇)∗ = Γ (C,L)∗

by Lemma 4.9. AL(y0) acts on Γ (C,L) by the character ρ0. Since ρ is
the pull back of ρ0 under the map AG(yλ)→ AL(y0) (cf. 3.2), the action of
M(yλ) = AG(yλ) on H0

c (Pyλ
, L̇) is via ρ0. Hence H0

c (Pyλ
, L̇) = H0

c (Pyλ
, L̇)ρ

and the claim follows.

Thus Φw0 acts on H0
c (Pyλ

, L̇) = H
{e}
m (Pyλ

, L̇∗)∗ by a scalar multiplica-
tion by ζ(−q−1)m/2 as asserted.

4.15. We are now ready to prove Theorem 4.4. First we note that

W acts trivially on H0
c (Py, L̇) for any y = yν such that all the parts of ν

are divisible by d. In fact, if yν is regular nilpotent, a0 + r = 0 by (1.3.1)

since C is also a regular nilpotent class in L. It follows, by the generalized

Springer correspondence (see 3.2), that H0
c (Pyν , L̇) is the irreducible W-

module corresponding to the unit representation. Thus by Lemma 4.9,

H0
c (Py, L̇) is also a trivial W-module for any y.

Now assume that Φw0 acts on Hm
c (Pyλ

, L̇) by a scalar multiplication

by ζ. Then by Lemma 4.14, Φw0 acts on H0
c (Pyλ

, L̇) by a scalar multipli-

cation by ζ(−q−1)m/2. Since the map H0
c (Py1 , L̇) → H0

c (Pyλ
, L̇) is Φw0-

equivariant isomorphism by Lemma 4.9 (and Proposition 4.8), we see that

Φw0 acts on H0
c (Py1 , L̇) by a scalar multiplication by ζ(−q−1)m/2. Since

w0 acts trivially on it, we see that

(4.15.1) Φ acts on H0
c (Py1 , L̇) by ζ(−q−1)m/2.
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On the other hand, by a similar argument as in the proof of Lemma 4.9,

the natural map

H0
c (Py0 , L̇) ' Γ (C,L) −→ Ly0

gives an isomorphism. This isomorphism is compatible with the action of

Φ and of ϕ0. It follows that Φ acts on H0
c (Py0 , L̇) as an identity map. Since

y1 is in the G-orbit of y0, H
0
c (Py0 , L̇) ' H0

c (Py1 , L̇). As discussed in the

proof of Lemma 4.14, AG(y0) acts on H0
c (Py0 , L̇) via ρ0. We also note that

AL(y0) ' AG(y0). Since y1 is GF -conjugate to yc1 , an element twisted by

c1 ∈ AG(y0) from y0, we see that

(4.15.2) Φ acts on H0
c (Py1 , L̇) by a scalar multiplication by ρ0(c1) = ηλ.

Comparing (4.15.1) and (4.15.2), we see that ζ = ηλ(−q)m/2. This

proves the theorem.

4.16. In order to apply Theorem 4.4, we need to know c1 ∈ AG(y0)

such that y1 = (y0)c1 . For a given y0, we shall choose a specific y1 and yλ,

and determine c1 explicitly. Put λ′ = (λ′1, . . . , λ
′
r) with λ′i = λi/d. Hence

λ′ is a partition of t. Let {e
(i)
j } be the basis of V0 as in 4.3. Put d′ = [d/2].

Let us define a subspace W0 of V0 and define y0 by

W0 =

{
〈e

(i)
d′+1 | 1 ≤ i ≤ t〉 if d is odd,

{0} if d is even.

Also we define subspaces W1, W2 of V0 by

W1 = 〈e
(i)
j | 1 ≤ j ≤ d

′, 1 ≤ i ≤ t〉,

W2 = 〈e
(i)
j | d− d

′ + 1 ≤ j ≤ d, 1 ≤ i ≤ t〉.

Clearly we have V0 = W1⊕W0⊕W2. We define a new basis {h
(i)
j | 1 ≤ j ≤

d, 1 ≤ i ≤ t} of V0 satisfying the following conditions.

(i) h
(i)
j = e

(i)
j if e

(i)
j ∈W1.

(ii) The set {h
(i)
j | d− d

′ + 1 ≤ j ≤ d, 1 ≤ i ≤ t} coincides with the set of

the basis {e
(i)
j } of W2.
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(iii) Let z be the number of i such that λ′i is odd. Then

〈h
(2i−1)
j , h

(2i)
d−j+1〉 = 1 for 1 ≤ i ≤ (t− z)/2, 1 ≤ j ≤ d,

〈h
(i)
j , h

(i)
d−j+1〉 = 1 for (t− z)/2 + 1 ≤ i ≤ t, 1 ≤ j ≤ d′,

〈h
(i)
d′+1, h

(i)
d′+1〉 = ±1 for (t− z)/2 + 1 ≤ i ≤ t if d: odd,

〈h
(i)
j , h

(i′)
j′ 〉 = 0 for all other cases.

(iv) {h
(i)
d′+1} gives a basis of W0 in the case where d is odd.

The conditions (i)–(iv) determines {h
(i)
j } uniquely except the vectors con-

tained in W0. We note that one can choose the basis {h
(i)
j } of W0 so that

the transition matrix between {e
(i)
j } and {h

(i)
j } has the determinant ±1 (see

the construction of f
(i)
j in 4.2).

We define a nilpotent transformation y ′1 ∈ gF as in 4.2 replacing f
(i)
j

by h
(i)
j . Then it is easy to construct y′λ ∈ gF such that y′1 is obtained from

y′λ by a similar procedure as y1 is obtained from yλ. Clearly, y′1 (resp. y′λ)

is conjugate to y1 (resp. yλ). The argument in the proof of Theorem 4.4

works well for y′1, y
′
λ. Thus we consider y′1 and y′λ, and write them as y1,

yλ. We shall describe c1 ∈ AG(y0) such that y1 = (y0)c1 . It follows from the

construction that there exists g ∈ G̃ = GLn such that Ad(g)y0 = y1, where

g stabilizes the subspaces W0, W1, W2. More precisely, g acts trivially on

W1, and gives a permutation matrix with respect to the basis {e
(i)
j } up to

±1 on W2. Thus by our choice of the basis {h
(i)
j }, we have det g = ±1. Let

us take α ∈ Fq such that αn = ±1 (if det g = 1, we choose α = 1). We

note that Ker y0 ⊂ W2, and that g stabilizes Ker y0. We denote by g0 the

restriction of g on Ker y0. Then we have

Lemma 4.17. Let the notations be as before. Then we have y1 = (y0)c1 ,
where c1 ∈ AG(y0) is given, under the identification AG(y0) ' {x ∈ F

∗
q |

xd = 1}, by

c1 = αt(1−q) det g0.

Proof. Let φ0 : sl2 → g be as in 4.10, and we consider the group
ZG(φ0). Then AG(y0) ' ZG(φ0)/Z

0
G(φ0). We have ZG(φ0) ' {x ∈ GLt |

detxd = 1}, where the element g1 ∈ ZG(φ0) corresponding to x is given as
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follows; g1 acts on the subspace Vj of V0 spanned by {e
(i)
j | 1 ≤ i ≤ t}, for

a fixed j, as x ∈ GLt. Now if we can find g1 ∈ G such that Ad(g1)y0 = y1,
then g−1

1 F (g1) ∈ AG(y0), and it leaves Ker y0 invariant. Moreover, the
determinant of the restriction of g−1

1 F (g1) gives rise to the corresponding
element in AG(y0) ' {x ∈ F

∗
q | x

d = 1}.
Now in our situation, if we put g1 = α−1g, we have g1 ∈ G and

Ad(g1)y0 = y1. Then g−1
1 F (g1) = α1−qg−1F (g). On the other hand,

since F (g) = w0(
tg−1)w−1

0 , F (g) also stabilizes the subspaces W0, W1,
W2. Moreover, it acts on W2 trivially, and on W1 as a permutation of the

basis {e
(i)
j } up to sign. It follows that g−1F (g) acts on the space Ker y0

as g−1
0 . Thus g−1

1 F (g1) acts on Ker y0 as a map α1−qg−1
0 , and we have

det(α1−qg−1
0 ) = αt(1−q) det g0 as asserted.
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Astérisque, 168 (1988), 157–168.

[L6] G. Lusztig, A unipotent support for irreducible representations, Adv. in Math., 94

(1992), 139–179.

[L7] G. Lusztig, Cuspidal local systems and graded Hecke algebras, I, Publ. Math.

I.H.E.S., 67 (1988), 145–202.

[L8] G. Lusztig, Cuspidal local systems and graded Hecke algebras, II, Representations

of groups (B. Alliso and G. Cliff, eds.), Canad. Math. Soc. Conf. Proc., Vol. 16,

Amer. Math. Soc. (1995), pp. 217–275.

https://doi.org/10.1017/S0027763000009338 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009338


198 T. SHOJI

[L9] G. Lusztig, Cuspidal local systems and graded Hecke algebras, III, Representation

Theory, 6 (2002), 202–242 (electronic).

[LS] G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for

classical groups, Advanced Studies in Pure Math. Vol. 6 (1985), pp. 289–316.

[M] G. Malle, Green functions for groups of types E6 and F4 in characteristic 2,

Comm. in Algebra, 21 (1993), 747–798.

[S1] T. Shoji, On the Green polynomials of Chevalley groups of type F4, Comm. in

Alg., 10 (1982), 505–543.

[S2] T. Shoji, On the Green polynomials of classical groups, Invent. Math., 74 (1983),

237–267.

[S3] T. Shoji, Character sheaves and almost characters of reductive groups, Adv. in

Math., 111 (1995), 244–313, II, Adv. in Math., 111 (1995), 314–354.

[S4] T. Shoji, Lusztig’s conjecture for finite special linear groups, Representation the-

ory, 10 (2006), 164–222.

[Spr] T. A. Springer, Trigonometric sums, Green functions of finite groups and repre-

sentations of Weyl groups, Invent. Math., 36 (1976), 173–207.

[W] J.-L. Waldspurger, Une conjecture de Lusztig pour les groupes classiques,
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