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INFINITE DIMENSIONAL CYCLES

ASSOCIATED TO OPERATORS
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§ 0. Introduction

A family of operators defined on infinite dimensional spaces gives rise to

interesting cycles (or subvarieties) of infinite dimension which represent a topolo-

gical or non-topological feature of operator families. In this paper we will give a

general theory of these cycles, and give some estimates among them. We will apply

this theory, in the final section, to cycles derived from Dirac operators.

We take, as a parameter space of operators, a paracompact space X of infinite

dimension. We let 2F = &χ} X<ΞX be a family of Fredholm operators parametrized

by X (this family will be called Fredholm morphism in the sense of Elworthy-

Tromba [5]). Associated to 5 ,̂ there are two kinds of cycles (or subvarieties of X)

that will be our main interest in this paper. One is called solution-cycles, which

will be defined as a representation of a global structure of spaces consisting of

solutions of 3F. The other is called index-cycles, which are determined by the index

(as a family) of &. In general, the latter cycles can be calculated using the

Atiyah-Singer Index Theorem for families of operators. Our aim is to estimate

solution-cycles which are not invariant in general by index-cycles which are topo-

logically invariant. In particular, we can prove a non-triviality of solution-cycles

for Dirac operators using this estimate. We will denote solution-cycles by /c&J,

and denote index-cycles by ψpfq. These cycles will turn out to be tied up with a

symplectic geometry and a theory of loop groups, which will be mentioned in

forthcoming publications (cf. [15]). In the present paper, we will show the exist-

ence of cycles, for a family of operators SF, satisfying:

I K |£(Ker(W 3 I ψ | £

here | * | denotes the carrier of a cycle * (or a subvariety) on X (see §2). We will
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prove, using this estimate, some non-triviality of index-cycles and solution-cycles

for Dirac operators in §3.

Let E and E' be infinite dimensional Hubert spaces (or Kuiper spaces). Let X

be a paracompact space (of infinite dimension). We consider a family of Fredholm

operators from E into E' parametrized by X. Let η and if be infinite dimensional

vector bundles over X modelled on E and Er respectively, i.e., η,η' have fibres

equivalent to E,E'. A vector bundle morphism HF : η —• if will be called a

Fredholm morphism if each restriction $FX over x(^ X) is a Fredholm operator.

We define numerical index of 9 at x by

kx = d i m ( k e r ( ^ ) ) - dim (coker (#*)) .

We will assume that this numerical index is constant with respect to x G Xt and

denote it by k. For simplicity, we suppose k < 0. (The same argument holds to the

case k > 0.)

Let p and q be non-negative integers with p — # = — fc. We set,

These were first investigated by U. Koschorke [7], and later applied to Yang-Mills

theory by Atiyah-Jones [2]. We take filtrations of η, {En) and {E°°~n} (n =

1,2,...), consisting of subbundles of η such that Ex c E2 c ,£°°"1 => £°°-2

3 , and such that η = En@ £°°~w (for any n).

We now define our solution-cycles as follows. Let r and s be positive integers

with 1 <> r <> s < p. We set,

dim [(ker(^x)) (Ί £°°-w] > dim [ker(^)l - s + r}.

This solution-cycle has the following global meaning. Roughly speaking, this cycle

can be regarded as a definition of characteristic classes of infinite dimensional

bundles defined by kernels of the operators {2?x}XeX*qp restricted over the set χftP.

Precisely speaking, let us consider the restriction of the bundles η,η' and the

operators 9 = {2Fx}XeX*qP over χ*p. We denote the set of all the kernels of 2F over

χ%p by KptQ. For simplicity we assume that χ*+i,j+i = 0 . Then KPΛ will become a

vector bundle over χflP of finite constant rank. We denote the /-th Chern class of

this bundle by Cι(Kp,q). Then our solution cycle /cJ;|(Ker(^)) corresponds to the

following Hankel determinant with coefficient (~ 1 ) ^ :

Cρ-s+r\Kp,q) ' ' ' Cp-s+2r-I\Kp,q)

Cp-s+l(Kptq) * * Cp-s+r(Kptq)
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This solution cycle is not a topological invariant, and our aim is estimate this

cycle by other invariant cycle. We will give such an estimate from below by a

cycle denoted by ψpfq(lnd(2F)) called index-cycle, which is completely determined

by the index of the operator family OF. This is our main theorem and stated as

follows.

THEOREM 1. There exists a cycle ψr

pfq(lnd(&)) such that

and such that the cohomology class corresponding to ψp",q(lnd(SF)) in H*(X) is a

polynomial of Chern classes of the index (as a family) of 2F, which is calculated as a

product of two matrices with coefficient ( - !)*«+<*+»•>«,-*+,•>.

(- iy+rct+r

( - l)p+rCp+r

hereCi=Ci(Ind(&)).

This Main Theorem will be proved in §2.

The following is an immediate consequence of Theorem 1:

COROLLARY 1. If the index-cycle φpfq(lnd(^)) is not trivial, then the carrier of

the solution-cycle £&J(Ker(^)) is not an empty subset of the parameter space X.

We will apply this theory to a family of coupled Dirac operators on S 4 in §3.

Let D = {D[A]} \A\*SA/<§ denote the family of Dirac operators coupled with connec-

tions over a fixed Si/(2) bundle over S4. This family corresponds to an element

of the infinite dimensional ϋΓ-theory over d/% (the quotient space of the connec-

tion space modulo the gauge transformation group with a fixed point). We apply

our theory to this Dirac family D = {Du]} \A\*d/<§ parametrized by d/Ή to obtain

non-triviality of our cycles. In this regard, we have the following.
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THEOREM 2. Let p be an odd prime and q an integer less than (p — l ) / 3 . Then

the cohomology class corresponding to the index cycle 0jli;J~1(Ind(/))) is non-trivial

inH*(d/9,Z).

As a corollary we have:

COROLLARY 2. The carrier of the solution cycle KpZ{'$~ι(Ker(D)) is not an empty

subset of

Acknowledgement. The author is very much grateful to Prof. J. Eells and

Prof. K.D. Elworthy for their kind hospitality at Mathematics Institute of Warwick

University.

§ 1. Infinite dimensional K- theory

This section is devoted to a brief sketch of infinite dimensional ϋί-theory. Our

reference is K.D. Elworthy and A. Tromba [5]. Throughout this section, E, Ef will

denote infinite dimensional Hubert spaces (or Kuiper spaces). Let Lsp(E, Ef)

denote the set of all split maps from E int E'. This space admits a manifold

structure (cf. Douady [4]). We denote by F(E, E') the space of all Fredholm

operators from E into E', and by Fk(E, E') the set of elements of numerical

index k. Let GL(E) denote the general linear group of E, and let GLC(E) denote

the group of automorphisms of E which are of type identity plus compact operator.

Let BF (E, Ef) be the space of bounded operators of finite rank.

Let B be an arbitrary fixed class of some infinite dimensional spaces. A class

of subspaces P(E, F) of L(E, F)(E, F e B) is called a perturbation class if

and only if the followings are satisfied:

(i) If/, g and h are elements of P(G, E), P(F, G) and P(E, F) respectively,

then h ° f belongs to P(G, F) and g ° h to P(E, G).

(ii) BF{E, F) + P(Ef F) = BF(E, F)

(iii) BF(EfF) CP(£, F).

A typical example of P(E, E') is the set of all compact operators of E into

E\ and this will be our main object. We denote by GLP(E) a subgroup of GL(E)

consisting of operators that are type of Identity plus element of P(E, E). A

GLp(E) -vector bundle is a vector bundle with fibre E with structure group

reduced to GLp(E). Let X and X' be paracompact spaces, and consider trivial
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vector bundles ί x £ , Γ x E'. Fix some element T of L(E, E'). Then a vector

bundle map

f:Xx E-^X' x E'

is called L{T)-bundle map if and only if there exist an open covering it/,} ; e/ of

X and a collection {£}}/<=/ of finite dimensional subspaces of E' such that for any

x e ί/y? there exists some hx e P(2?, Z?') such that

and Aχ(f) ^ Ej for any (x, #) ^ [/,• X E. A layer bundle structure on a vector

bundle over X modelled on E is defined to be a maximal collection of trivializa-

tions:

φ i W d ^ U i X E

such that each composition:

ψi'ψT1: (Ui Π t/, ) x E-+ (Ut Π t/y) X E

is an L(/)-bundle map (here / denotes Identity). Both the notion of layer bundle

morphisms and the notion of equivalence are defined in a natural way among layer

bundles.

Let us now consider a continuous family of Fredholm operators. We fix a

paracompact space X. Let 7Γi: Bi —* X and 7Γ2'. B2 —* X be vector bundles over X

with fibre is and E\ A vector bundle morphism

is called a Fredholm morphism of index A: (or 2Fk-morphism) if and only if each

restriction over x ^ X of «5Γ, ^ : T Γ Γ 1 ^ ) ""* T Γ Γ 1 ^ ) belongs to Fk(E, Ef). Layer

bundles and Fredholm morphisms are related as follows. (See K.D. Elworthy and

A.J. Tromba [5]).

PROPOSITION 1.

(i) Let $F: i? —• X X E be a F0-morphism over a paracompact space X. Then

there exists a unique layer bundle structure (denoted hereafter by {7Γ, 2F) 1) on B such

that 2F is an L(I) -bundle map.

(ii) Let %L be a layer bundle structure on re : B —* X X E. Then there exists a

Fo-morphism & : £ - > X x £ swc/ι that πL = (π, SO*.
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(iii) For i = 1,2, let 9{ be F0-morphisms of π< : fi< —> Z into X X E. Then the

corresponding layer bundle structures {τr, , S^^L we equivalent to each other if and only

if there exists a vector bundle isomorphism h : B\—> B2 such that

is an L(0) -bundle map for any trivialization of B\.

If we are given a continuous map & from X into F0(E, E), then this map may

be regarded as some Fo-morphism $F from B — X X E into X x E. We denote

the corresponding layer bundle structure on τt\B—+X by {πffi p (notice that

Proposion 1 holds also for P-bundles). We denote {X, &}P= {TΓ, 3F} P. The fol-

lowing proposition is a criterion for the equivalence of layer bundle structures,

and follows from Proposition 1.

PROPOSITION 2. For i = 1,2, let 2Fi be continuous maps from X into F0(E, E).

Then the corresponding layer bundle structures {X, SFiip are equivalent if and only if

there exists a map h from X into GL(E) such that for any x €= X,

Fdx) -2F2(x)h(x)

Take a complementary filtration of E, {En), iE°° n), n = 1,2,..., with En
 c

En+ι, E°°-n 3 E~-n-\ En Θ E°°-n for any n. (Note that this filtration is for

vector space and is different from filtrations given for bundles such as η in the

previous section). Let cn: GL(n) —• GLC(E) be natural injections. We set

c = limw_>oo cn, GL(oo) = limw-oo GL(n). Then we have:

PROPOSITION 3 (K.D. Elworthy, R. Palais). The map c : GL(°°) -* GLC(E) is a

homotopy equivalence.

This proposition holds for any perturbation class P replacing GLC(E) with

GLp(E). This result was proved in full generality by R. Palais and K.D. Elworthy

independently. For compact operators, it was proved by R. Palais and Svarc. This

proposition connects the notions of GLc-bundles and GL(°°) -bundles.

Let kf(X) denote the group of stable equivalence classes of GLc-bundles.

Let [X, BO] (resp. [X, BU]) denote the homotopy classes of maps from X into

BO — limBO(n) (resp. BU = X\mBU(ri)). The following proposition

follows from Proposition 3:
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PROPOSITION 4. k?(X) is isomorphic to [X, BO] (resp. [X, BU]).

We denote by kp(X) the group of stable equivalence classes of

Fo-morphisms over X. Then we have the following proposition (cf. Koschorke [7]

and Elworthy-Tromba [5]):

PROPOSITION 5. kP(X) is isomorphic to kP(X).

For & e kff(X), we will denote the corresponding map by W12F] e [X, BU]

in view of Proposition 4 and Proposition 5.

§ 2. Infinite dimensional cycles

In this section we will discuss on a structure of cycles derived from kernels

of operators, and will derive some estimates for these cycles using index cycles.

Let E be an infinite dimensional Hubert space (or more generally Kuiper

space). From the results of the previous section we have an isomorphism called

index:

Ind : [X, F0(E, E)] -> k{X) ( = [X} BO] (resp. [X, BU])).

This yields, through H*(BO) (resp. H*(BU)), a well-known theory of character-

istic classes for families of Fredholm operators (cf. U. Koschorke [7]). We will take

hereafter, as a sealer field, complex number field C and restrict ourselves to com-

plex theory of characteristic classes. In view of the results in the previous section,

note that there is also a theory of characteristic classes for the group kp(X).

Let η,η' be infinite dimensional vector bundles over X, and let

be a Fredholm morphism, i.e., a continuous family of Fredholm operators paramet-

rized by X. Denote the Chern classes of this family by C(Ind(^)) . Let k by the

numerical index of 2? (here we suppose k is constant). We set, for integers

p, q with p — q— — k,

We now define kernel-cycles (or solution-cycles) of 3>. Let r,s be integers

with 1 < r < s < p. Take complementary filtrations of η consisting of subbundles

{En}, {E°°-n}, n = 1,2, . . . , such that Ex c E2 c , E~~l 3 E00'2 =>•••,

and η = En ® E°°'n for any n. Then we set:
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= te e χ&(^) dim [ker(^) Π E00-5] > dim [keτ(3Fx)] - s + r}.

This solution cycle is interesting by itself, but not a topological invariant. There is

on the other hand a very useful topologinal invariant, i.e., index of families of

operators. Our aim in this section is to estimate solution-cycles from below with

cycles (called index-cycles) determined by index of families.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. We will consider bundle-operators such as identity plus

compact operator. In terms of ίf-theory, this situation is described as follows. Take

as a perturbation class P the compact operators on the class B consisting of

infinite dimensional Kuiper spaces (cf. Section 1). The layer bundle structure is,

here, an infinite dimensional vector bundle structure with the structure group

reduced to those of L(I) -automorphisms that are Identity plus finite rank oper-

ator. From K.D. Elworthy and A. Tromba [5] we see that the inclusion map of

GLFR(E) into GLp(E) is a homotopy equivalence. Therefore the objects with

which we are concerned are vector bundles with the structure group reduced from

GL(E) to GLc(E).

Since SF : η •—• tf is a Fredholm morphism and r\' may be assumed to be

trivial (as a topological vector bundle), it follows from Proposition 1 that 9

induces a layer bundle structure on rj. Although we have restricted ourselves, in

the previous section, to the case of numerical index zero, the same argument holds

for those of non-zero numerical index.

Let πs: E~+ E°°~s denote the canonical projection. Let ^ * = {%ί)x&x denote

the collection of dual Fredholm morphism of 2F. Recall that the solution-cycle can

be determined (on the subset χf,p — χ*+ι,p+i) by the following inequality:

d i m [ k e r ( ^ ) Π E°°-s] >p- s + r.

Notice that this is equivalent to inequality:

dim [ imaged*) Π Es] > r.

Let / be an arbitrary integer with 0 < / < p. Fix x ^ Λr£;|(Ker(^)), and suppose

that

dim [ c o k e r ( ^ ) ] = /.

Then we see that the following equalities hold for this x:

dim [ker(τr5 ^S)] =l+r,

dim
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Consequently we see that x ^ /c£;|(Ker (^)) if and only if

x e XΪΛ&) Π χP+r,g-s+Λπs'&*).

Denote the trivial bundle Rp~9 <8) X by lp+q. Then there are natural injections:

Consider the Fredholm morphisms i-j π'2F* and i ^ * over X. From Proposi-

tion 2, it follows that they give equivalent layer bundle structures. In Section 1,

we noticed that these structures are associated to maps into infinite manifolds of

Fredholm operators. We will denote these maps from X into Fo by Ψlimjmπm2F*]

and Ψ[i 2F*] respectively (see the previous section). Notice that they are homoto-

pic. Then we see that 2Tj ττ ^ * ] and Ψ[SF*] (these are maps of X into F-k) are

homotopic.

Recall that the space F-k (i.e., Fredholm operators of numerical index — k) is

homotopic to F-k+s for any s. Therefore there exists a map from X into F~k+S that

corresponds to Ψ[2F*] through this homotopy equivalence. This defines a

Fredholm morphism over X that we will denote by (JF*)+S. Denote the correspond-

ing map from X into F-k+s by Ψ[(2F*)+S] Similarly, the map (j'7ϋ'2F*)+s can be

defined.

We see that π 9 and (^*)+ s give the equivalent layer bundle structure,

because π & is equivalent to (; 7Γ ̂ * ) + 5 . Therefore Ψ[π &*] and ?Γ[(^*)+J are

homotopic.

Let us consider the following subvariety in F-k+s:

= { / e Lsp(E, E') ; d i m [ k e r ( / ) ] >p + r, dim [ c o k e r ( / ) ] >q~s + r).

This is the closure of the subvariety considered in U. Koschorke [7]. Consider the

restrictions of π * ̂ * and (^*)+ 5 over χ*p(2F). Then we have two sets in

+r\ft' J )> Xp+r,q-s

which are exactly the inverse images of the subvariety Ap+r,q-s+r through these

operators, and which are connected (or cobordant) to each other through the homo-

topy among Ψlπ-SF*] and Ψ[ (F*) +J.

Because it is possible to take the map W[(2F*)+s] in general position with re-

spect to the subvariety Ap+r,q-s+r, we have, taking its inverse image, an
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infinite dimensional cycle in X denoted by θίpfq{(2F*)+s)>

In case that χ%p{3") is in general position, we define:

¥>;s((#r*)+ί) = x t . P m n α;, κ ( ^ * ) + s ) .

The cycle χ*p(&) represents the following cohomology class of X

It is not difficult to see that the cycle

cohomology class:

represents the following

( - l)p+rCP+r(lnd(?)) ( -

In case that χ*p($F) is not in general position, we see that there is a cycle in

the intersection χ*p(2F) Π tf£;f((^*)+s) representing the same cohomology class

as above. We denote it also by φJ;J((^*)+s).

Because the maps Ψ[π'2F*] and ?P*[(^*)+5] are homotopic, we can find, in the

set χp+rtq-s+r(π-2F*), a cycle homologous to the cycle ^ ί ; | ( ( ^ * ) + s ) . We denote it

by (PqipilndidF*)). Then it is easily verified that this cycle represents the cohomol-

ogy class determined by the polynomial in the assertion of Theorem 1 and that

I φ |

here | * | denotes the carrier of a cycle * .

This completes the proof of Theorem 1.

Remark. Note that the map ¥[(&*) +s] is not simply a restriction of

over χf,p. Roughly speaking, the map W[(ZF*)+S] can be regarded as a Gaussian

map of a Gaussian map (or second order Gaussian map) w.r.t. the family of operators
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§3. Application to Dirac operators

In this section we apply the results of the previous section to a family of cou-

pled Dirac operators and show a certain non-triviality of solution-cycles and

index-cycles for these Dirac operators.

Let P be a principal bundle over S 4 with the structure group G — SU(2).

Fix a point in S4, denoted by °°, and fix a base point in the fibre over °°, denoted

by Poo. We restrict ourselves to the case of the instanton number k > 0. Let $*

denote the gauge transformation group that is supposed to be Identity at the base

point. Let dk denote the affine space of all connections A on P. We set %k =

dk/%.

Let Ep denote the associated vector bundle to P (with the standard repre-

sentation). We consider a family of operators, consisting of Dirac operators

coupled to connections A in P acting on negative spinors (with value Ep) taking its

value in positive spinors (with value EP). There is a natural Z,2-extension of cou-

pled Dirac operators (cf. Gromov-Lawson [6]). Henceforth we consider these

L2-extensions as a family of Dirac oprators. For a given A ^ d, we denote by DA

the Dirac operator coupled to the connection A which acts on negative spinors

with value Ep. Then this defines a family of operators with parameter space d,

and hence gives an element of the infinite dimensional K-theory over %k = du/^k

which we will hereafter denote by D — {D\A]}[A\<=<βk (cf. Section 1).

We fix a complementary filtration of negative spinors (with value Ep) denoted

by {En}, {Eoo-J (n — 1,2,...). Throughout this section p will denote an odd prime

number and q will denote a non-negative integer with q < (p — l ) / 3 . We shall

apply the results of the previous section to the following solution-cycle of Dirac

families:

the carrier of which is the set:

{[A] e χtp-ΛD) ker(D[A]) c

From Theorem 1, we know that there is an index-cycle φ^zl^'1 (lnά(D)) that

estimates the solution-cycle from below, corresponding to the cohomology class

( e H^i^u)) of the polynomial given in Theorem 1.

In this section we will prove Theorem 2. Non-triviality of the cycles χf,p was

proved by Atiyah-Jones [2]. For the purpose of the proof of Theorem 2 we must

deal with non triviality of polynomials corresponding to subcycles in
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Proof of Theorem 2. For a positive integer N we denote by C#(R4) the

qutient space of ordered iV-tuples of distinct points in R 4 by the action of the

symmetric group Σ # , and we will call it the configuration space. For this

configuration space, there is a so called tΉoot construction, which is a map:

ΘN : CN(R4)-> MN,

here MN is a manifold of dimension Sn fibred on the moduli space of instantons

of degree JV with fibre 50(3) (cf. Atiyah-Drinfeld-Hitchen-Mannin [1]). We will

denote the standard iV-dimensional representation of 7Γi(C#(R4)) ( = ΣΛΓ) by ON.

We now proceed to prove non-triviality of the cohomology class determined

by the polynomial given in Theorem 1 with respect to the cycle ψp-li'1 (lnά(D))

using a technique of increasing instanton numbers, (the idea of which is due to

Atiyah-Jones [2]), we will reduce the problem finally to the vanishing theorem of

Lichnerowicz [9]. For this purpose it suffices to prove the non-triviality of the

corresponding cohomology class on d^/^N for some higher instanton number N,

for example, N= 3pq. Here we use the invariance of Ind(D) with respect to in-

stanton numbers. Henceforth we will fix N — 3pq.

Consider the restriction of lnά(D) onto the space of self-dual connections of

instanton number N. It follows from the Lichnerowicz's vanishing theorem that the

kernel bundle of D vanishes on the space of self-dual connections. Therefore the

problem is reduced to an analysis of the cokernel of D, i.e., the kernel bundle

of JD* on the space of self-dual Yang-Mills connections.

From [1] it follows that the pull-back of this kernel bundle of D* by the map

ΘN is isomorphic to a vector bundle on the space #jsr(R4) that is naturally associ-

ated to the representation a^. We will denote again this bundle by 0#, and its

Chern classes by c(σN).

Let n = 3q. The ^?-Sylow subgroup of Σ/> and Σnp are Z/> and (!Lp)
n

respectively. Let us consider the ^-primary part of the Chern classes of the vector

bundle associated to the standard representation σnP. Considering partitions of

set {l,2,...,np} into w-blocks, we get the following maps:

\Cp)n * Cnpt

Note that by restricting Chern class c(σnp) to (Zp)
n we have c(σp)...c(σp) in

H*((Zp)n), which determines the ^-primary part of c(σnp). Let u denote the free

generator of H*(ZP) of order p. Then we see c{θp) = 1 — up~1.

The polynomial given by Theorem 1 for the index cycle φ$z\'tξ~ι(lnd(D))

https://doi.org/10.1017/S0027763000004074 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004074


INFINITE DIMENSIONAL CYCLES ASSOCIATED TO OPERATORS 13

turns out to be the following:

Cp-i(lnd(D)) ••• ( - iy+1cP+q-2(lnd(D))

( - l ) ί + 1 c 2 , + ί - 3 (Ind(Z)) )c2(p-i)(Ind(D))

( - iy+1c2P-q+1(lnd(D))

In H*((ZP)), we see that the cohomology class associated to this polynomial

reduces (mod p) to the following:

We will see that the coefficient of the term Cp-i X X cp-ι of this polyno-

mial is the following:

(*) \-ZqCq X p-\ Pq] X \2qC2 X (/>-l)-l P2] X \lCz X (/,-i)_g_2(g-l) P 2 ] .

This follows from the observation in [cp-.ι(σnP)]9 the contribution of the from (for

instance)

c H x X Cp-ι X 1 X X 1

to the term

Cp-χ X * * X Cp-X

is 3qCq p-ι Pq, and the contribution to [c2(p-D(σnP)]q of the form

l X " X l X c H X " X ί H

is

L20C2 X (p-l)-q Pzi X L20-2C2 X (p-ΐ)-q-2 P21 * I2C2 X (p-l)-q-2(q-l) P2J

Since 3q < /> we see that the integer ( * ) is not zero (mod />). This completes

the proof of Theorem 2.
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