INTEGRATION MAPS AND LOCAL EQUICONTINUITY OF SPECTRAL MEASURES

S. OKADA and W. J. RICKER

(Received 13 September 1999; revised 8 March 2000)

Communicated by P. G. Dodds

Abstract

One of the useful features of spectral measures which happen to be equicontinuous is that their associated integration maps are bicontinuous isomorphisms of the corresponding L^1 -space onto their ranges. It is shown here that equicontinuity is not necessary for this to be the case; a somewhat weaker property suffices. This is of some interest in practice since there are many natural examples of spectral measures which fail to be equicontinuous.

2000 Mathematics subject classification: primary 47B15, 47B40, 47D30.

Since its conception the notion of a normal operator T in a Hilbert space has been intimately connected with its resolution of the identity. This is a (unique) spectral measure P defined on the Borel subsets of \mathbb{C} , with support the spectrum of T, such that T is synthesized from the projections in the range of P via a suitable integral. In the 1950's N. Dunford initiated the study of scalar-type spectral operators in a general Banach space. These are the analogues of normal operators in Hilbert space. As in the Hilbert space setting, the fundamental concept is again that of a spectral measure from which the given operator is synthesized; see [5], for example.

In the 1960's the theory of scalar-type spectral operators was extended to the setting of locally convex Hausdorff spaces (briefly, lcHs). But, new phenomena soon emerged in the non-normable setting which are simply not present in Banach spaces. Something as basic as the uniform boundedness of the range of a spectral measure, interpreted as *equicontinuity* in a lcHs, fails to hold in general, [9]. Since the uniform boundedness of a spectral measure in Banach spaces played such a crucial role in many of the arguments, most of the initial developments in the lc-setting dealt almost exclusively

Support of the Australian Research Council is gratefully acknowledged by the first author.

^{© 2000} Australian Mathematical Society 0263-6115/2000 \$A2.00 + 0.00

with spectral measures which were assumed to be equicontinuous, [1-4, 6, 18-21]. As successful as the theory was for such spectral measures, it was also realized that it excluded many natural examples. Further investigations [12–15] revealed that in many arguments it is not so much the equicontinuity of the spectral measure Pwhich is relevant, but rather that its associated integration map $I_P: f \mapsto \int_{\Omega} f \, dP$, defined on the space $\mathscr{L}^1(P)$ of all P-integrable functions, should be a bicontinuous isomorphism of $\mathscr{L}^1(P)$ onto its range. Of course, equicontinuous spectral measures always have this property. Associated with P is also the family of X-valued vector measures $\{Px : x \in X\}$, where Px is specified via evaluation of the projections P(E) at x and X denotes the underlying lcHs. These vector measures in turn induce the associated family of X-valued integration maps (one for each $x \in X$) given by $I_{Px}: g \mapsto \int_{\Omega} g d(Px)$, defined on the space $\mathscr{L}^{1}(Px)$ of all Px-integrable functions. The importance of this family of maps $\{I_{Px} : x \in X\}$ lies with the fact that, under certain mild assumptions on the underlying lcHs X, their ranges can be identified with the important class of cyclic subspaces of X generated by P. It turns out that many features of the theory take on a simpler and more transparent form when these integration maps $\{I_{Px} : x \in X\}$ are bicontinuous isomorphisms onto their ranges in X, a property which again is automatic if P is equicontinuous.

The aim of this note is to investigate the connection between equicontinuity of P, the property of each integration map I_{Px} , for $x \in X$, being a bicontinuous isomorphism, and the property of the global integration map I_P being a bicontinuous isomorphism. It is shown that I_{Px} (for a given $x \in X$) is a bicontinuous isomorphism precisely when the restriction of P to the cyclic space generated by x is equicontinuous; we simply say that P is *locally equicontinuous at* x in this case. Moreover, it is shown that if P is locally equicontinuous at every $x \in X$, then also the global integration map I_P is necessarily a bicontinuous isomorphism. An example is given which shows that the converse of this statement is false in general. Examples of spectral measures P for which I_P fails to be a bicontinuous isomorphism have been known for some time, [15]. Of course, such a P cannot be equicontinuous. We also exhibit a *non*-equicontinuous spectral measure P which is both locally equicontinuous and for which I_P is a bicontinuous isomorphism.

1. Preliminaries

Let Y be a lcHs and Y' be its dual space, that is, the space of all \mathbb{C} -valued continuous linear functionals on Y. Given $y \in Y$ and $y' \in Y'$ we write $y'(y) = \langle y, y' \rangle$. Let $\mathscr{P}(Y)$ denote the family of all continuous seminorms on Y. The linear span of a subset W in Y is denoted by $\operatorname{sp}(W)$ and the closed linear span of W in Y by $\overline{\operatorname{sp}}(W)$. We denote the range of a linear operator T by $\mathscr{R}(T)$.

Let Σ be a σ -algebra of subsets of a non-empty set Ω . The characteristic function of each set $E \in \Sigma$ is denoted by χ_{ε} . By $\mathscr{L}^{0}(\Sigma)$ we denote the space of all \mathbb{C} -valued, Σ -measurable functions on Ω . The linear subspace of $\mathscr{L}^{0}(\Sigma)$ consisting of all Σ simple functions on Ω is denoted by $\operatorname{sim}(\Sigma)$. A σ -additive set function $m : \Sigma \to Y$ is called a *vector measure*. The Orlicz-Pettis lemma [7, Theorem I.1.3] ensures that $m : \Sigma \to Y$ is σ -additive if and only if the set function $\langle m, y' \rangle : \Sigma \to \mathbb{C}$ given by $\langle m, y' \rangle (E) = \langle m(E), y' \rangle$ for every $E \in \Sigma$ is σ -additive for each $y \in Y'$.

Let $m : \Sigma \to Y$ be a vector measure. Let $[Y]_m$ denote the sequential closure of $\operatorname{sp}(m(\Sigma))$ in Y. It is always assumed that $[Y]_m$ has the relative topology from Y. A function $f \in \mathscr{L}^0(\Sigma)$ is called *m*-integrable if it is $\langle m, y' \rangle$ -integrable for each $y' \in Y'$ and if, given any $E \in \Sigma$, there is a unique vector $\int_E f dm$ in Y satisfying $\langle \int_E f dm, y' \rangle = \int_E f d\langle m, y' \rangle$ for every $y' \in Y'$. Clearly every Σ -simple function is *m*-integrable. The vector space of all *m*-integrable functions is denoted by $\mathscr{L}^1(m)$. Let $q \in \mathscr{P}(Y)$. Define a seminorm q(m) on $\mathscr{L}^1(m)$ by

$$q(m)(f) = \sup_{E \in \Sigma} q\left(\int_E f \ dm\right), \qquad f \in \mathscr{L}^1(m).$$

Equip $\mathscr{L}^1(m)$ with the locally convex topology $\tau(m)$ defined by the family of seminorms $\{q(m) : q \in \mathscr{P}(Y)\}$. This topology is the same as that defined in [7, Chapter II] and is called the mean convergence topology. The space $sim(\Sigma)$ is *sequentially* $\tau(m)$ *dense* in $\mathscr{L}^1(m)$. In fact, this has been shown in [8, Theorem 2.2 and Theorem 2.4] with the additional assumption that Y is sequentially complete. But, we do not actually need this assumption; see [10, Proposition 1.2].

A function $f \in \mathcal{L}^1(m)$ is called *m*-null if $\int_E f \, dm = 0$ for every $E \in \Sigma$. We identify $\mathcal{L}^1(m)$ with its quotient space with respect to the closed subspace of all *m*-null functions. So, we can regard $\mathcal{L}^1(m)$ as a lcHs.

The vector measure *m* is called *closed* if the subset $\Sigma(m) = \{\chi_{\varepsilon} : E \in \Sigma\}$ of $\mathscr{L}^{1}(m)$ is complete with respect to the topology induced by $\tau(m)$, [7, page 71]. Whenever $[Y]_{m}$ is sequentially complete, the vector measure *m* is closed if and only if $\mathscr{L}^{1}(m)$ is $\tau(m)$ -complete [16, Theorem 2].

The integration map associated with m is the map $I_m : \mathscr{L}^1(m) \to Y$ defined by

$$I_m(f) = \int_{\Omega} f \, dm, \qquad f \in \mathscr{L}^1(m)$$

Clearly I_m is linear and continuous. Moreover, $\mathscr{R}(I_m) \subseteq [Y]_m$; see [10, page 347].

Let X be a lcHs. The vector space of all continuous linear operators from X into itself is denoted by L(X). The space L(X) equipped with the strong operator topology (that is, the topology of pointwise convergence on X) is a lcHs and is denoted by $L_s(X)$. The topology of $L_s(X)$ is generated by the family of seminorms

$$q_x: T \mapsto q(Tx), \qquad T \in L(X),$$

for all $x \in X$ and $q \in \mathcal{P}(X)$.

Let $P: \Sigma \to L_s(X)$ be a spectral measure. In other words, P is σ -additive and multiplicative (that is, $P(E \cap F) = P(E)P(F)$ for all $E, F \in \Sigma$), and $P(\Omega)$ equals the identity operator I on X. The space $\mathcal{L}^1(P)$ is an algebra of functions (under pointwise operations) such that

$$\int_E fg \, dP = P(E)I_P(f)I_P(g) = P(E)I_P(g)I_P(f), \qquad E \in \Sigma,$$

for all $f, g \in \mathcal{L}^1(P)$, [13, Corollary 2.1]. Therefore, the integration map I_P : $\mathcal{L}^1(P) \to L_s(X)$ is a continuous, algebra homomorphism onto its range $\mathcal{R}(I_P)$, which is contained in $[L_s(X)]_P$. Moreover, I_P is always *injective* because each $f \in I_P^{-1}(\{0\})$ satisfies $\int_E f dP = P(E)I_P(f) = 0$ for every $E \in \Sigma$, that is, f is P-null.

Let $x \in X$. Define a vector measure $Px : \Sigma \to X$ by Px(E) = P(E)x for every $E \in \Sigma$. The integration map $I_{Px} : \mathscr{L}^1(Px) \to X$ is also always *injective* because the multiplicativity of P implies that

(1)
$$\int_E f \ d(Px) = P(E)I_{Px}(f), \qquad f \in \mathscr{L}^1(Px), \ E \in \Sigma$$

Furthermore, $\mathscr{L}^{1}(P) \subseteq \mathscr{L}^{1}(Px)$ and $\int_{E} g \, d(Px) = (\int_{E} g \, dP)x$ for every $g \in \mathscr{L}^{1}(P)$ and $E \in \Sigma$. The closed subspace $P(\Sigma)[x] = \overline{sp}(Px(\Sigma))$ of X is called the cyclic subspace generated by x; it always has the relative topology from X. Then $\mathscr{R}(I_{Px}) \subseteq [X]_{Px} \subseteq P(\Sigma)[x]$. Moreover, $\mathscr{R}(I_{Px})$ is dense in $P(\Sigma)[x]$ as it contains $I_{Px}(sim(\Sigma)) = sp(Px(\Sigma))$.

2. Locally equicontinuous spectral measures

Throughout this section let X be a lcHs and P be an $L_s(X)$ -valued spectral measure on a σ -algebra Σ of subsets of a non-empty set Ω .

The spectral measure P is called *equicontinuous* if its range $P(\Sigma)$ is an equicontinuous subset of L(X). If X is quasi-barrelled, in particular, if X is metrizable, then P is necessarily equicontinuous [12, Proposition 2.5]. As noted in the introduction one of the most important features of equicontinuous spectral measures is the following one.

LEMMA 1. Suppose that the spectral measure P is equicontinuous.

(i) For every $x \in X$, the integration map $I_{Px} : \mathscr{L}^1(Px) \to X$ is a bicontinuous isomorphism onto its range.

(ii) The integration map $I_P : \mathscr{L}^1(P) \to L_s(X)$ is a bicontinuous algebra isomorphism onto its range.

PROOF. (i) The first part of the proof of Proposition 2.1 in [4] is still valid in our setting and establishes (i).

(ii) See [14, Lemma 1.11].

In this section we introduce the notion of locally equicontinuous spectral measures; they always satisfy (i) and (ii) of Lemma 1. Equicontinuous spectral measures are always locally equicontinuous, but the converse is not valid in general; a counterexample is given (see Example 8).

Let $x \in X$. Fix $E \in \Sigma$. The subspaces $\mathscr{R}(I_{P_X})$ and $P(\Sigma)[x]$ of X are invariant for the operator P(E). The restriction $P(E)|_{\mathscr{R}(I_{P_X})}$ of P(E) to $\mathscr{R}(I_{P_X})$ belongs to $L(\mathscr{R}(I_{P_X}))$. Similarly, the restriction $P(E)|_{P(\Sigma)[x]}$ of P(E) to $P(\Sigma)[x]$ is an operator belonging to $L(P(\Sigma)[x])$. Clearly the set functions $P_{\mathscr{R}(I_{P_X})} : E \mapsto P(E)|_{\mathscr{R}(I_{P_X})}$ and $P_{P(\Sigma)[x]} : E \mapsto P(E)|_{P(\Sigma)[x]}$ are spectral measures with values in $L_s(\mathscr{R}(I_{P_X}))$ and $L_s(P(\Sigma)[x])$ respectively.

The following result characterizes (for a fixed $x \in X$) the property (i) of Lemma 1 in terms of equicontinuity of the restriction of P to certain invariant subspaces.

PROPOSITION 2. Let P be a spectral measure and $x \in X$. The following statements are equivalent:

(i) The spectral measure $P_{P(\Sigma)[x]}: \Sigma \to L_s(P(\Sigma)[x])$ is equicontinuous.

(ii) The spectral measure $P_{\mathscr{R}(I_{P_x})}: \Sigma \to L_s(\mathscr{R}(I_{P_x}))$ is equicontinuous.

(iii) The integration map $I_{Px} : \mathscr{L}^1(Px) \to X$ is a bicontinuous isomorphism onto its range.

(iv) For each seminorm $q \in \mathscr{P}(X)$ there is a seminorm $r \in \mathscr{P}(X)$ such that

(2)
$$q_x(P)(f) \leq r_x(I_P f), \qquad f \in \mathscr{L}^1(P).$$

PROOF. (i) implies (iii). Given $q \in \mathscr{P}(X)$ there is $r \in \mathscr{P}(X)$ such that $q(P(E)y) \leq r(y)$ for each $E \in \Sigma$ and $y \in P(\Sigma)[x]$. We have used here the fact that every continuous seminorm on a subspace of X is the restriction of some element (not necessarily unique) from $\mathscr{P}(X)$, whenever this subspace has the relative topology. From (1) and the inclusion $\mathscr{R}(I_{Px}) \subseteq P(\Sigma)[x]$, we have

$$\sup_{E\in\Sigma} q\left(\int_E f \ d(Px)\right) = \sup_{E\in\Sigma} q(P(E)I_{Px}f) \le r(I_{Px}f)$$

for every $f \in \mathcal{L}^1(Px)$. This implies that the continuous linear injection I_{Px} has a continuous inverse on its range $\mathscr{R}(I_{Px})$.

(ii) implies (iii). This was established in the proof that (i) implies (iii).

(iii) implies (i). Given $E \in \Sigma$ define a linear operator $S_E : \mathscr{L}^1(Px) \to \mathscr{L}^1(Px)$ by $S_E(f) = \chi_{\varepsilon} f$ for every $f \in \mathscr{L}^1(Px)$. From the definition of the topology

 $\tau(Px)$ on $\mathscr{L}^{1}(Px)$ it follows that $\{S_{E} : E \in \Sigma\}$ is an equicontinuous subset of $L(\mathscr{L}^{1}(Px))$. Again from (1) we see that $P(E) = I_{Px}S_{E}(I_{Px})^{-1}$ on $\mathscr{R}(I_{Px})$, for every $E \in \Sigma$. So, the family $\{P(E) : E \in \Sigma\}$ restricted to $\mathscr{R}(I_{Px})$ is an equicontinuous subset of $L(\mathscr{R}(I_{Px}))$. Since $\mathscr{R}(I_{Px})$ is dense in $P(\Sigma)[x]$ it follows that $P_{P(\Sigma)[x]}(\Sigma)$ is equicontinuous in $L(P(\Sigma)[x])$.

(iii) implies (ii). This was established in the proof that (iii) implies (i).

(iii) implies (iv). Given $q \in \mathscr{P}(X)$ there is $r \in \mathscr{P}(X)$ such that

(3)
$$q(Px)(g) \leq r(I_{Px}g), \quad g \in \mathscr{L}^1(Px).$$

If $f \in \mathcal{L}^1(P) \subseteq \mathcal{L}^1(Px)$, then it is routine to verify (by (1) again) that

(4)
$$q(Px)(f) = q_x(P)(f)$$
 and $r(I_{Px}f) = r_x(I_Pf)$.

Thus (3) and (4) applied to f yield (2).

(iv) implies (iii). Fix $q \in \mathscr{P}(X)$ and let $r \in \mathscr{P}(X)$ be as in (iv). We only need to verify that $(I_{Px})^{-1}$ is continuous on $\mathscr{R}(I_{Px})$. Let $\xi \in \mathscr{R}(I_{Px})$ and take $g \in \mathscr{L}^1(Px)$ such that $\xi = I_{Px}g$. Choose a sequence $\{g_n\}_{n=1}^{\infty} \subseteq \operatorname{sim}(\Sigma)$ such that $g_n \to g$ in $\mathscr{L}^1(Px)$ as $n \to \infty$. Then $I_{Px}g_n \to I_{Px}g$ in X as $n \to \infty$. Since (4) holds for each Σ -simple function f, we have

$$q(Px)(g) = \lim_{n \to \infty} q(Px)(g_n) = \lim_{n \to \infty} q_x(P)(g_n)$$
$$\leq \lim_{n \to \infty} r_x(I_Pg_n) = \lim_{n \to \infty} r(I_{Px}g_n) = r(I_{Px}g).$$

That is, $q(P_x)((I_{P_x})^{-1}\xi) \leq r(\xi)$. Since $\xi \in \mathscr{R}(I_{P_x})$ is arbitrary this establishes continuity of $(I_{P_x})^{-1}$ on its range.

The spectral measure P is said to be *locally equicontinuous* if the restricted spectral measure $P_{P(\Sigma)[x]} : \Sigma \to L_s(P(\Sigma)[x])$ is equicontinuous for every $x \in X$. In particular, equicontinuous spectral measures are locally equicontinuous. The following result follows immediately from Proposition 2.

THEOREM 3. The spectral measure $P : \Sigma \to L_s(X)$ is locally equicontinuous if and only if for each $x \in X$ the integration map $I_{Px} : \mathcal{L}^1(Px) \to X$ is a bicontinuous isomorphism onto its range.

Recall that a vector $x \in X$ is called a *cyclic vector* for P if $X = P(\Sigma)[x]$ or, equivalently, if $X = \overline{\mathscr{R}(I_{P_X})}$.

COROLLARY 4. Suppose that there is a cyclic vector $x \in X$ for the spectral measure P. Then P is equicontinuous if and only if the integration map I_{Px} is a bicontinuous isomorphism onto its range.

The following result makes the connection between local equicontinuity of P and continuity properties of the global integration map $I_P : \mathscr{L}^1(P) \to L_s(X)$.

THEOREM 5. If the spectral measure P is locally equicontinuous, then the integration map $I_P : \mathscr{L}^1(P) \to L_s(X)$ is necessarily a bicontinuous linear and algebra isomorphism onto its range.

PROOF. Fix $x \in X$ and $q \in \mathscr{P}(X)$, which specify a typical seminorm q_x generating the topology in $L_s(X)$. By Proposition 2(iv) there is $r \in \mathscr{P}(X)$ such that (2) is satisfied. Since r_x is a continuous seminorm on $L_s(X)$ and $\mathscr{R}(I_P)$ has the relative topology from $L_s(X)$, this shows that the continuous injection I_P has a continuous inverse on $\mathscr{R}(I_P)$.

REMARK. The seminorm r given in the above proof may vary with x. Indeed, it is precisely this possible dependence of r on x (and q, of course) which allows for the possibility of $(I_P)^{-1}$ to be continuous without P being equicontinuous; see Example 8.

In view of Proposition 2 there arises the question of whether the inclusion $\mathscr{R}(I_{Px}) \subseteq P(\Sigma)[x]$ can be strict. Certainly if X is metrizable, then $\mathscr{R}(I_{Px})$ is closed in X and hence $R(I_{Px}) = P(\Sigma)[x]$ for every $x \in X$. To see this, let $\{f_n\}_{n=1}^{\infty} \subseteq \mathscr{L}^1(Px)$ be a sequence such that $I_{Px}(f_n) \to z$ as $n \to \infty$, for some $z \in X$. Then for each $E \in \Sigma$ it follows from (1) and the continuity of P(E) that $I_{Px}(\chi_{\varepsilon}f_n) \to P(E)z$ as $n \to \infty$. Accordingly, I_{Px} is Σ -converging in the sense of [11, page 516] and so Proposition 1.6 and Proposition 2.6 of [11] imply that $\mathscr{R}(I_{Px})$ is closed in the metrizable space X. However, the inclusion $\mathscr{R}(I_{Px}) \subseteq P(\Sigma)[x]$ may be strict in the non-metrizable setting.

EXAMPLE 6. Let $X = \mathbb{C}^{[0,1]}$ be equipped with the product topology. Let Σ be the σ -algebra of all Borel subsets of $\Omega = [0, 1]$ and $P : \Sigma \to L_s(X)$ be the equicontinuous spectral measure defined by $P(E)x = \chi_{\varepsilon}x$ for every $E \in \Sigma$ and $x \in X$. For x the constant function one on Ω it is routine to check that $\mathscr{R}(I_{Px}) = \mathscr{L}^0(\Sigma) \subsetneqq X = P(\Sigma)[x]$.

Since $\Sigma(P) = \{\chi_{\varepsilon} : E \in \Sigma\}$ is always a closed set in $\mathscr{L}^{1}(P)$ it follows that if I_{P} is a bicontinuous isomorphism onto its range, then $P(\Sigma)$ must be a closed subset in $\mathscr{R}(I_{P}) \subseteq L_{s}(X)$. In particular, if there exists $f \in \mathscr{L}^{1}(P) \setminus \Sigma(P)$ and a net $\{E_{\alpha}\} \subseteq \Sigma$ such that $P(E_{\alpha}) \rightarrow \int_{\Omega} f \, dP$ for the strong operator topology, then I_{P} cannot be an isomorphism onto its range. For instance, let $X_{1} = L^{2}([0, 1])$ be equipped with its weak topology, in which case X_{1} is a quasicomplete lcHs. Let $\Omega = [0, 1]$ and Σ be the σ -algebra of all Borel subsets of Ω . Then $P_{1} : \Sigma \rightarrow L_{s}(X_{1})$ defined by $P_{1}(E) : f \mapsto \chi_{\varepsilon}f$, for each $f \in X_{1}$ and $E \in \Sigma$, is a (closed) spectral measure. It is shown in [17, pages 369–370] that there exists a sequence $\{E_{n}\}_{n=1}^{\infty} \subseteq \Sigma$ such that $P_{1}(E_{n}) \rightarrow (1/2)$ I in $\mathscr{R}(I_{P_{1}})$. Accordingly, $(I_{P_{1}})^{-1}$ is not continuous.

Integration maps and local equicontinuity

The following example shows that the converse of Theorem 5 is not valid in general, that is, I_P can be a bicontinuous isomorphism onto its range *without* being locally equicontinuous.

EXAMPLE 7. Let $P_1 : \Sigma \to L_s(X_1)$ be as in the previous paragraph. Let $X_2 = L^2([0, 1])$ be equipped with its usual norm $u : f \mapsto (\int_0^1 |f(t)|^2 dt)^{1/2}$. Define an equicontinuous spectral measure $P_2 : \Sigma \to L_s(X_2)$ by $P_2(E) : g \mapsto \chi_{\varepsilon}g$, for each $g \in X_2$ and $E \in \Sigma$. Let X denote the direct sum $X_1 \oplus X_2$, equipped with the topology generated by the family of seminorms $\{\rho_{\psi} : \psi \in L^2([0, 1])\}$ where

$$\rho_{\psi}(f_1 \oplus f_2) = |\langle f_1, \psi \rangle| + u(f_2), \qquad f_1 \oplus f_2 \in X.$$

Then X is a quasicomplete lcHs. Define a (closed) spectral measure $P : \Sigma \to L_s(X)$ by $P(E)(f_1 \oplus f_2) = P_1(E)f_1 \oplus P_2(E)f_2$, for each $E \in \Sigma$ and $f_1 \oplus f_2 \in X$. Then $\mathscr{L}^1(P) = L^{\infty}([0, 1])$ as vector spaces. Indeed, if $\varphi \in L^{\infty}([0, 1])$, then

$$\int_{E} \varphi \, dP : f_1 \oplus f_2 \mapsto \chi_{\varepsilon} \varphi f_1 \oplus \chi_{\varepsilon} \varphi f_2 = \left(\int_{E} \varphi \, dP_1 \right) f_1 \oplus \left(\int_{E} \varphi \, dP_2 \right) f_2$$

for every $E \in \Sigma$ and $f_1 \oplus f_2 \in X$, which shows that $L^{\infty}([0, 1]) \subseteq \mathscr{L}^1(P)$. Conversely, if $\varphi \in \mathscr{L}^1(P)$, then $\varphi \in \mathscr{L}^1(Px)$ for each $x \in X$. By considering elements of the form $x = 0 \oplus f_2$, with $f_2 \in X_2$, and noting that $P(E)x = 0 \oplus P_2(E)f_2$ is an element of the closed *P*-invariant subspace $\{0\} \oplus X_2 \simeq X_2$, for each $E \in \Sigma$, it follows that $\varphi \in \mathscr{L}^1(P_2f_2)$ for each $f_2 \in X_2$. But, $\mathscr{L}^1(P_2f_2) = \{g \in \mathscr{L}^0(\Sigma) : gf_2 \in L^2([0, 1])\}$ with $\int_E g d(P_2f_2) = \chi_E gf_2$ for each $E \in \Sigma$. Choosing E = [0, 1] we see that $\varphi f_2 \in L^2([0, 1])$ for all $f_2 \in L^2([0, 1])$ which implies that $\varphi \in L^{\infty}([0, 1])$.

The seminorms generating the topology $\tau(P_2)$ in $\mathcal{L}^1(P_2)$ are of the form

$$u_{\xi}(P_2): \varphi \mapsto \sup_{E \in \Sigma} u\left(\left(\int_E \varphi \, dP_2\right)\xi\right), \quad \varphi \in L^{\infty}([0,1]) = \mathscr{L}^1(P_2),$$

for $\xi \in L^2([0, 1])$. The seminorms generating $\tau(P_1)$ are of the form

$$q_{\psi,\xi}(P_1):\varphi\mapsto \sup_{E\in\Sigma}\left|\left|\left(\left(\int_E\varphi\,dP_1\right)\xi,\psi\right)\right|,\quad\varphi\in L^\infty([0,1])=\mathscr{L}^1(P_1),$$

for arbitrary $\psi, \xi \in L^2([0, 1])$. By the Cauchy-Schwarz inequality it follows that

(5)
$$q_{\psi,\xi}(P_1)(\varphi) \le u(\psi) \cdot u_{\xi}(P_2)(\varphi), \quad \varphi \in L^{\infty}([0,1]),$$

for all $\psi, \xi \in L^2([0, 1])$.

Let $\{\varphi_{\alpha}\} \subseteq L^{\infty}([0, 1])$ be a net such that $I_{P}(\varphi_{\alpha}) \to 0$ in $\mathscr{R}(I_{P})$. To show $(I_{P})^{-1}$ is continuous we need to verify that $\varphi_{\alpha} \to 0$ in $\mathscr{L}^{1}(P)$. By considering the elements

 $x = 0 \oplus g \in X$, where $g \in X_2$, it follows from $I_P(\varphi_\alpha) \to 0$ in $\mathscr{R}(I_P)$ that $I_{P_2}(\varphi_\alpha) \to 0$ in $\mathscr{R}(I_{P_2}) \subseteq L_s(X_2)$. A typical seminorm generating $\tau(P)$ is of the form (for $\varphi \in \mathscr{L}^1(P)$)

$$(\rho_{\psi})_{\xi_{1}\oplus\xi_{2}}(P)(\varphi) = \sup_{E\in\Sigma} \rho_{\psi} \left(\left(\int_{E} \varphi \, dP_{1} \right) \xi_{1} \oplus \left(\int_{E} \varphi \, dP_{2} \right) \xi_{2} \right)$$

$$\leq \sup_{E\in\Sigma} \left| \left| \left(\left(\int_{E} \varphi \, dP_{1} \right) \xi_{1}, \psi \right) \right| + \sup_{E\in\Sigma} u \left(\left(\int_{E} \varphi \, dP_{2} \right) \xi_{2} \right)$$

$$= q_{\psi,\xi_{1}}(P_{1})(\varphi) + u_{\xi_{2}}(P_{2})(\varphi),$$

for some $\psi \in L^2([0, 1])$ and $\xi_1 \oplus \xi_2 \in X$. Then (5) implies that

(6)
$$(\rho_{\psi})_{\xi_1\oplus\xi_2}(P)(\varphi) \leq u(\psi) \cdot u_{\xi_1}(P_2)(\varphi) + u_{\xi_2}(P_2)(\varphi), \quad \varphi \in \mathscr{L}^1(P).$$

Since P_2 is equicontinuous it follows that $(I_{P_2})^{-1}$ is continuous (see Lemma 1). But, $I_{P_2}(\varphi_{\alpha}) \to 0$ in $\mathscr{R}(I_{P_2}) \subseteq L_s(X_2)$ and so $\varphi_{\alpha} \to 0$ in $\mathscr{L}^1(P_2)$. In particular, $u_{\xi_1}(P_2)(\varphi_{\alpha}) \to 0$ and $u_{\xi_2}(P_2)(\varphi_{\alpha}) \to 0$ for each $\xi_1, \xi_2 \in L^2([0, 1])$, and we see from (6) that $(\rho_{\psi})_{\xi_1 \oplus \xi_2}(P)(\varphi_{\alpha}) \to 0$. This shows that $\varphi_{\alpha} \to 0$ in $\mathscr{L}^1(P)$ and hence, $(I_P)^{-1}$ is continuous. Accordingly, I_P is a bicontinuous isomorphism of $\mathscr{L}^1(P)$ onto its range.

To see that *P* is not locally equicontinuous we argue as follows. As noted earlier $(I_{P_1})^{-1}$ is not continuous on $\mathscr{R}(I_{P_1}) \subseteq L_s(X_1)$ and so by Theorem 5 there must exist $f \in X_1$ such that $(I_{P_1f})^{-1}$ is not continuous from $\mathscr{R}(I_{P_1f}) \subseteq X_1$ onto $\mathscr{L}^1(P_1f)$. Then $x = f \oplus 0 \in X$ has the property that $(I_{P_X})^{-1}$ is not continuous from $\mathscr{R}(I_{P_X}) \subseteq X$ onto $\mathscr{L}^1(P_X)$, where we have used the easily verified facts that $\mathscr{L}^1(P_X) \simeq \mathscr{L}^1(P_1f)$ and $\mathscr{R}(I_{P_X}) = \mathscr{R}(I_{P_1f}) \oplus \{0\}$.

It may be of interest to note that $\mathscr{L}^1(P)$ is actually $\tau(P)$ -complete. Indeed, from the various definitions and inequalities above we see easily that

$$u_{\xi}(P_2)(\varphi) = (\rho_{\psi})_{0 \oplus \xi}(P)(\varphi), \quad \varphi \in L^{\infty}([0, 1]),$$

for each $\xi \in L^2([0, 1])$ and $\psi \in L^2([0, 1])$. Since $\mathscr{L}^1(P) = L^{\infty}([0, 1]) = \mathscr{L}^1(P_2)$ as vector spaces, the previous equality and (6) show that $\mathscr{L}^1(P)$ and $\mathscr{L}^1(P_2)$ are isomorphic as lcHs. But, $\mathscr{L}^1(P_2)$ is complete [14, Proposition 3.16], as P_2 is a closed measure [14, Proposition 3.9]) and $[L_s(X_2)]_{P_2}$ is sequentially complete. We know that $[L_s(X_2)]_{P_2}$ is sequentially complete because the space $L_s(X_2)$ is quasicomplete. Consequently, also $\mathscr{L}^1(P)$ is complete. Since I_P is a bicontinuous isomorphism of $\mathscr{L}^1(P)$ onto its range it follows that $\mathscr{R}(I_P)$ is a complete subspace of $L_s(X)$.

We conclude with an example of a spectral measure P which is not equicontinuous, but which is locally equicontinuous. In particular, I_P is then also a bicontinuous isomorphism onto its range (see Theorem 5). EXAMPLE 8. Let Ω be an infinite set and let X denote the space $c_{00}(\Omega)$ of all C-valued functions x on Ω such that x vanishes outside a finite subset of Ω . Let Y denote the space $\ell^1(\Omega)$ of all C-valued functions y on Ω satisfying $\sum_{\omega \in \Omega} |y(\omega)| < \infty$. Equip X with the weakest topology $\sigma(X, Y)$ making each functional $y \in Y$ continuous on X, where $\langle x, y \rangle = \sum_{\omega \in \Omega} x(\omega)y(\omega)$ for each $x \in X$. Let $\ell^{\infty}(\Omega)$ denote the space of all bounded C-valued functions on Ω .

Let f be a C-valued function on Ω . Define a linear operator $M_f : X \to X$ by $M_f : x \mapsto xf$ for every $x \in X$. Then $\langle M_f x, y \rangle = \sum_{\omega \in \Omega} x(\omega)(yf)(\omega)$ for every $x \in X$ and $y \in Y$. Hence, M_f is continuous if and only if $yf \in Y$ for every $y \in Y$, that is, if and only if $f \in \ell^{\infty}(\Omega)$.

Let Σ be a non-trivial σ -algebra of subsets of Ω (that is, Σ contains infinitely many elements). Define a set function $P: \Sigma \to L_s(X)$ by $P(E) = M_{\chi_E}$ for each $E \in \Sigma$. It is routine to verify that P is a spectral measure, that $\mathscr{L}^1(P) = \mathscr{L}^0(\Sigma) \cap \ell^\infty(\Omega)$ and that $\int_E f \, dP = P(E)M_f$ for every $f \in \mathscr{L}^1(P)$ and $E \in \Sigma$.

Fix $x \in X$ and let $x^{-1}(\mathbb{C}\setminus\{0\}) = \{\omega_1, \dots, \omega_n\}$. A typical seminorm q generating the topology of X is of the form $q(z) = |\langle z, y \rangle|, z \in X$, for some $y \in Y$. Define $r \in \mathscr{P}(X)$ by

$$r(z) = \sum_{k=1}^{n} |\langle z, y(\omega_k) \chi_{\omega_k} \rangle|, \quad z \in X.$$

Then it is easily verified that

$$q_x(P)(f) = \sup_{E \in \Sigma} \left| \sum_{k=1}^n f(\omega_k) x(\omega_k) y(\omega_k) \chi_E(\omega_k) \right| \le r_x(I_P f),$$

for every $f \in \mathcal{L}^1(P)$. Proposition 2 shows that the integration map I_{Px} is a bicontinuous isomorphism onto its range. Since $x \in X$ is arbitrary it follows from Theorem 3 that P is locally equicontinuous. Then Theorem 5 ensures that I_P is a bicontinuous isomorphism of $\mathcal{L}^1(P)$ onto its range.

Finally, to see that P fails to be equicontinuous we refer to Example 1(iv) and Proposition 3 of [9].

It may be in interest to note that $\mathscr{L}^1(P)$ is typically *not* complete for this example. Indeed, suppose that Ω is uncountable, that Σ contains all singleton sets $\{\omega\}$, for $\omega \in \Omega$, but $\Sigma \neq 2^{\Omega}$. Then there exists an infinite subset $F \subseteq \Omega$ which is not an element of Σ . Let \mathscr{F} denote the family of all finite subsets of F directed by inclusion. Then $\{P(E)\}_{E \in \mathscr{F}} \subseteq \mathscr{R}(I_P)$ is a net which converges to M_{χ_F} in $L_s(X)$. Since $\chi_F \notin \mathscr{L}^1(P)$ we see that $\{P(E)\}_{E \in \mathscr{F}}$ is a Cauchy net in $\mathscr{R}(I_P)$ having no limit in $\mathscr{R}(I_P)$. But, I_P is a bicontinuous isomorphism of $\mathscr{L}^1(P)$ onto its range and so $\mathscr{L}^1(P)$ cannot be complete.

REMARK. Example 7 and Example 8 both provide spectral measures P which are not equicontinuous, but such that I_P is a bicontinuous isomorphism of $\mathcal{L}^1(P)$ onto its range. This answers a question posed in [14, page 13].

References

- P. G. Dodds and B. de Pagter, 'Orthomorphisms and Boolean algebras of projections', Math. Z. 187 (1984), 361–381.
- [2] _____, 'Algebras of unbounded scalar-type spectral operators', Pacific J. Math. 130 (1987), 41-74.
- [3] P. G. Dodds, B. de Pagter and W. J. Ricker, 'Reflexivity and order properties of scalar-type spectral operators in locally convex spaces', *Trans. Amer. Math. Soc.* **293** (1986), 355–380.
- [4] P. G. Dodds and W. J. Ricker, 'Spectral measures and the Bade reflexivity theorem', J. Funct. Anal. 61 (1985), 136–163.
- [5] N. Dunford and J. T. Schwartz, *Linear operators* III: *Spectral operators* (Wiley-Interscience, New York, 1971).
- [6] C. Ionescu-Tulcea, 'Spectral operators on locally convex spaces', Bull. Amer. Math. Soc. 67 (1961), 125-128.
- [7] I. Kluvánek and G. Knowles, Vector measures and control systems (North Holland, Amsterdam, 1976).
- [8] D. R. Lewis, 'Integration with respect to vector measures', Pacific J. Math. 33 (1970), 157-165.
- [9] S. Okada and W. J. Ricker, 'Spectral measures which fail to be equicontinuous', Period. Math. Hungar. 28 (1994), 55-61.
- [10] —, 'Vector measures and integration in non-complete spaces', Arch. Math. (Basel) 63 (1994), 334–353.
- [11] —, 'The range of the integration map of a vector measure', Arch. Math. (Basel) 64 (1995), 512–522.
- [12] ——, 'Continuous extensions of spectral measures', Collog. Math. 71 (1996), 115–132.
- [13] -----, 'Spectral measures and automatic continuity', Bull. Belgian Math. Soc. 3 (1996), 267-279.
- [14] —, 'Boolean algebras of projections and ranges of spectral measures', *Dissertationes Math.* 365 (1997), 33pp.
- [15] W. J. Ricker, 'Boolean algebras of projections and spectral measures in dual spaces', Operator Theory: Adv. Appl. 43 (1990), 289–300.
- [16] ——, 'Completeness of the L¹-space of closed vector measures', Proc. Edinburgh Math. Soc. 33 (1990), 71–78.
- [17] -----, 'The sequential closedness of σ -complete Boolean algebras of projections', J. Math. Anal. Appl. **208** (1997), 364–371.
- [18] W. J. Ricker and H. H. Schaefer, 'The uniformly closed algebra generated by a complete Boolean algebra of projections', *Math. Z.* 201 (1989), 429–439.
- [19] H. H. Schaefer, 'Spectral measures in locally convex algebras', Acta Math. 107 (1962), 125-173.
- [20] A. Shuchat, 'Vector measures and scalar operators in locally convex spaces', *Michigan Math. J.* 24 (1977), 303-310.
- [21] B. Walsh, 'Structure of spectral measures on locally convex spaces', *Trans. Amer. Math. Soc.* **120** (1965), 295–326.

School of Mathematics University of New South Wales Sydney, NSW 2052 Australia e-mail: okada@maths.unsw.edu au e-mail: werner@maths.unsw.edu.au