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Abstract

We investigate several quantitative properties of entire and meromorphic solutions to some differential-
difference equations and generalised delay differential-difference equations. Our results are sharp in a
certain sense as illustrated by several examples.
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1. Introduction and main results

Laine investigated the differential equation

f (n)(z) + an−1(z) f (n−1)(z) + · · · + a1(z) f ′(z) + a0(z) f (z) = P1(z)eP0(z), (1.1)

with a0 . 0,a1, . . . ,an−1,P0,P1 . 0 polynomials, in his monograph [12] on Nevanlinna
theory and complex differential equations. In particular, he proved the following
important result.

Theorem 1.1 [12, Theorem 8.8]. Suppose that

β := deg P0 ≤ γ := 1 + max
j=0,1,...,n−1

{deg a j

n − j

}
in (1.1). Then all meromorphic solutions f to (1.1) satisfy β ≤ σ( f ) ≤ γ. If, in addition,
σ( f ) > β, then σ( f ) = λ( f ) = λ̄( f ).

Our first results are related to this theorem of Laine. We assume the reader is
familiar with the basics of the Nevanlinna theory of meromorphic functions in the
complex plane C as in [11], such as the first and second main theorems, and the
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standard notations, such as the characteristic function T (r, f ), the proximity function
m(r, f ), and the integrated counting functions N(r, f ) and N̄(r, f ). As usual, S (r, f )
denotes any quantity satisfying S (r, f ) = o(T (r, f )) when r→ +∞ outside a possible
exceptional set of finite logarithmic measure. We use σ( f ), ς( f ), and λ( f ) and λ̄( f ) to
denote the order, the hyper-order, and the exponent of convergence of zeros and that
of the distinct zeros for a meromorphic function f in C, respectively.

Our first result concerns some quantitative properties of (finite-order) entire
solutions to the following differential-difference equation, associated with (1.1),

hn(z) f (n)(z + ηn) + · · · + h1(z) f ′(z + η1) + h0(z) f (z + η0) = P1(z)eP0(z) f (k)(z + c). (1.2)

Here, k > 0 is an integer, P0 is entire, P1, h0 . 0, h1, . . . , hn are small functions of
f (that is, they belong to the family S f of meromorphic functions a(z) in C with
T (r, a) = S (r, f )), and c, η0, η1, . . . , ηn are constants.

Theorem 1.2. Assume f is a transcendental entire solution to (1.2) with hyper-order
ς( f ) strictly less than 1. Then, the following three conclusions hold.

(i) σ( f ) ≥ σ(eP0 ).
(ii) If f has a finite Borel value b and either σ( f ) > σ(eP0 ) or σ( f ) = σ(eP0 ) yet

ς( f ) > σ(P0), then b = 0.
(iii) If f , eP0 have finite orders with σ( f ) > σ(eP0 ) + 1, P1, h0 . 0, h1, . . . , hn have

finite orders that are strictly less than σ( f ) − 1, and c, η0, η1, . . . , ηn are pairwise
distinct, then λ( f − a) ≥ σ( f ) − 1 for every finite value a ∈ C.

Theorem 1.2 provides a deep extension to the main results of Liu and Song [13,
Theorems 1–3]. The following examples show that our theorem is best possible in a
certain sense.

Example 1.3. f (z) = ez sin z is a transcendental entire solution of finite order to the
equation f ′′(z + 2πi) + 2 f (z) = 2 f ′(z).

Example 1.4. f (z) = ez is a transcendental entire solution of finite order to the equation
f ′′(z + 2πi) + f (z) = 2 f ′(z).

Example 1.5. f (z) = ez3
is a transcendental entire solution of finite order to the equation

3z2 f (z + η0) = e3η0z2+3η2
0z+η3

0 f ′(z) with P0(z) = 3η0z2 + 3η2
0z + η3

0.

Example 1.3 illustrates σ( f ) > σ(eP0 ); however, we do not know whether the
equality σ( f ) = σ(eP0 ) can occur in case (i). Via Example 1.4, conclusion (ii) arises.
We can also observe σ( f ) = σ(eP0 ) + 1 but λ( f ) < σ( f ) − 1 in Example 1.5, so that the
condition σ( f ) > σ(eP0 ) + 1 cannot be further reduced.

On the other hand, if P1eP0 ≡ 0 in (1.1), Voorhoeve et al. [15] observed in 1975
that every exponential polynomial is a solution to this new equation. In addition,
when the coefficients of this new equation are exponential polynomials and exactly
one coefficient has order strictly larger than those of the others, Wen et al. [16] recently
proved that a transcendental exponential polynomial solution to such an equation has
a specific dual relation to the maximum order coefficient.
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An exponential polynomial has the form

f (z) = P1(z)eQ1(z) + · · · + Pk(z)eQk(z),

where the P j and Q j are polynomials and P j . 0 for j = 1, 2, . . . , k. We denote
q = max{deg Q j : Q j . 0}, and let ω1, ω2, . . . , ωm be the pairwise distinct, nonzero
leading coefficients of those polynomials Q j that attain the maximum degree q. Then
f can be rewritten as

f (z) = F0(z) + F1(z)eω1zq
+ · · · + Fm(z)eωmzq

,

where by construction F0 and Fl . 0 for l = 1, 2, . . . , m are either exponential
polynomials of orders strictly less than q or polynomials. Note that q = 0 means f
is a polynomial.

Motivated by the consideration of transcendental exponential polynomials as in [15,
16], we also discuss exponential polynomial solutions to the equation

an(z) f (n)(z + ηn) + · · · + a1(z) f ′(z + η1) + a0(z) f (z + η0) = P1(z)eP0(z) f (z + c), (1.3)

and arrive at the following conclusion.

Theorem 1.6. Every transcendental exponential polynomial solution f to (1.3) satisfies
σ( f ) ≥ deg P0 + 1. Here, P0 is a nonconstant polynomial, P1, a0, a1, . . . , an are
exponential polynomials of orders at most deg P0 − 1, and c, η0, η1, . . . , ηn are
constants.

Finally, we consider the generalised delay differential-difference equation

a1(z)ω(z + c1) + · · · + an(z)ω(z + cn) + a(z)
ω′(z)

H(z, ω(z))
=

P(z, ω(z))
Q(z, ω(z))

, (1.4)

which is related to the difference Painlevé equation recently studied by Halburd and
Korhonen [7]. There have been many studies of discrete (or difference) Painlevé
equations. One way in which difference Painlevé equations arise is in the study of
difference equations admitting meromorphic solutions of slow growth in the sense
of Nevanlinna theory. The idea that the existence of sufficiently many finite-order
meromorphic solutions could be considered as a version of the Painlevé property for
difference equations was first advocated by Ablowitz et al. [1]. This is, however, a very
restrictive property, as demonstrated by the relatively short list of possible equations
obtained in [5, 6] of the form

ω(z + 1) + ω(z − 1) = R(z, ω(z)),

where R is rational in ω with meromorphic coefficients in z, while ω is assumed to be
of finite order but to grow faster than the coefficients. It was later shown in [8] that
the same list arises if the finite-order hypothesis is replaced with that of hyper-order
strictly less than 1.
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Some reductions of integrable differential-difference equations are known to
generate delay differential equations with formal continuum limits to differential
Painlevé equations. For example, Quispel et al. [14] obtained the equation

ω(z)(ω(z + 1) − ω(z − 1)) + aω′(z) = bω(z), (1.5)

with a and b constants, as a symmetry reduction of the Kac–van Moerbeke equation.
They also observed that (1.5) admits a formal continuum limit to the first Painlevé
equation, and obtained an associated linear problem by extending the symmetry
reduction to the Lax pair for the Kac–van Moerbeke equation. Painlevé(-type) delay
differential equations were also considered in Grammaticos et al. [3] from the point of
view of a kind of singularity confinement.

Recently, Halburd and Korhonen [7] considered an extended version of (1.5) and
studied the delay differential-difference equation

ω(z + 1) − ω(z − 1) + a(z)
ω′(z)
ω(z)

= R(z, ω(z)) =
P(z, ω(z))
Q(z, ω(z))

. (1.6)

In particular, they proved the following result.

Theorem 1.7 [7, Theorem 1.1]. Assume ω is a transcendental meromorphic solution
to (1.6), where a is a rational function, P(z, ω(z)) is a polynomial in ω with rational
coefficients in z, and Q(z, ω(z)) is a polynomial in ω having zeros that are nonzero
rational functions in z but are not zeros of P(z, ω(z)). If the hyper-order of ω is strictly
less than 1, then

degω(P) = degω(Q) + 1 ≤ 3 or degω(R) ≤ 1.

Here degω(P) = degω(P(z, ω(z))) denotes the degree of P as a polynomial in ω,
while degω(R) = max{degω(P), degω(Q)} denotes the degree of R as a rational function
in ω.

We study the more general equation (1.4) and derive the following result.

Theorem 1.8. Assume ω is a transcendental meromorphic solution to (1.4), where
a, a1, a2, . . . , an are rational functions and c1, c2, . . . , cn are pairwise distinct, nonzero
constants, H(z, ω(z)) and P(z, ω(z)) are polynomials in ω with rational coefficients in
z, and Q(z, ω(z)) is a polynomial in ω having zeros that are nonzero rational functions
in z but are not zeros of P(z, ω(z)). If the hyper-order of ω is strictly less than 1 and
degω(H) ≥ 1, then

degω(P) ≤ degω(Q) + 1.

Two examples are given below to exhibit the sharpness of Theorem 1.8.

Example 1.9. ω(z) = zeπiz is a finite-order transcendental entire solution to

ω(z + 1) − ω(z − 1) +
ω′(z)
πiω2(z)

=
−2ω2(z) + z

zω(z)
.

Example 1.10. ω(z) = eπiz is a finite-order transcendental entire solution to

ω(z + 1) − ω(z − 1) +
ω′(z)
πiω2(z)

=
1

ω(z)
.
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2. Preliminary results

This section summarises several key results needed subsequently in this paper.

Lemma 2.1 [18, Theorem 1.62]. Take an integer n ≥ 3, and let f1, f2, . . . , fn be
meromorphic functions in C with f1, f2, . . . , fn−1 nonconstant and fn . 0. Assume∑n

j=1 f j ≡ 1 and

n∑
j=1

N
(
r,

1
f j

)
+ (n − 1)

n∑
j=1

N̄(r, f j) ≤ (λ + o(1))T (r, fk)

with some constant λ < 1 for all r ∈ I and k = 1, 2, . . . , n − 1. Then fn ≡ 1. Here, I
denotes a subset of positive real numbers of infinite Lebesgue measure.

Lemma 2.2 [18, Theorem 1.51]. Let f j be meromorphic functions and g j be entire
functions in C for j = 1, 2, . . . , n with an integer n ≥ 2. Assume

(i)
∑n

j=1 f jeg j ≡ 0;
(ii) gk − gl is not a constant whenever 1 ≤ k , l ≤ n;
(iii) T (r, f j) = S (r, egk−gl ) for every 1 ≤ j ≤ n and all 1 ≤ k , l ≤ n.

Then f j ≡ 0 for j = 1, 2, . . . , n.

Lemma 2.3 [8, Theorem 5.1 and Lemma 8.3]. Let η1, η2 be two complex numbers,
and let f be a meromorphic function in C satisfying ς = ς( f ) < 1. Then, for every
sufficiently small ε > 0 and all s ∈ (0,+∞),

m
(
r,

f (z + η1)
f (z + η2)

)
= o

(T (r, f )
r1−ς−ε

)
= S (r, f )

and
T (r + s, f ) = T (r, f ) + o

(T (r, f )
r1−ς−ε

)
= T (r, f ) + S (r, f ).

Here, r ∈ (0,+∞) outside of an exceptional set of finite logarithmic measure.

For the preceding result, one may also consult Chiang and Feng [2, Theorem 2.1
and Corollary 2.6] for the finite-order situation.

A version of the differential-difference analogue of Clunie’s theorem is given next;
see also the interesting result by Halburd and Korhonen [4, Theorem 3.1].

Proposition 2.4 [12, Lemma 2.4.2]. Let f be a transcendental meromorphic solution
with ς( f ) < 1 to

f n(z)D1(z, f (z)) = D2(z, f (z)),

where D1(z, f (z)),D2(z, f (z)) are differential-difference polynomials in f with small
meromorphic coefficients, that is, the coefficients a(z) satisfy T (r, a) = S (r, f ). If the
degree of D2(z, f (z)), as a polynomial in f , its derivatives and its shifts, is at most n,
then

m(r,D1(z, f (z))) = S (r, f ).
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Lemma 2.5 [17, Corollary 4.2]. Let q be a positive integer, let a0, a1, . . . , an be either
exponential polynomials having orders strictly less than q or polynomials, and let
b1, b2, . . . , bn ∈ C \ {0} be pairwise distinct constants. If

∑n
j=1 a j(z)eb jzq

≡ a0(z), then
a j ≡ 0 for j = 0, 1, . . . , n.

3. Proof of Theorem 1.2

Proof of Conclusion (i). First, we rewrite (1.2) in the form

hn(z) f (n)(z + ηn) + · · · + h1(z) f ′(z + η1) + h0(z) f (z + η0)
P1(z) f (k)(z + c)

= eP0(z).

Since ς( f ) < 1 by assumption, applying the first main theorem [11, Theorem 1.2], the
lemma of the logarithmic derivative [11, Lemma 2.3] and Lemma 2.3 above yields

T (r, eP0 ) ≤ T
(
r,

n∑
j=0

h j f ( j)(z + η j)
)

+ T
(
r,

1
f (k)(z + c)

)
+ T

(
r,

1
P1

)
≤

n∑
j=0

T (r, f ( j)(z + η j)) + T (r, f (k)(z + c)) +

n∑
j=0

T (r, h j) + T (r, P1) + O(1)

≤

n∑
j=0

T (r, f ( j)) + T (r, f (k)) + S (r, f ) ≤ (n + 2)T (r, f ) + S (r, f ),

which implies σ(eP0 ) ≤ σ( f ) so that conclusion (i) is verified. �

Proof of Conclusion (ii). Assume b is the second Borel value of the entire function f .
From [18, Theorems 1.42 and 2.11], f can be rewritten in the form

f (z) = g(z)eQ(z) + b. (3.1)

Here, g is an entire function with T (r, g) = S (r, f ) and Q is an entire function with
T (r, eQ) = T (r, f ) + S (r, f ) (so that σ(eQ) = σ( f ) and σ(Q) = ς( f )). Observe that

f (t)(z) = (g(z)eQ(z) + b)(t) = (g(z)eQ(z))(t) = ϕt(z)eQ(z), (3.2)

where the ϕt are polynomials formed by g, Q and their derivatives. It follows that
T (r, ϕt) = S (r, f ) for t = 1, 2, . . . , n and t = k. Substituting (3.1) and (3.2) into (1.2),

hn(z)ϕn(z + ηn)eQ(z+ηn) + · · · + h1(z)ϕ1(z + η1)eQ(z+η1)

+ h0(z)g(z + η0)eQ(z+η0) + bh0(z) = P1(z)ϕk(z + c)eP0(z)+Q(z+c). (3.3)

Suppose b , 0. When n = 0, we get a contradiction immediately via (3.3) by
comparing the zeros of g(z + η0)eQ(z+η0) + b and P1(z)ϕk(z + c). When n ≥ 1,

hn(z)ϕn(z + ηn)eQ(z+ηn)

−bh0(z)
+ · · · +

h1(z)ϕ1(z + η1)eQ(z+η1)

−bh0(z)

+
g(z + η0)eQ(z+η0)

−b
+

P1(z)ϕk(z + c)eP0(z)+Q(z+c)

bh0(z)
= 1,
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in view of the hypothesis h0 . 0. This gives f1 + · · · + fn + fn+1 + fn+2 = 1, where

f1 =
hn(z)ϕn(z + ηn)eQ(z+ηn)

−bh0(z)
,

· · · ,

fn =
h1(z)ϕ1(z + η1)eQ(z+η1)

−bh0(z)
,

fn+1 =
g(z + η0)eQ(z+η0)

−b
,

fn+2 =
P1(z)ϕk(z + c)eP0(z)+Q(z+c)

bh0(z)
.

Because either σ(eQ) > σ(eP0 ) or σ(Q) > σ(P0) by assumption, it is easily seen that
T (r, fl) = T (r, eQ) + S (r, f ) = T (r, f ) + S (r, f )

for l = 1, 2, . . . , n + 1, while fn+2 cannot be a constant. In addition,
n+2∑
l=1

N
(
r,

1
fl

)
+ (n + 1)

n+2∑
l=1

N̄(r, fl) = S (r, fs)

for s = 1, 2, . . . , n + 1. Lemma 2.1 immediately leads to a contradiction. �

Proof of Conclusion (iii). Suppose f , eP0 have finite orders with σ(eP0 ) < σ( f ) − 1,
and there is a finite value a ∈ C with λ( f − a) < σ( f ) − 1. Then a is a Borel value of
the entire function f , and according to the arguments in part (ii),

f (z) = g(z)eQ(z) + a. (3.4)
Here, Q is a polynomial with σ( f ) = deg Q = q, and g is an entire function with
σ(g) = λ(g) = λ( f − a) < σ( f ) − 1. Besides, (3.2) holds with σ(ϕt) < σ( f ) − 1 for
t = 1, 2, . . . , n and t = k. Substituting (3.4) and (3.2) into (1.2), just as for (3.3), yields

hn(z)ϕn(z + ηn)eQ(z+ηn) + · · · + h1(z)ϕ1(z + η1)eQ(z+η1)

+ h0(z)g(z + η0)eQ(z+η0) + ah0(z) = P1(z)ϕk(z + c)eP0(z)+Q(z+c). (3.5)
The assumption σ( f ) > σ(eP0 ) + 1 > 1 implies that σ( f ) = deg Q = q ≥ 2 and

σ(eP0 ) < q − 1, and as c, η0, η1, . . . , ηn are pairwise distinct, it follows that
σ(eQ(z+ηu)−Q(z+ηv)) = σ(eQ(z+ηu)−P0(z)−Q(z+c)) = q − 1

for 0 ≤ u , v ≤ n. Since σ(h jϕ j) < q − 1 and σ(P1ϕk) < q − 1, for j = 0, 1, . . . , n (with
ϕ0 := g) and 0 ≤ u , v ≤ n,

max{T (h jϕ j),T (P1ϕk)} = S (r, eQ(z+ηu)−Q(z+ηv))
and

max{T (h jϕ j),T (P1ϕk)} = S (r, eQ(z+ηu)−P0(z)−Q(z+c)).
When a = 0, in view of (3.5) and Lemma 2.2, h0g(z + η0) ≡ 0, which is impossible.

When a , 0 and n = 0, a contradiction follows immediately from (3.5) by comparing
the zeros of g(z + η0)eQ(z+η0) + a and P1(z)ϕk(z + c); when a , 0 and n ≥ 1, we can
employ the same argument using Lemma 2.1 as in part (ii) to arrive at a contradiction.
This covers all possibilities, so that λ( f − a) ≥ σ( f ) − 1 is verified. �
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4. Proof of Theorem 1.6

Let f be a transcendental exponential polynomial solution to (1.3) with finite order
σ( f ). Then deg P0 ≤ σ( f ) by analysis parallel to that in the proof of part (i) of
Theorem 1.2, since by hypothesis T (r, P1),T (r, a j) = S (r, eP0 ) for j = 0, 1, . . . , n. Now
suppose that deg P0 = σ( f ) = q ≥ 1. Then

f (z) = F0,0(z) + F1,0(z)eω1zq
+ F2,0(z)eω2zq

+ · · · + Fm,0(z)eωmzq

with σ(F0,0), σ(Fl,0) < q and Fl,0 . 0 for l = 1, 2, . . . ,m. This leads to

f (t)(z) = F0,t(z) + F1,t(z)eω1zq
+ F2,t(z)eω2zq

+ · · · + Fm,t(z)eωmzq
,

so that

f (t)(z + d) = F0,t(z + d) + F1,t(z + d)eH1,d(z)eω1zq

+ F2,t(z + d)eH2,d(z)eω2zq
+ · · · + Fm,t(z + d)eHm,d(z)eωmzq

. (4.1)

Here, ωl , 0 are pairwise distinct constants, Hl,d are polynomials of degrees at most
q − 1 that depend on d (note that Hl,d ≡ 0 if d = 0), d ∈ {c, η0, η1, . . . , ηn}, and F0,t, Fl,t

are either exponential polynomials of orders strictly less than q or polynomials such
that

F0,t(z) = F′0,t−1(z) and Fl,t(z) = F′l,t−1(z) + qωlzq−1Fl,t−1(z) (4.2)

for l = 1, 2, . . . ,m and t = 1, 2, . . . , n.
Write P0(z) = bqzq + G(z) with bq , 0 and deg G ≤ q − 1. Substituting (4.1) and

(4.2) into (1.3) yields,

n∑
j=0

a j(z)F0, j(z + η j) +

n∑
j=0

{a j(z)F1, j(z + η j)e
H1,η j (z)

}eω1zq

+

n∑
j=0

{a j(z)F2, j(z + η j)e
H2,η j (z)

}eω2zq
+ · · · +

n∑
j=0

{a j(z)Fm, j(z + η j)e
Hm,η j (z)

}eωmzq

= P1(z)F0,0(z + c)eG(z)ebqzq
+

m∑
l=1

P1(z)Fl,0(z + c)eG(z)+Hl,c(z)e(bq+ωl)zq
.

For the sake of convenience, rewrite this equality as

τ0(z) +

m∑
l=1

τl(z)eωlzq
= ζ0(z)ebqzq

+

m∑
l=1

ζl(z)e(bq+ωl)zq
, (4.3)

where τ0, τl and ζ0, ζl for l = 1, 2, . . . ,m have the obvious meanings.
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When m = 1, from (4.3),

τ0(z) + τ1(z)eω1zq
= ζ0(z)ebqzq

+ ζ1(z)e(bq+ω1)zq
.

Note that bqω1 , 0. If bq = ω1, then Lemma 2.5 yields ζ1 = P1F1,0(z + c)eG+H1,c ≡ 0
since bq + ω1 , 0, which is impossible. If instead bq , ω1, then Lemma 2.5 yields
ζ0 = P1F0,0(z + c)eG ≡ 0, which is true provided F0,0 ≡ 0; this further leads to τ0 ≡ 0
by (4.2) so that ζ1 ≡ 0 again.

When m ≥ 2 and bq ∈ {ω1, ω2, . . . , ωm}, say, bq = ω1 in (4.3), then

τ0(z) +

m∑
l=2

τl(z)eωlzq
=

m∑
l=1

ζl(z)e(bq+ωl)zq
. (4.4)

If bq + ωl , 0 for every l = 2, 3, . . . ,m (notice that bq = ω1 and hence bq + ω1 , 0),
then there exists an index, say, l = 2, such that bq + ω2 stands alone in (4.4) without a
match; this unfortunately yields ζ2 = P1F2,0(z + c)eG+H2,c ≡ 0, which is impossible. So,
bq + ωl = 0 for exactly one index (which certainly cannot be l = 1), say, l = 2. Then
ω1 = −ω2 and (4.4) becomes

m∑
l=2

τl(z)eωlzq
= ζ1(z)e2ω1zq

+

m∑
l=3

ζl(z)e(ω1+ωl)zq
,

so that
{ω2, ω3, . . . , ωm} = {−2ω2, ω3 − ω2, . . . , ωm − ω2},

which implies ω2 +
∑m

l=3 ωl = −mω2 +
∑m

l=3 ωl. This holds only if ω2 = 0, which is
absurd.

When m ≥ 2 but bq < {ω1, ω2, . . . , ωm} in (4.3), then ζ0 ≡ τ0 ≡ 0 follows with an
analogous argument, so that

m∑
l=1

τl(z)eωlzq
=

m∑
l=1

ζl(z)e(bq+ωl)zq
.

If bq + ωl = 0 for some l = 1, 2, . . . ,m, say, l = 1, then ζ1 ≡ 0, a contradiction. So,
bq + ωl , 0 for every l = 1, 2, . . . ,m, and matching of common terms leads to

{ω1, ω2, . . . , ωm} = {ω1 + bq, ω2 + bq, . . . , ωm + bq}.

In particular,
∑m

l=1 ωl = mbq +
∑m

l=1 ωl. This holds only if bq = 0, which is impossible.
So, σ( f ) ≥ deg P0 + 1 follows and the proof of Theorem 1.6 is complete.

5. Proof of Theorem 1.8

Suppose degω(P) = p ≥ degω(Q) + 2 and degω(H) = h ≥ 1, while P(z, ω(z)) and
H(z, ω(z)) can be written explicitly as

P(z, ω(z)) = bp(z)ωp(z) + · · · + b1(z)ω(z) + b0(z),

H(z, ω(z)) = dh(z)ωh(z) + · · · + d1(z)ω(z) + d0(z).
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Here, b0, b1, . . . , bp and d0, d1, . . . , dh are rational functions in z. Then we can rewrite
(1.4) as{[ n∑

j=1

a j(z)ω(z + c j)
]
H(z, ω(z)) + a(z)ω′(z)

}
Q(z, ω(z))

− {bp−1(z)ωp−1(z) + · · · + b1(z)ω(z) + b0(z)}H(z, ω(z))
− {dh−1(z)ωh−1(z) + · · · + d1(z)ω(z) + d0(z)}bp(z)ωp(z) = bp(z)dh(z)ωp+h(z).

The degree of the left-hand side of this equality, as a polynomial in ω, ω′ and its shifts
with rational coefficients, is at most p + h − 1. From Lemma 2.4,

m(r, ω) = S (r, ω).

As a result, ω has infinitely many poles.
Let z1 be a pole of ω with multiplicity k1 ≥ 1. If z1 is neither a zero nor a pole of

the rational function a in the term aω′/H(z, ω), one of the following holds:

(a) z1 is a simple pole of a(z)ω′(z)/H(z, ω(z)) when degω(H) = 1;
(b) z1 is a regular point of a(z)ω′(z)/H(z, ω(z)) when degω(H) ≥ 2.

Applying these observations and noting that degω(P) − degω(Q) ≥ 2, we see that ω
has a pole at one of the points z1 + c1, z1 + c2, . . . , z1 + cn, which is neither a zero
nor a pole of the rational function coefficients of (1.4). Denote by z2 this pole of ω
with multiplicity k2 ≥ k1(degω(P) − degω(Q)). Substituting z2 into (1.4), by a parallel
discussion to that above, ω has a pole at one of the points z2 + c1, z2 + c2, . . . , z2 + cn,
say, z3, which is neither a zero nor a pole of the rational function coefficients of (1.4)
and has multiplicity

k3 ≥ k2(degω(P) − degω(Q)) ≥ k1(degω(P) − degω(Q))2.

This iteration process can be repeated to generate a sequence {zm : m ≥ 1} of poles
of ω with multiplicities {km : m ≥ 1}, which are neither zeros nor poles of the given
rational functions, such that

km ≥ k1(degω(P) − degω(Q))m−1.

(It may be helpful to mention that similar iteration techniques (but with more
complexity) can be found in Han [9] or [10, Proposition 2.2], and the many references
therein.)

We now estimate the growth of the counting function n(r, ω). Set

rm := |z1| + (m − 1)α

for α := max{|c1|, |c2|, . . . , |cn|}. It is geometrically straightforward to see that

zm ∈ B(z1, (m − 1)α)  B(0, |z1| + (m − 1)α) = B(0, rm),
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which in particular implies, for sufficiently large m, that

n(rm, ω) ≥ k1(degω(P) − degω(Q))m−1.

As a consequence,

ς(ω) ≥ lim sup
r→+∞

log log n(r, ω)
log r

≥ lim sup
m→+∞

log log n(rm, ω)
log rm

≥ lim sup
m→+∞

log log k1(degω(P) − degω(Q))m−1

log rm
= 1.

However, this contradicts the condition ς(ω) < 1. So degω(P) ≤ degω(Q) + 1 follows.
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