TRANSVERSAL THEORY AND MATROIDS

D. J. A. WELSH

1. Introduction. In this paper I use techniques developed by Mirsky and Perfect (5) to generalize the extremely close relationship between transversal theory and the theory of matroids or independence structures. I extend in two directions a fundamental theorem of Rado (8) and use the techniques of Mirsky and Perfect to obtain easy proofs of known and unknown results about systems of representatives with repetition.

2. Basic concepts. In this section I review the results used subsequently. Throughout the paper, S will denote a finite set and A will denote the collection of subsets of S, $\{A_i, i \in I\}$, where I is a finite index set. |K| will denote the cardinality of a set K and I use the notation

$$A(J) = \bigcup_{i \in J} A_i.$$

A subset $Y = \{Y_1, \ldots, Y_t\}$ of distinct element of S is called a *partial transversal* of A if there exists an injection g: $Y \rightarrow I$ such that

$$Y_i \in A_{g(Y_i)} \qquad (1 \leq i \leq t).$$

The *length* of such a partial transversal is t and a *transversal* of A is a partial transversal of length |I|.

A matroid \mathbf{M} on S is defined as follows. \mathbf{M} is a collection of subsets of S called *independent* sets which satisfies:

(1) $\emptyset \in \mathbf{M};$

- (2) $X \in \mathbf{M}, Y \subset X \Rightarrow Y \in \mathbf{M};$
- (3) If $Z \subset S$, then all maximal independent subsets of Z have the same cardinality, called the *rank* of Z and denoted by r(Z).

The rank of the matroid is defined to be r(S). We will denote a matroid by (S, \mathbf{M}) , or when there is no possibility of confusion by \mathbf{M} .

Matroids were first introduced by Whitney (11) and many equivalent sets of axioms exist; we refer to (9 or 11). A *base* of a matroid **M** on S is any maximal independent subset of S. A matroid may be defined in terms of its bases as follows: A collection **G** of subsets of S is the set of bases of some matroid on S if:

- (4) Each member of \mathbf{G} has the same cardinality;
- (5) If B_1 and B_2 are members of **G**, and $e \in B_1$, there exists $f \in B_2$ such that

$$B_3 = B_1 - e + f \in \mathbf{G}.$$

Received May 27, 1968.

A fundamental relationship between transversal theory and matroids is given by the following theorem, proved independently by Mirsky and Perfect (5), and Edmonds and Fulkerson (1).

THEOREM 1. If A is any collection of subsets of S, and T(A) denotes the collection of partial transversals of A, then T(A) is the collection of independent sets of a matroid on S, which we call the transversal matroid of A.

We will give a generalization of this and also of the following result.

RADO'S THEOREM. If (S, \mathbf{M}) is a matroid with rank function r and A is any collection of subsets of S, then A has a transversal which is an independent set in \mathbf{M} if and only if

$$r(A(J)) \ge |J|$$

for all $J \subset I$.

An extension of this, first noted by Perfect (7), is the following.

COROLLARY. Under the same conditions, A has a partial transversal with rank at least t in (S, \mathbf{M}) if and only if for all $J \subset I$, we have:

$$r(A(J)) \ge t + |J| - |I|.$$

3. p-transversals. For convenience, let n = |I| and let $\mathbf{p} = (p_1, \ldots, p_n)$ denote any *n*-vector with non-negative integer coordinates p_i . If A is any family of subsets of S, we say that a subset X of S is a **p**-transversal of A if and only if we can write

$$X = X_1 \cup \ldots \cup X_n,$$

where

$$X_i \cap X_j = \emptyset$$
 $(i \neq j),$ $|X_i| = p_i$ $(i \in I),$ $X_i \subset A_i.$

Thus a (1, 1, ..., 1)-transversal is a transversal in the usual sense. Using an idea of Halmos and Vaughan (3), we prove the following result.

THEOREM 3. For fixed \mathbf{p} , the collection of \mathbf{p} -transversals of A form the bases of a matroid on S.

Proof. Let A^* be the collection of subsets of S consisting of p_1 copies of A_1 , p_2 copies of A_2, \ldots, p_n copies of A_n . It is easy to see that X is a **p**-transversal of **A** if and only if X is a transversal of **A**^{*}. Hence, by Theorem 1, the **p**-transversals of **A** are the bases of a matroid on S.

Similarly, we may extend Rado's theorem as follows.

THEOREM 4. If (S, \mathbf{M}) is a matroid and \mathbf{A} is any collection of subsets of S, then \mathbf{A} has a \mathbf{p} -transversal which is independent in \mathbf{M} if and only if for all $J \subset I$, we have

$$r(A(J)) \ge \sum_{i \in J} p_i.$$

MATROIDS

Proof. Let A^* be the collection of subsets of S defined in the proof of Theorem 3. Then A has an independent **p**-transversal if and only if A^* has an independent transversal, and the result follows from Rado's theorem.

4. *k*-transversals. If $Z = \{z_1, z_2, \ldots, z_n\}$ is any collection of not necessarily distinct elements of S and $e \in S$, we denote the number of times that *e* occurs in Z by f(e; Z).

If A is any collection of subsets of S and k is any non-negative integer, then we say that the subset $X = \{x_1, \ldots, x_{\alpha}\}$ of distinct elements of S is a k-transversal of A if there exists a set $Y = \{Y_i, i \in I\}$ of not necessarily distinct elements such that $Y_i \in X$ and

$$Y_i \in A_i \quad (i \in I), \qquad 1 \leq f(x_i; Y) \leq k \qquad (1 \leq i \leq \alpha).$$

Thus, a 1-transversal is a transversal in the usual sense. k-transversals are more usually described as systems of representatives with repetition; see (2 or 6).

In general, the collection of k-transversals of a family A of subsets of S does not form the collection of bases of a matroid. However, we generalize Rado's theorem to obtain the following result.

THEOREM 5. If (S, \mathbf{M}) is a matroid with rank function r, then A has a k-transversal with rank not less than t if and only if

(6)
$$k|A(J)| \ge |J|,$$

(7)
$$r(A(J)) \ge |J| + t - |I|,$$

for all subsets $J \subset I$.

Before proving the theorem we need a preliminary result in matroid theory. For notational reasons let

$$S = \{e(1), e(2), \ldots, e(m)\}.$$

Define S^k to be the set of km elements,

$$S^{k} = \{e(1, 1), \ldots, e(1, k), e(2, 1), \ldots, e(2, k), \ldots, e(m, 1), \ldots, e(m, k)\}$$

and let $g: S^k \to S$ be the natural map

$$g(e(i,j)) = e(i).$$

If now (S, \mathbf{M}) is a matroid, let \mathbf{G} be the collection of those subsets of S^k which satisfy the requirement that $X \in \mathbf{G}$ if and only if

(a) |X| = r(S),

(b) g(X) is a base of (S, \mathbf{M}) .

Then it is easy to prove the following theorem.

THEOREM 6. **G** is the set of bases of a matroid on S^k and we denote this matroid by (S^k, \mathbf{M}^k) .

D. J. A. WELSH

Proof. From (a), no member of **G** properly contains another. Let X and Y be two members of **G**, say

 $X = e(i_1, j_1), \ldots, e(i_r, j_r)$ and $Y = e(k_1, l_1), \ldots, e(k_r, l_r).$

Let $B_1 = g(X)$, $B_2 = g(Y)$, so that B_1 and B_2 are bases of (S, \mathbf{M}) . Consider

$$X' = X - e(i_i, j_i) \qquad (1 \le t \le r).$$

Then

$$g(X') = B_1 - e(i_t)$$

However, since B_1 and B_2 are bases of (S, \mathbf{M}) , there exists u such that

$$B_3 = B_1 - e(i_t) + e(k_u)$$

is also a base of (S, \mathbf{M}) . Hence

$$X - e(i_t, j_t) + e(k_u, l_u)$$

is a member of G, and therefore G satisfies (4) and (5), which proves Theorem 6.

Proof of Theorem 5. Define the collection $A^k = \{A_i^k, i \in I\}$ of subsets of S^k by

$$e(i,j) \in A_u^k \Leftrightarrow e(i) \in A_u \qquad (u \in I).$$

Let r be the rank function of the matroid (S, \mathbf{M}) and r_k the rank function of (S^k, \mathbf{M}^k) . Suppose that \mathbf{A} has a k-transversal X such that $r(X) \geq t$. Then \mathbf{A}^k has a transversal Y such that g(Y) = X and $r_k(Y) \geq t$. However, from the extension of Rado's theorem, this implies that for any $J \subset I$ we have:

Hence

$$r_k[A^k(J)] \ge |J| + t - |I|.$$

 $r[A(J)] \ge |J| + t - |I|.$

The necessity of the condition (6) follows from a theorem of Rado (2, Theorem 3.2).

Conversely, if (7) holds, then for any $J \subset I$ we have:

$$r_k[A^k(J)] \ge |J| + t - |I|.$$

Hence \mathbf{A}^k has a partial transversal Y of rank at least t in (S^k, \mathbf{M}^k) . However by (6), and (2, 3.2), \mathbf{A}^k has a transversal and since any partial transversal of a family of sets may be augmented to a transversal (if it exists) (5), there exists $Z \subset S^k$ such that

- (8) Z is a transversal of A^k ,
- $(9) Y \subset Z,$

and therefore

(10)
$$r_k(Z) \ge t.$$

Hence g(Z) is a k-transversal of A and $r[g(Z)] \ge t$, which proves the theorem.

MATROIDS

5. Some applications. I now show how Theorems 4 and 5 may be used to give simple proofs of various theorems about p-transversals and k-transversals. The basic technique is to construct a "useful" matroid on S, find its rank function, and then apply the above theorems.

Example 1. Let **M** be the matroid of S in which every subset is independent. Then for any $X \subset S$ we have:

r(X) = |X|.

Hence using this matroid in Theorems 4 and 5, we obtain the following results.

THEOREM 7. A has a p-transversal if and only if for all $J \subset I$ we have:

$$|A(J)| \ge \sum_{i \in J} p_i.$$

THEOREM 8. A has a k-transversal of cardinality at least t if and only if for all $J \subset I$ we have:

(11) $k|A(J)| \ge |J|,$

(12)
$$|A(J)| \ge |J| + t - |I|.$$

Example 2. Let U be any subset of S and define (S, \mathbf{M}) to be a matroid having the single base U. Verifying that this is a matroid is trivial, and if $X \subset S$, the rank of X is

$$r(X) = |X \cap U|.$$

Now the collection A of subsets of S has a p-transversal which contains U if and only if A has a p-transversal whose rank in M is not less than |U|. Hence, from Theorem 4 we obtain the following result.

THEOREM 9. A has a p-transversal which contains the subset $U \subset S$ if and only if for all $J \subset I$, we have:

$$|A(J) \cap U| \ge \sum_{i \in J} p_i.$$

For *k*-transversals we obtain in the same way.

THEOREM 10. A has a k-transversal which contains the subset $U \subset S$ if and only if for all $J \subset I$, we have:

 $k|A(J)| \ge |J|$ and $|A(J) \cap U| \ge |J| + |U| - |I|$.

Theorems 9 and 10 are generalizations of a well-known theorem of Hoffman and Kuhn (4).

Example 3. Let $\{E_i, i \in D\}$ be a partition of S into disjoint subsets, and let $\{a_i, i \in D\}$ be given non-negative integers. Define (S, \mathbf{M}) to be the matroid having as bases those subsets Z of S which satisfy

$$|Z \cap E_i| = a_i \qquad (i \in D).$$

D. J. A. WELSH

It is easy to verify that this is a matroid and the rank of X in (S, \mathbf{M}) is given by

$$r(X) = |X| - \sum_{D} (|X \cap E_i| - a_i)^+,$$

where $(x)^+$ denotes max $\{x, 0\}$. Now A has a p-transversal X which satisfies

$$|X \cap E_i| \leq a_i \qquad (i \in D)$$

if and only if A has a p-transversal which is an independent set in (S, \mathbf{M}) . Hence by Theorem 4 we obtain the following result.

THEOREM 11. If $\{E_i, i \in D\}$ is any partition of S into disjoint subsets, then A has a p-transversal X such that

$$|X \cap E_i| \leq a_i,$$

where $\{a_i, i \in D\}$ are prescribed integers if and only if for all subsets J of I we have:

$$|A(J)| - \sum_{i \in D} (E_i \cap A(J) - a_i)^+ \ge \sum_{i \in J} p_i.$$

This is a generalization of a theorem in (4) for ordinary transversals.

Using Theorem 3 we use a technique used by Mirsky and Perfect (5) for finding conditions for two families of sets to have a common transversal, to obtain a generalization of a well-known result of Ford and Fulkerson (2).

THEOREM 12. Let $\mathbf{p} = (p_1, \ldots, p_n)$ and $\mathbf{q} = (q_1, \ldots, q_n)$ be n-vectors such that

$$\sum_{i=1}^{n} p_{i} = \sum_{i=1}^{n} q_{i} = N.$$

Then if A and B are any two families of n subsets of S, A has a p-transversal which is also a q-transversal of B if and only if for any subsets J, K of $(1, \ldots, n)$, we have:

$$|A(J) \cap B(K)| \ge \sum_{J} p_i + \sum_{K} q_i - N.$$

Proof. By Theorem 3, the set of **p**-transversals of A form the bases of a matroid on S, we denote this by $[S, \mathbf{M}(A)]$. Hence, if r_A denotes the rank function of $\mathbf{M}(A)$, **B** has a **q**-transversal which is also a **p**-transversal of A if and only if X is a base of $\mathbf{M}(A)$. The condition for this is that for any $K \subset \{1, \ldots, n\}$, we have:

(13)
$$r_A(B(K)) \ge \sum_K q_i.$$

Now if X is any subset of S, $r_A(X) \ge t$ if and only if the collection of subsets consisting of p_1 copies of $A_1 \cap X$, p_2 copies of $A_2 \cap X$, ..., p_n copies of $A_n \cap X$, has a partial transversal of length at least t. A simple deduction from the defect version of Hall's theorem (2, Theorem 3.4) shows that necessary

MATROIDS

and sufficient conditions for this are that for any subset $J \subset \{1, \ldots, n\}$, we have:

(14)
$$|X \cap A(J)| \ge \sum_{i \in J} p_i - N + t.$$

Hence

$$r_A(B(K)) \ge \sum_{i \in K} q_i$$

if and only if

$$B(K) \cap A(J) \ge \sum_{i \in J} p_i + \sum_{i \in K} q_i - N$$

for any subsets J, K of $\{1, \ldots, n\}$, which proves the theorem.

By a similar method we may prove the following result.

THEOREM 13. If $\mathbf{A} = \{A_1, \ldots, A_n\}$ and $\mathbf{B} = \{B_1, \ldots, B_m\}$ are two collections of subsets of S, then if $\mathbf{p} = (p_1, \ldots, p_n)$ is any n-vector, there exists a subset X of S which is a **p**-transversal of A and a k-transversal of **B** if and only if for any $J \subset \{1, \ldots, n\}$ and $K \subset \{1, \ldots, m\}$, we have:

$$(15) k|B(K)| \ge |K|$$

(16)
$$|A(J) \cap B(K)| \ge \sum_{i \in J} p_i + |K| - m.$$

Proof. Let $[S, \mathbf{M}(A)]$ be the **p**-transversal matroid of A, as in the proof of Theorem 12. Then **B** has a k-transversal X which is also a **p**-transversal of A if and only if **B** has a k-transversal which is of rank $\sum p_i$ in $[S, \mathbf{M}(A)]$. By Theorem 5, the necessary and sufficient conditions for this are that (1) holds and also

$$r_A[B(K)] \ge |K| + \sum_{i=1}^n p_i - m \qquad (K \subset (1, \dots, m)).$$

By (14), this is equivalent to

$$|B(K) \cap A(J)| \ge \sum_{i \in J} p_i - \sum_{i=1}^n p_i + |K| + \sum_{i=1}^n p_i - m$$
$$= \sum_{i \in J} p_i + |K| - m$$

for any $J \subset \{1, ..., n\}, K \subset \{1, ..., m\}$.

References

- J. Edmonds and D. R. Fulkerson, Transversals and matroid partitions, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 147–153.
- 2. L. R. Ford, Jr. and D. R. Fulkerson, *Flows in networks* (Princeton Univ. Press, Princeton, N.J., 1962).
- 3. P. R. Halmos and H. E. Vaughan, *The marriage problem*, Amer. J. Math. 72 (1950), 214-215.
- 4. A. J. Hoffman and W. H. Kuhn, Systems of distinct representatives and linear programming, Amer. Math. Monthly 63 (1956), 455-460.

D. J. A. WELSH

- 5. L. Mirsky and H. Perfect, Applications of the notion of independence to problems of combinatorial analysis, J. Combinatorial Theory 2 (1967), 327-357.
- 6. ——— Systems of representatives, J. Math. Anal. Appl. 15 (1966), 520-568.
- 7. H. Perfect, Abstract linear dependence, Seminar Rep. Univ. Sheffield, England, 1967.
- 8. R. Rado, A theorem on independence relations, Quart. J. Math. Oxford Ser. 13 (1942), 83-89.
- 9. Abstract linear dependence, Colloq. Math. 14 (1966), 257-264.
- 10. D. J. A. Welsh, Some applications of a theorem by Rado, Mathematika 15 (1968), 199-203.
- 11. H. Whitney, On the abstract properties of linear dependence, Amer. J. Math. 57 (1935), 509-533.

Merton College, Oxford, England