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We consider direct statistical simulation (DSS) of a paradigm system of convection
interacting with mean flows. In the Busse annulus model, zonal jets are generated through
the interaction of convectively driven turbulence and rotation; non-trivial dynamics
including the emergence of multiple jets and bursting ‘predator—prey’ type dynamics
can be found. We formulate the DSS by expanding around the mean flow in terms of
equal-time cumulants and arrive at a closed set of equations of motion for the cumulants.
Here, we present results using an expansion terminated at the second cumulant (CE2);
it is fundamentally a quasilinear theory. We focus on particular cases including bursting
and bistable multiple jets and demonstrate that CE2 can reproduce the results of direct
numerical simulation if particular attention is given to symmetry considerations.
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1. Introduction

Turbulence interacts with, and leads to the generation of, mean flows in a wide variety of
natural systems. Understanding the nature of these interactions, particularly for systems
far from equilibrium, remains a key problem for the description of large-scale flows on
planets and stars. The fundamental problem in studying such systems via direct numerical
simulation (DNS) is the expense of the calculations, owing to the vast range of spatial
and temporal scales that need to be described. One way to make progress is to study the
statistics of the flow rather than detailed flow variables themselves (Marston, Qi & Tobias
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2019). However, one should bear in mind that these systems are often inhomogeneous
and strongly anisotropic, and such a statistical description should respect this, despite the
simplifications that are afforded with assumptions of homogeneity and isotropy.

Rotation is a hallmark of geophysical and astrophysical fluid dynamics. Through the
breaking of reflection symmetry, rotating systems generate mean flows such as zonal jets;
examples of which include the bands on Jupiter, the jet stream on Earth and the differential
rotation in stars (Galperin & Read 2019). In these systems, turbulence that is driven at
moderate scales interacts with rotation to produce non-trivial correlations that lead to
Reynolds stresses that drive differential rotation and jets. In S-plane turbulence without
convection, where the turbulence is constrained by two-dimensionality arising from strong
stratification as opposed to rotation, the interaction of the jets and the turbulence serves to
reinforce the jet structure even in the absence of rotation (see Farrell & loannou (2019),
figure 25.1). Here, the turbulence is often described as having an anti-frictional character
as it moves the system away from solid body rotation; this provides a stern test for theories
that seek to describe the statistical properties of the turbulence. We also note that it is
common astrophysically for the source of the turbulence to be thermal convection, and
that the convection itself is sensitive to the presence or absence of large-scale flows; this
leads to non-trivial feedbacks between the mean flows and the turbulence.

Here, we explore a simple system that involves the interaction of convection with mean
flows — the Busse annulus. The Busse annulus models rotating convection in an annulus
with slanted ends leading to a topographic g effect; this effect leads to vortex stretching
and the generation of systematic large-scale flows (see e.g. Busse 1976; Brummell & Hart
1993; Rotvig & Jones 2006). Whilst it is known that Rayleigh—Bénard convection can
produce large-scale flows in itself (e.g. Thompson 1970; Goluskin et al. 2014), here the
B effect arising from the slanting endwalls provides an easily tunable parameter. We use
this system to test the effectiveness of the statistical description termed CE2. The CE2
is a quasilinear approximation of direct statistical simulation (DSS) and is a cumulant
expansion truncated at second order. It is the lowest-order method in a hierarchy that can
be extended to reach more accurate but more complex methods. Whilst higher-order DSS
models do succeed in reproducing results that CE2 does not (see Marston & Tobias 2022,
for a recent review), it is not clear a priori which model is required for a given system (even
for simple systems, e.g. Li et al. 2022) and therefore it is prudent to begin with CE2. The
CE2 has been shown to be effective for simple systems where tightly coupled correlations
control the dynamics and driving is either stochastic (e.g. Farrell & Ioannou 2007; Tobias
& Marston 2013) or arises through the instability of a shear flow (e.g. Marston, Conover
& Schneider 2008). However, the case of thermal convection, where buoyancy provides
the driving in the vorticity equation and there is nonlinearity in both the vorticity and
temperature equations, has been much less studied (though we note Fitzgerald & Farrell
(2018a,b), studied stably stratified Boussinesq dynamics with S3T).

Thus, the Busse annulus system presents an important challenge for CE2, not least
because it is known to host multiple solutions at modest Rayleigh numbers (Brummell &
Hart 1993). Moreover, it has been shown (Tobias, Oishi & Marston 2018) that the simplest
quasilinear dynamical theory can perform poorly in describing this system and only
works well when the definition of mean fields is generalised to large-scale modes via the
so-called generalised quasilinear (GQL) approximation. How does a quasilinear statistical
theory fare when faced with multiple potential solution basins? This question has been
investigated in the context of zonal jet formation (Farrell & Ioannou 2003; Constantinou,
Farrell & Ioannou 2014) and shear flows in stability stratified turbulence (Fitzgerald &

949 R1-2


https://doi.org/10.1017/jfm.2022.798

https://doi.org/10.1017/jfm.2022.798 Published online by Cambridge University Press

CE?2 Busse annulus

Farrell 2018a). Here, we investigate the sensitivity of CE2 to initial conditions for a
thermally driven case with multiple solution branches.

2. Model equations, formulation, parity and numerical methods

The Busse annulus is a two-dimensional, locally Cartesian model of rotating,
incompressible Boussinesq fluid with viscosity v and thermal diffusivity «. The
x-direction corresponds to the zonal direction, the y-direction corresponds to the radial
direction with uniform gravitational acceleration pointing inwards, and the rotation is
perpendicular to both with angular velocity 2 = §2e,. For additional information on the
geometry, see Tobias et al. (2018, particularly figure 1). The system is non-dimensionalised
with the width of the annulus in the y-direction (d) such that 0 <y < 1, the viscous time
scale d”/v and the temperature difference between the inner and outer walls AT In these
units, the length of the box in the x-direction, L, = 2.

Following Brummell & Hart (1993), Rotvig & Jones (2006), the temperature 7 =
Tgs + 0(x, y) is decomposed into a basic state profile Tpg satisfying V>Tgs = 0 and a
perturbation 6. After some manipulation, the equation for the vertical (z) component of
the vorticity (¢) is given by

i b Rait
Bt +IW 0 _ﬂﬁ  Prox

where 1 is the streamfunction, (u, v) = (—(3/9y)y, (3/0x)yr) and ¢ is related to i by

¢ = VY. (2.2)

Here J(A, B) = (0/0x)A(0/dY)B — (3/9y)A(9/0dx)B is the Jacobian. The equation for the
temperature perturbation 6 is given by

—C|B"?¢ + V3¢, Q2.1)

X s =L 4 v 23)

ot U ax o Pro '
The system is governed by four dimensionless parameters, the degree of vortex stretching
caused by the sloping endwalls S, the friction at the endwalls C, the ratio of viscosity to
thermal diffusivity Pr, and Ra, the ratio of thermal driving to dissipation. Here 8 measures
the degree of vortex stretching engendered by the sloping endwalls and C measures
the degree of friction, whilst the more familiar Rayleigh number and thermal Prandtl
number have their usual physical interpretations. The limit C = 0 formally corresponds
to vanishing Ekman number.

A zonal CE2 formulation (sometimes termed zCE?2) is implemented using a zonal
average,
Ly

1
(fay)y=,| fexydr, (2.4)
0

‘X

to split all dynamical variables into mean and fluctuating components,

fay.n=(f)+f. 2.5)

We then derive evolution equations for the first cumulants ¢, (y) = (¢) and ¢y (y) = (0)
and the second cumulants

cap (&, y1,¥2) = (&' (x1, y)B'(x1 — &, y2)), (2.6)

for o0, Ccies Coe and Ceo where é-' =X] —X2. We solve for Cyrs €O Coyris COYr> Cyir and Cog,
though we write equations in terms of ¢ cumulants. The required ¢ cumulants, for example
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Cry = Vlzcww, are computed via differential operators V12 = Bg + ay{ and V% = 8§ + 8}2,2
(as in Tobias & Marston 2013). The dynamical equations for the first cuamulants are given

by
dc 9 3\ dcye 12 3¢
== (—+—> SN il e+ 5 2.7
ot dytr  dy2/) 9§ |z ayq
and
dc, 9 3\ dcye VT2 1 9%
== (— + —) Ve = (2.8)
whilst those for the second cumulants are given by
aC{{ . BCW aC{{ (86‘; ) 8C¢§ acw 8C§§ 4 (804— ﬂ) 8C§w
at dyr 0§ ay1 0§ dyr 0§ ay2 &
— — —2c181" V24V , 2.9
+ Pr( T oE 1B “cee + (Vi + V3)eee (2.9
dcpp _ dcgy  Ocyg (aC¢ 3C¢,) dcgg  Ocg dcgy e dcyg
ar 0 0§ dypr  dy2/) 0&  Oy» 0& dy; 0§
+ L (V2 4 V2)ens (2.10)
Pr
and
ac dc dc oc dcg \ Oc dc ac
ﬂ:(_‘/’__'ﬁ)ﬂ_<1+_9)ﬂ+(_¢_ﬂ)ﬂ
ot dyr  dy2 /) 0§ dyr) & ay2 0§
— = _ 181" —V Vicpe. 2.11
Pr 85 |ﬁ| Coc + Pr 166¢ + 2€0¢ ( )

The other second cumulant terms (e.g. ¢;¢) do not need their own evolution equations, as
they can be calculated from symmetry considerations, ¢4 (&, y1, y2) = coc (=&, y2, y1).

We solve both the DNS and the cumulant system subject to impenetrable, stress-free,
zero temperature perturbation boundary conditions in the y-dimension; both systems are
periodic in x. This implies that 8, ¢ and ¢ all have odd parity with respect to the boundary
conditions in y (and are periodic in x). As the action of the zonal average preserves the
parity, we discretise the first cumulants using a sine series in y. Likewise, the second
cumulants may be discretised using sine series in y; and y; and a Fourier basis in x.

We use Dedalus (Burns et al. 2020) to solve both the direct equations (2.1)—(2.3) and
the CE2 model equations, (2.7)—(2.11). The DNS use the SBDF2 time-stepper with linear
terms implicit, whilst the CE2 equations use RK222 scheme with all terms evaluated
explicitly. We have found fully explicit time stepping to be more stable for CE2. The second
cumulants must be positive definite in order to ensure the corresponding probability
density function is realisable. At higher Ra, we have found it necessary to remove negative
eigenvalues from the second cumulant every 10 time steps. These negative eigenvalues are
caused by the rank instability that we describe in § 3.4.
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Run B Ra C DNS resolution  CE2 resolution ~Comment

A 28x10° 7.6 x 10* 0 256 x 64 323 Two-jet

B 7.07 x 10° 108 0.316 512 x 256 128 x 642 Seven-jet

C 5105 8x107 0 512 x 256 256 x 647 Three-jet — two-jet bursting
R 316 x 100 4x 107 0316 256 x 64 128 x 642 Five-jet

Rb  3.16x10° 4x107 0316 — 128 x 642 CE2 three-jet initial bias

Table 1. Runs.

3. Results

Given that the Busse annulus system is known to exhibit strong hysteresis, it is key to
examine the role of initial conditions when solving the cumulant system. Minimally,
we begin each CE2 simulation using one of two extreme initial conditions: maximal
ignorance, in which we draw a sample of a Gaussian random process for € and then
initialise cpg by computing its second cumulant. All other cumulants (both first and
second) are zero. The other extreme is maximal knowledge, in which we initialise all
fields using cumulants calculated from the statistics of a DNS solution. This allows the
evaluation of CE2’s ability to both find solutions and continue solutions already known.
In addition, we begin some solutions with biased initial conditions that are designed to
ensure solutions are not trapped in symmetry subspaces. In order to facilitate comparison
with previous work, we adapt the same run naming scheme as Tobias et al. (2018). Table 1
contains a list of the parameters for each run we consider here.

3.1. Run A: two-jet/three-jet solutions

The first case we consider (case A) exhibits relatively simple dynamics in DNS. Started
from random initial conditions, the driven convection interacts with the g effect to drive
large-scale zonal flows (jets). In this particular realisation, these take the form of one
prograde and one retrograde jet as shown in the solutions for the mean zonal velocity
(u)(y,t) and mean temperature (0)(y, t) in the Hovmoller plots of figure 1. Owing to
the shift-reflect symmetry of the Busse annulus model (e.g. Brummell & Hart 1993),
the system will produce a jet in the opposite sense (c, positive for y > 0.5) with equal
probability. Started from maximal ignorance initial conditions, however, CE2 evolves to
a three-jet solution (not shown), which is symmetric about the midplane (y = 0.5). These
results are similar to the strictly quasilinear run in Tobias et al. (2018), which also produces
a three-jet solution, an unsurprising result given that both results are from fundamentally
quasilinear methods. Interestingly, GQL solutions do, however, yield the correct number
of jets (Tobias et al. 2018). At these parameters it has been demonstrated in DNS that
there is hysteresis between two-jet and three-jet solutions, but that three-jet solutions are
unstable to perturbations that break shift-reflect symmetry (Brummell & Hart 1993). To
test this, we ran a DNS with initial conditions that respect this symmetry and, owing to
our highly accurate spectral methods, the solution remained in the symmetry class and the
three-jet solution remained steady for the entirety of our DNS integration.

Better comparison with DNS for these parameter values is achieved when the CE2
solution is biased by initialising the first cumulant of the x-velocity, ¢, to

cu(t=0,y) = Acos(2my) + Bcos(my). (3.1)

The first term is odd about the centre of the domain, whilst the second is even. We
find that CE2 is capable of finding and sustaining a two-jet solution, with amplitude
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Figure 1. Hovmoller diagrams of first cuamulants ¢, (a), cg (b) from run A started in DNS and continued with
CE2 at t = 2. Attached to the right y-axis of the Hovmoller diagrams: first cumulants of ¢, (a) and ¢y (b) as a
function of y for DNS averaged over 1 < ¢ < 2 and CE2 averaged from 2 < ¢ < 3. (¢) Total kinetic energy.

comparable with the DNS results, if the symmetry of the initial condition is such that
B >> A (here B = 1073 and A = 0). This strongly suggests that the transition from three to
two jets in DNS is the product of a subcritical, nonlinear transition mediated by eddy-eddy
— eddy interactions excluded both from CE2 and our previous quasilinear results.
Regardless, the two-jet solution remains a fixed point of the CE2 system, suggesting that
the selection of a given multi-jet solution is distinct from its maintenance. This hypothesis
is supported by our maximal knowledge calculation where the CE2 solution is initialised
with the cumulants calculated from the saturated state of the DNS run (see figure 1).
The CE2 is certainly capable of maintaining the form of these fully nonlinear solutions
(even maintaining the slight asymmetry in the temperature distribution) even though the
eddy-eddy nonlinearity (EENL) term is missing from the system. Interestingly, we note
that the kinetic energy decreases when the solution is continued by CE2. Because the
missing EENL terms pass energy in a cascade to small scales, one might expect that CE2
should have less diffusion and thus higher kinetic energy than DNS. However, we note
that the fully nonlinear solutions also have slightly higher Nusselt numbers than CE2,
Nupys = 1.95 vs. Nucgr = 1.83. This shows that DNS is more efficient at extracting
energy from the walls and thus has higher kinetic energy despite also having a cascade
that leads to increased dissipation.

The degree of success of the quasilinear CE2 models can be investigated further
by comparing the second cumulants; it is possible for first cumulants to agree well
whilst second cumulants diverge. Figure 2 shows the evolution of the second cumulant
coo (&, y1, y2 = 0.5) under CE2 for the solution started from the statistics of the saturated
state of a DNS calculation. The figure shows that this covariance of the DNS is fairly
localised in space; we hypothesise that EENL interactions are important in maintaining the
locality of these correlations. This hypothesis is validated by the fact that the correlations
delocalise in space as the quasilinear CE2 calculation progresses. Eventually the second
cumulant is very delocalised and has a wave-like form. The long-range teleconnections are
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Figure 2. (a—c) Slices of cpg (€, y1, y2 = 0.5) at three different times for run A with maximal knowledge initial
conditions selected from the output of DNS. The initial, tightly peaked cgg from DNS (a) quickly delocalises
and reverts to the overemphasis of long-range correlations characteristic of quasilinear models including CE2.
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Figure 3. Hovmoller diagrams of ¢, for run R (a) in DNS showing a five-jet profile, (b) run R in CE2 showing
a stable seven-jet solution when the initial ¢, is zero, and (c¢) run Rb in CE2 with initial ¢, biased with a
finite-amplitude three-jet profile. In this case, CE2 latches on to the correct five-jet solution.

typical of the quasilinear interaction between waves (in this case thermally driven Rossby
waves) and a mean flow.

3.2. Multiple-jet solutions

Parameters may also be selected that yield multiple-jet solutions; case R, for which the
DNS is shown in figure 3(a), is such a case. Here, after an initial transient that takes
the form of a six-jet solution, a jet merging leads to the solution settling down into
a five-jet solution. The DNS exhibits a solution for the second cumulant that is very
localised in space, which is suggested by its broad power spectrum in figure 4. For this
case, the maximally ignorant quasilinear CE2 model yields an incorrect seven-jet solution.
Remarkably, if the CE2 calculation is biased initially to yield a three-jet solution, the
solution evolves via a seven-jet solution to form a five-jet solution of the correct amplitude,
obviously driven by the corresponding evolution of the second cumulants; the basin of
attraction for CE2 is clearly very sensitive to the initial condition here. The power spectra
of the CE2 calculations shown in figure 4 demonstrate that power is concentrated in a
finite number of k, values indicating a delocalisation of the second cumulant; the second
cumulant is again a superposition of wave-like solutions. The precise wavenumbers that
receive energy for CE2 are sensitive to the structure of the first cumulant and therefore the
initial conditions. Moreover, the ‘zigzag’ structure of the power spectra in CE2 shows that
most of the power is trapped within a symmetry subspace and is not efficiently scattered
into all modes. Nonetheless, we stress that the interactions are sufficient to drive the correct
mean flows. As for case A, the CE2 solution also tracks the DNS solution well if a maximal
knowledge initial condition is used (not shown).
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Figure 4. Power spectra of ¢ for run R as a function of zonal wavenumber k, for DNS, unbiased CE2 and
biased CE2. Note that DNS has energy distributed across many k, demonstrating the importance of the EENL.
However, both CE2 runs show power only at k, = 0 and a band from 20 < k, < 50 despite the fact that the

~

biased solution gets the correct ¢, and the unbiased one does not. Taken together, this suggests that EENL is
not crucial for maintaining the mean flow and may only lead to additional dissipation.

3.3. Bursting dynamics

The Busse annulus model is capable of producing extremely complicated nonlinear
spatio-temporal dynamics. Perhaps the most nonlinear behaviour exhibited by the DNS
model is shown in figure 5(a), which show time series of the total, zonal and non-zonal
kinetic energies of the flow and Hovmoller plots of the zonally averaged zonal flows
for DNS. Here the solution takes the form of a relaxation oscillation; a cycle proceeds
as follows. Convection is driven by strong temperature gradients and interacts with the
rotation to generate zonal flows (in this case a two-jet solution). As more energy is pumped
into the zonal flow, the shear acts so as to switch off the convection (acting as a barrier to
transport). This in turn removes the energy source for the zonal flow, which decays on a
longer time scale. Once the zonal flow is weak enough, convection sets in again and the
process is repeated. This type of behaviour has been described in terms of predator—prey
dynamics with the convective turbulence taking the role of the prey and the zonal flows
acting as a predator (e.g. Rotvig & Jones 2006; Tobias et al. 2018).

Figure 5(b) shows one of the maximal knowledge solutions for CE2. Here the solution
is started from the DNS solution when it has reached a peak in the zonal flow energy. The
CE2 is able to continue relaxation oscillations from this state. If CE2 is started from the
trough in the zonal flow energy, similar results are obtained (not shown). The sensitivity
to initial conditions for CE2 is, however, demonstrated in figure 5(c), which shows the
evolution from small amplitude maximal ignorance initial conditions. This solution clearly
does not replicate the correct number of jets — though it does show some indication of
bursting behaviour, as the strength of each zonal jet waxes and wanes in response to the
driving.

3.4. Rank of second cumulants

One important difference between quasilinear and CE2 simulations is that the former
explicitly provides only a single realisation of the dynamics, whilst the latter does not;
it is a description of the low-order statistics of the system and hence can be thought of
as an average over an ensemble of simulations of the system. Recently, Nivarti er al.
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Figure 5. (a,c,e) Run C Hovmoller diagrams of ¢,. (b,d, f) Total (blue), zonal (orange) and non-zonal kinetic
energies (green). (a,b) DNS, (c,d) maximal knowledge CE2 initialised from the DNS data in a bursting state,
(e.f) maximal ignorance CE2 initialised from a diagonal cgg. In (b) and (d), nearly all kinetic energy is zonal,
so the blue and orange lines are indistinguishable.

(2022) have shown that an important difference between the quasilinear and CE2 can
be quantified via the ranks of the second cumulants — that is, the number of non-zero
eigenvalues they possess. They have demonstrated that the statistical description CE2 is
open to instabilities that can lead to higher-rank solutions for the second cumulant; the
quasilinear by contrast always produces second cumulants at each zonal wavenumber of
rank one for the barotropic models considered by Nivarti et al. (2022). Moreover the
different ranks can lead to different behaviour for CE2 compared with that of a single
run of a quasilinear system. Finally, rank instability of CE2 can also lead to non-realisable
negative eigenvalues. As discussed above, these are projected out to maintain stability of
the CE2 simulations.

Although we do not investigate these instabilities in detail here, it is interesting to
note the rank of the modes of the CE2 solutions. Figure 6 shows the rank of the second
cumulant at different zonal wavenumbers as a function of time, for run A and various initial
conditions. For a quasilinear system the rank of the solution should be one. For a maximal
knowledge initial condition for run A, when CE2 gives the correct answer, the solution
accesses a higher-rank solution than the quasilinear, and the quasilinear simulation finds
the incorrect answer (Tobias et al. 2018). The CE2 solutions clearly undergo a rank
instability to access the correct answer. However, for a maximal ignorance initial condition
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Figure 6. Rank at different zonal wavenumbers as a function of time: (¢) maximal knowledge run A,
(b) maximal ignorance run A and (c¢) run A parameters with biased first cumulant.

both quasilinear and CE2 approximations give the incorrect answer. The CE2 solution
eventually returns to a low-rank solution and reproduces the quasilinear (rather than the
correct) dynamics. Finally, for the biased initial condition case (with the first cumulant
correct but the second cumulant incorrect) the second cumulant remains high rank and
one gets the correct behaviour for the first cuamulant. We stress again here that in all cases
the second cumulant is necessarily delocalised for these quasilinear theories and hence
1correct.

4. Discussion

In this paper we have examined the effectiveness of the statistical quasilinear theory
zCE2 in reproducing the statistics of turbulent solutions of a model of the interaction
of rotating convection and zonal flows. This Busse annulus model exhibits complicated
spatio-temporal dynamics including the formation of large-scale zonal jets, multiple zonal
jets and even predator—prey relaxation oscillations between states with strong zonal flows
and strong convection.

We show that zCE2 is capable of reproducing even very complicated mean dynamics
(such as the driving and decay of the mean flows and modification of the mean temperature
profile) though, for this system, it may have multiple stable attractors for any given
parameter set. If the system is initiated with maximal ignorance then it is possible to fall
into the basin of attraction of an attractor that is not preferred by DNS. It is possible to bias
the symmetry of the initial condition in order to achieve solutions that mirror the symmetry
of the DNS solutions. Furthermore, one may use a maximal knowledge initial condition
where the zCE2 is initiated using the statistics from the saturated state of a DNS run.
In this case, zCE2 appears to be extremely successful — even reproducing the extremely
nonlinear relaxation oscillations of the highly driven system. It is noteworthy that zCE2
seems to perform better than a simple quasilinear dynamical theory that considers only
one realisation from an ensemble. Because zCE2 is a statistical theory, it can be thought
of as describing an ensemble over initial conditions, whilst one quasilinear realisation is
sensitive to the precise initial conditions. The zCE2 relies on the solution of equations
for quantities averaged in the zonal direction, i.e. the mean flows and temperature and the
two-point correlation functions. It is a quasilinear theory in that the evolution equation for
the two-point correlation function is linear in the two-point correlation function, though
there are terms that involve the product of the means and two-point correlation functions.
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CE?2 Busse annulus

The results presented here indicate that even the predator—prey dynamics is controlled by
the interaction of the mean flows and temperature with the fluctuations, with the EENL
being of secondary importance. Hence, we have shown that even for complicated dynamics
a quasilinear theory may suffice for a description of the statistics — though this is certainly
not always the case.

It is interesting to speculate further on the role of the missing physics encoded in the
EENL. This term in the equations can be modelled by deriving evolution equations for
the higher-order cumulants, and truncating the hierarchy at third order. This extension to
DSS is known as CE3 — and sometimes CE2.5 when an approximate form of the CE3
equations are utilised (Marston et al. 2019). However, this is a computationally expensive
procedure and solution strategies suffer severely from the ‘curse of dimensionality’. An
interesting question then is what is the best strategy for modelling these higher-order
interactions. Of course, if the linear operator provided by the mean flows and other fields is
sufficiently non-normal (if, for example, the shear is sufficiently strong), then the precise
form of this modelling term is not critical (since its role will be to act as a driving
term for the non-normal modes of the linear operator). In this case, one may as well
model these terms via delta correlated white noise. However, it is possible to optimise
the form of the noise provided to the linear operator so as to best match the true dynamics.
Similar optimisation procedures have been utilised for the form of the (coloured) noise in
transition problems (Zare, Jovanovi¢ & Georgiou 2017). One strategy that appeals is to
use data-driven methods to ‘learn’ the optimal form of the term that should be added to
CE2 to best reproduce the dynamics. It is to be hoped (though by no means certain) that
this optimal form should be relatively insensitive to the form of the large scales since this
dependence should be encoded in the interaction between the first and second cumulants
of CE2.
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