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A PRIORI ESTIMATES FOR SOME CLASSES 
OF DIFFERENCE SCHEMES 

NIKOLAI BAKAEV 

ABSTRACT. A new approach to the analysis of the well-posedness of difference 
parabolic problems is proposed, which is based on weaker assumptions than in earlier 
works. The results are applied to the study of multi-dimensional difference parabolic 
problems in mesh Lebesgue spaces. 

1. Introduction. Lately, work devoted to the well-posedness of difference initial-
boundary value problems (e.g., [1, 6, 8, 9,14, 15]), have treated the case where a space 
connected with the problem need not be Hilbert. In particular, this allows one to analyse 
the well-posedness of difference problems in the scale of the spaces Lph, 1 < p < oo 
(the mesh analogues of the Lebesgue spaces). However, the similar results are based on 
some assumptions that may be verified only for narrow classes of difference parabolic 
problems in the spaces Lph, 1 < p < oo, p =£ 2 [2]. Consequently, up to now, we 
do not have any essential results for wide classes of difference schemes in the spaces 
Lph, 1 < p < oo,p ^ 2 when nonuniform spatial meshes, input operators with mixed 
derivatives or discontinuous coefficients in their principal parts, and curvilinear domains 
are used. On the other hand, the Hilbert case/? = 2 is well studied by means of the theory 
of self-adjoint operators [17]. 

In order to investigate the problem of well-posedness in wider classes of difference 
parabolic problems, we apply a new approach in the present work. Our main requirements 
are weaker than in the previous works, although the a priori estimates established below 
are slightly weaker than, for example, in the theory of [1, 8, 9, 13—15]. At the same 
time, these hypotheses turn out to be easily verified in the applications concerned with 
multi-dimensional finite-difference operators on nonuniform spatial meshes. 

Recently, in [3], the author has considered similar subjects, including applications 
to the well-posedness analysis of multi-dimensional difference parabolic problems in 
the scales of the mesh Lebesgue spaces Lph, 1 < p < oo. The tools used in [3] are 
based on slightly different assumptions and lead to the slightly different a priori estimates 
than in the present work. Namely, the estimates from [3] contain the singular multiplier 
In3 (2 +/ / _ 1 ) , where H is the minimal stepsize of a spatial mesh, and the estimates estab
lished below contain the singular multiplier ln^ l(2 + ^ ) _ 1 , where 4 is a corresponding 
discrete time moment, and r is some natural number. Note that the multiplier In3 (2 +//~ l) 
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depends on the characteristics of a spatial mesh, and the multiplier In'** 1(2+ft)~1 depends 
on the characteristics of a temporal mesh. Moreover, it could be shown that the estimates 
with ln^1 (2 + ft)-1 are stronger than, for example, those with In'*1 (2+r)~ l, where r is a 
temporal mesh stepsize. At the same time, the estimates from [3] are established under 
more general assumptions than below. 

2. Abstract formulations. Unless otherwise noted, we use the symbols C or 
Ci, C2,... for different constants in our formulas. 

Let a family of Banach spaces Eh, depending on a parameter h G !H, be given. In the 
family of spaces Eh, h G M, the following initial value problem with a parameter h is 
considered: 

(1) jt+Ahy=fh(t), 0<t<oo; y(t=0)=yoh, 

where y = y(f) is a (£/,)-valued function interpreted as a solution of (1), Ah is a certain 
linear bounded operator acting on Eh,fh(t) is a given (£A)-valued function determining a 
forcing term in the differential equation, y0h G Eh is an initial value. 

We introduce on the interval [0,00) the mesh QT with a stepsize r > 0 

d)T = {ft = AT,£=0, l , . . .} . 

Let us consider in the family of spaces Eh, h G H the following difference scheme 
corresponding to the problem (1) 

(2) y{tk+x)=y{tk)-T^bjAhYfUr^bMh^Cfr\ £ = 0 , 1 , . . . 

y(to)=yoh, 

where Y^k) G Eh are determined from the system of equations 

(3) f = ^ f e ) - r E ^ ^ + r f ; ^ f e + c 4 y = 1,2,...,*/!. 

Here >>(/*) is a (£/,)-valued function of a discrete argument ft being a solution of the prob
lem (2), (3); 1/1,1/2 are some natural numbers and bj9 br, fy, dp, djr, cr;j, I— 1,2,..., v\, 
r = 1,2,..., 1/2 are some complex parameters determining a concrete form of the scheme 
(2), (3). 

If the operators gjfrAh), j,l = 1,2,...,z/2 are well defined, where the matrix 

((#//(z))) is inverse for ((<$,/ + zo//)) and 5y/ is the Kronecker delta, one can exclude the 

elements Y^ from (2), (3), and the scheme (2), (3) may be represented in the following 
canonical form 

(4) y(tM) = [I- rlUMft) +rFT/j(ft), * = 0,1 , . . . , 

y(t0)=yoh, 
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where the linear operator UT/, and (£/,)-valued function Frh{tk) are defined by 

UrA = ^ E E bjPlgjl(l~Ah), 
7=1 1=1 

FTh{tk) = ElbrI^- E E r A ^ / r ^ T ^ ) k f e + crr). 
r=l l 7=1 /=1 J 

Note that the operators UT/, and 

ur(rAh) = E E rAhbjdlrgji(TAh)9 r = 1,2,..., v2 
j=u=\ 

may be well defined even this is not valid for gji(rAh),j, I = 1,2, ,1/2- Therefore we 
can consider the problem (4) as a generalized difference scheme for the problem (1). 

DEFINITION 1. The operator UTh in (4) is called a generator of scheme. 
The generator of scheme VLTh may be represented as follows 

]lTh = r~l a(rAh), 

where a(z) is the rational function given by 

j=\l=\ 

DEFINITION 2. The function a(z) is called a scheme generator symbol. The functions 
ujr{z\ r = 1,2,... v given by 

V\ V\ 

Ur(z) = EE Z ^&/( Z ) 
7=1 /=1 

are called correcting symbols. 
Schemes like (2) and (3) were introduced and studied in [1]. In the present work we 

deal with the generalized scheme (4). Our main aim is to analyse the well-posedness of 
(4). 

DEFINITION 3. A bounded linear operator Bh'.Eh—> Eh is said to be uniformly (with 
respect to h G 9f) almost sectorial of power r (r is some natural number) on Eh if there 
exist constants SQ > 0, x > 0 such that the set 

{z; I argz| > TT/2 - xe0, \z\ > 0} 

belongs to the resolvent set of B for all h £ 9f and the inequality 

\\[R(\,Ah)Y\\Eh < Ce-r\\rr 

holds for all h E 9{, e G (0, eo], and A such that | arg A| > TT/2 — xe. 
Note that in [1] and in the other works on the approximations of solution of evolu

tion equations (see, e.g., [8, 9, 13—15]) an input operator is assumed to be (uniformly) 
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sectorial. This assumption is stronger than that of (uniform) almost sectorialness. It is 
known for some problems that it is difficult to prove that an input operator is (uniformly) 
sectorial, but there is a possibility of establishing that it is (uniformly) almost sectorial. 
A similar situation is considered in the final section of this work. 

Further, the well-posedness of the scheme (4) will be established under the assump
tions that the operator ,4/, is uniformly almost sectorial of power r on Eh and a discretiza
tion method leading to (4) is ̂ -stable. 

3. Auxiliary results. Here we study the behaviour of the resolvent of the operator 
oc{rAh\ where a(z) is the scheme generator symbol. First note that, for the operator Ah 
to be uniformly almost sectorial of power r on E, 

(5) \\[R(X,rAh)Y\\Eh < Ce-rT'e\X\e-r 

holds for all h e ?(, e € (0, e0], r > 0, and A such that | arg A| > TT/2 - xe. 

LEMMA 1. Let the operator Ah be uniformly almost sectorial of power ronEh. More
over, assume the scheme (4) is generated by an A-stable discretization method, and the 
following conditions are satisfied: 

(i) Y%LxbjPj=\; 
(ii) | 1 - A 0 | < 1 . 

where Ao is defined by 

(6) Ao = lim a(z) 
|z | -K» 

and oc(z) is the scheme generator symbol. 
Then the estimate 

(7) \R{\MrAh))\Eh < Cs-^\-2£\X\2£-{ 

holds for allhe!H,£e (0, £0/2], r > 0, A G Int Ae, where 

(8) A£ = M£\J{z; |1 -z\ < 1 - d0e}, d0 = const, 1 - 3d0e0 > |1 - A0|, 

and the setM£ is the image of the sector {z; | argz| < TT/2 — xe} under the map a(z). 

PROOF. Since a discretization method leading to the scheme (4) is ̂ 4-stable, the con
ditions 

| l - a ( z 0 ) | = l and a'(z0) = 0 

are not satisfied simultaneously for any point ZQ with Rezo = 0. It also follows from the 
,4-stability that for any point z$ such that Rezo = 0 and OC{ZQ) = 0 there holds 

Im a'(zo) = 0, Re a'(z0) > 0. 

Furthermore, note that the relations 

3 zct'iz) d , x ,, x 
(9) aRa(z ) = T ' e^a(z) = lza(z) 
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are valid and complex vectors that correspond to the values 

8 d 
—-a(z) and a(z) 
o\z\ ozrgz 

are orthogonal to each other. By the above, we get 

(10) Ci > \za\z)\ > C2\a(z)l CuC2>0 

for all z: Rez = 0, d2 < \z\ < d\9 d\,d2 = const > 0, where d\ is chosen so that 

| l - a ( z ) | < l - 2 ^ o 

(do is the constant in (8)) for all z such that \z\ > d\, Rez > 0, and d2 is chosen so that 
the equation 

(11) a(z) = 0 

has the only root z = 0 for \z\ < d2. Moreover, using 

|a'(z)| > C > 0 

for \z\ < d2, we have 

(12) d|a(z) | > \zo/(z)\ > C2\a(z)\, CUC2 > 0 

for all z: \z\ < d2. It follows from (9), (10), (12) that 

(13) |A- / i |>Ce( |A | + |/i|), C > 0 

for all e G (0, £0 /2], A G Int A£, /i G M2e. 
In order to study the behaviour of R[\, a(rAh)) for A: A G Int Ae, we use the repre

sentation 
(14) 
R(X,a(rAh)) 

= (r- l)(27r/r1 jTdzfQ di{z - Or-2{[A - aCOF1 - (A - Ao)-1 }[R(z,rAh)Y 

+ ( A - A o r ' / , AeIntAe , 

where the contour T is defined as 

T — {z; argz — ±(7r/2 — 2xe)}, 

and the integration path from 0 to z belongs to the contour T. The formula (14) is based 
on the evident relation 

£ 
dt 

—x[ dZ(z-Qr-2{[\-oc{.OrX -{\-\»Tx}Hr-2)\ = [A-a(z)]- ' - ( A - A 0 ) " 
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and follows from the well known generalization of the Cauchy formula 

(15) /">(*) = n\ (27T/)-1 / / (0(C - z)- (n+l ) <K 

(see, e.g. [16, p. 172]). Since the operator [rAh] is bounded for all fixed r > Oand/i G ttt, 
formula (15) may be easily generalized to the operator case. Therefore, (14) holds if we 
replace the contour T by a closed contour surrounding the spectrum of the operator [rAh]. 
As will be shown below, the norm of the integrand function in (14) tends to zero quickly 
enough as \z\ —• oo so that the closed contour may be transformed into the contour r . 

By (14), we derive 

\\R(X,a(TAh))\\Eh 

(16) r\ rz I 

< Ce-T-* Jr\fo(z- £r 2{[A - a ( O T l - (A - Ao)"1}dt\ | zM<fe | 

for all A such that A G Int Ae. In addition, by (13), we have 
|[A - a(z)Tl - (A - Ao)-11 = |[«00 - Ao](A - Ao)"1 [A - a(Z)]"' | 

< C, |or(Z) - A0[|A| + |Qr(2)|r] 

< c2(i + Nr^iAi + la^^ir1 

< C3[|A| + 

for all A such that A G Int Ae, z: argz = ±(7r/2 — 2xe). Finally, using (16), (17), we 
obtain 

|tf (A,cc(rAh))\\Eh < Cxz-rT~* Jr \dz\ | z | 2 - 2 £\\\\ +*)"1 dx 

= C2s-rr-2£ ff£-2 ln(l +y\\\-l)dy 

= C2£-rr-2£\X\2£-1 / ° V £ - 2 l n ( l +y)dy 

< C3e-^l)T-2£\X\2£-1 

for all A: A G Int A£, e G (0, eo/2], T > 0 , /* G #". This completes the proof. • 

4. Well-posedness of difference schemes. Here the conditions of the well-posed-
ness of the difference scheme (4) are established. 

THEOREM 1. Let the conditions of Lemma 1 be satisfied and assume 

degMz)] < 0, r = 1,2,...,i/2 

where ujr(z), r = 1,2,..., v2 are the correcting symbols. Then, for any solution of (4), 
the a priori estimate 

P^('*)lk 
<Cln r + 2(2 + [()t +1)7-]-') 

08) f t
 k \ 

x [(*+l)rr%oA |k+T£p-/+l)rr« max ||/ifo_, +crr)\\Eh , 
I / = 1 r=l,2,...,i/2 > 

A: = 0 , 1 , . . . 
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holds for allr > 0, h E 9i, £ E [0,1], where UT/, = T~xoc{rAh) is the generator of 
scheme, a{z) is the scheme generator symbol 

PROOF. Let us use the representation 

(19) [/ - a(rAh)]
k = (2iri)-1 f (1 - XfR(\9 a(rAhj) d\, k = 1,2,... 

where the contour T£ coincides with the boundary of the set A£ (A£ is defined as in the 
formulation of Lemma 1). It follows from (9), (10), and (12) that 

(20) |1 - A | < 1 -aoe\\\9 a0 = const > 0 

for all E E (0, £o/2], A E T£. Taking into account Lemma 1, we obtain from (19) and 
(20) 

\\[I-a(TAk)f\\Ek<Cl£-^»T-2e f exp(-aofe|A|)|AMrfA| 

(21) < C2£"(r+1)T-2e\£° expi-aikex)*26-1 dx + exp ( - a 2 ^ ) | 

< C3£- ir+i+2e\kr)-2e, ai,a2 = const > 0, * = 1,2,... 

for all r > 0, h G 9{, e G (0, eo/2]. In the same way, we get 

(22) U T - ' O ^ A X / - 0 ^ ) 1 * 1 1 * < Ce-<r*H2e)ikrrl-2et k= X^ 

for all T > 0, h G M, e G (0,eo/2]. Using the moments inequality (5) and taking 

e = [ln(2 + ( A T ) - 1 ) ] - 1 , we derive from (21), (22) that 

(23) \\Ulh[I-a(TAh)f\\Eh<C\nr+i(2 + (kr)-1)(kTri, k=l,2,... 

for all r > 0, h G 9(, £ G [0,1]. Moreover, taking k = 1, £ = 0 in (23), we get 

\\T-xa(TAh)\\Eh - ||UTA|k < Cln r + 1(2+r-1)r-1 

for all r > 0, h E # \ This yields the fact that one can substitute (k + 1) for k in the 
right-hand side of (23). Obviously, the estimate (23) will be valid after such substitution 
for k = 0 too. To conclude the proof, one applies the results of [4]. • 

5. Concrete families of difference schemes. Let us consider now the concrete fam
ilies of difference schemes that may be investigated on the basis of the results obtained 
above. 

Taking v\ = 1/2 = v, bj = bj, aji = dji, fy• = l;j,I = 1,2,..., 1/ in (2), (3), we obtain 
a discretization method belonging to the class of z/-stage Runge-Kutta methods [10]. We 
shall study some methods from this class. 

First of all we describe the so called simplifying conditions B(m\ C(m\ D(m) intro
duced into the theory of Runge-Kutta methods by Butcher [7]. Consider the condition 

B(m): JT bp)~x = it"1, 1 < k < m 
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the condition 

C(m): itajrf-1 = k~lc^ I <k<m, I <j <v, 

and the condition 

D(m): J2bj^~Xaji = k~xbi{\ - cf), \<l<v9 \<k<m. 

Let us now consider the z/-stage Radau IA and Radau IIA methods [10]. Both families 
of methods lead to schemes of the order of accuracy (2i/ — 1). For the Radau IA methods, 
the abscissae CjJ = 1,2,..., v are determined from the equation 

/ \ , _ i ( 2 c - l ) + P „ ( 2 c - l ) = 0 

and bj and 0,7,7,1 = 1,2, ...,*/ are determined from the simplifying conditions B(v), 
D(i/). For the Radau IIA methods, the abscissae &j9j = 1,2,..., v are the roots of the 
equation 

/ V i ( l - 2 c ) + P „ ( l - 2 c ) = 0, 

and the other coefficients are founded from the simplifying conditions B(u), C(v). It 
follows from [10] that the methods of both families are ̂ 4-stable and the eigenvalues of 
the generating matrices ((«//)) belong to the sector {z; | argz| < 7r/2}. Since the matrices 
((a,/)) are non-degenerate [10], the conditions 

(24) deg[o;y(z)] < - 1 , 7 =1 ,2 , . . . ,* / 

hold, where uj(z) are correcting symbols. Furthermore, the condition 

(25) £,bj=l 
7=1 

reflects the fact that the corresponding z/-point quadrature formula is exact for constant 
functions. By the representations for [1 — a(z)] given in [10], we easily get that Ao = 1. 
Thus the schemes (4) based on the Radau IA and the Radau IIA methods satisfy the 
conditions of Theorem 1. 

Let us also carry out an analysis of the z/-stage Lobatto IIIC methods [10]. These meth
ods generate the difference schemes of the order of accuracy (2i/ — 2). Their abscissae 
CjJ = 2 ,3 , . . . , v — 1 coincide with the roots of the equation 

^ _ 1 ( 2 c - l ) = 0, 
dc 

and c\ = 0, cv = 1. The other coefficients are determined from the conditions B(y\ 
C(y — 1) and the additional conditions aj\ =b\J = 1,2,..., v. It follows from [10] that 
the methods of this family are ^-stable and (25) is valid for all of them. Moreover, the 
eigenvalues of the matrices ((«//)) belong to the sector {z ; | argz| < 7r/2}, (24) holds, 
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and Ao = 1. Hence the schemes based on the Labatto IIIC methods satisfy the conditions 
of Theorem 1. 

Vinokurov has suggested a family of methods not contained in the class of Runge-
Kutta methods. At the same time, the schemes generated by these methods are also de
scribed by (2), (3). It is significant that the relations v\ > v2, cijj = du,j = /mod 1/2 
hold for Vinokurov's methods. Such methods have an increased economy in calculations. 
Simple analysis shows that the two methods of this family of higher order described in 
[20] are ̂ -stable. Moreover, for both methods, Ao = 1, the eigenvalues of the generating 
matrices ((0,7)) belong to the sector {z; | argz| < 7r/2}, the conditions 

deg[u;y(z)] < 0, j = l ,2 , . . . , i /2 

hold, and 

7=1 

Thus the methods from [20] satisfy the conditions of Theorem 1. 

6. Applications. Analysis of difference schemes approximating initial-boundary 
value problems for the heat conduction equation. In the present section, the ab
stract results established above are applied to the analysis of the difference schemes ap
proximating initial-boundary value problems for the multi-dimensional heat conduction 
equation. Further, the operator^/, considered above as abstract is the difference operator 
approximating an elliptic differential operator (with the boundary conditions of the first 
kind). 

Let D„ = [0,1] x • • • x [0,1] be the ^-dimensional unit hypercube, and suppose 
x = (JCI , X2,.. •, xn) is a sequence of n one-dimensional coordinates. In the segment Pi we 
introduce the non-uniform meshes uM = {xf\ k = 0 , 1 , . . . , fA }̂, / = 1,2,...,«, where 
%d,l = 1,2,..., n are some natural numbers such that^0) = 0, xf™ = 1,1= 1,2,..., n. 
Let the stepsizes hf* of the mesh UJM be 

hf = >tp-$-l\ /= 1,2 «, k=\,2,...M-
Further, we shall use the notation 

hf = (h<)k) + hf+V)/2, "/= 1,2,. ..,n,k= 1,2,. . . , * £ - 1 , 

H= min (hfl) • • •»*•>). 
i<*i<*fi-i, 

Denote by Uhi \ (! = 1,2,...,«) the meshes obtained from Uhu I = 1,2,..., w by ex
cluding the boundary nodes x^0) and J C ^ . In the hypercube D>„ let us introduce the multi
dimensional rectangular mesh 

&h = &h\ X ' ' ' X Ufa 
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and also the mesh of inner nodes 

&h = &h\ X • • • X (Jhn. 

o 

Let 7/, be the set of boundary nodes so that lh = Uh \ ^h • Let Sh denote the linear space of 
complex-valued functions y(x) defined on the mesh uh and such that j>(x) = 0 for x £ 7/,. 
Also, let ai(xi\ I — 1,2,..., n, x G D>i be coefficients such that 

(26) ai(xi) >a0 = const > 0, / = 1,2,...,n, xi e D>i. 

Suppose Ah is the multi-dimensional difference operator determined by 

(27) [Ahy]{x)=^U^iy^ xeuh, 
xeih 

for all y(x) G 5/, (here and further on the standard notation for difference derivatives is 
used [17]), where a\ — <3/(JC/), / = 1,2,..., w, JC/ € ^ / are the mesh functions defined as 

al(xf>)) = al(x?i-l) + h?l)/2), / = 1,2,...,*, * /= 1 ,2 , . . . ,3 \£-1 . 

The operator Ah approximates on the mesh Uh with first-order accuracy the differential 
operator 

i=i oxi oxi 

with boundary conditions of the first kind at the boundary of P„; and the difference prob
lem (4), (27) approximates on the mesh uT x uh the first initial-boundary value problem 
for the multi-dimensional heat conduction equation. 

In addition, we introduce the norms 

lMU / Es^-l1 - - • r&i 1 IK*^1 x»->)r«*> -.. ^*.>]»/P, i <p<00, 

o o 

for all y(x) G Sh so that the space Sh with the norm || • \\iph, 1 < p < oo, is the mesh 
analogue of the Lebesgue space Lp, 1 < p < oo. 

LEMMA 2. The operator Ah given by (26) satisfies 

(28) | | ^ ( - A , ^ ) | | ^ < A - 1 , 1 < / > < O O 

forallu)h\ >0. 

PROOF. For/? = oo, (28) follows from the maximum principle [17]. Using the tools 
of [5], we can establish that the operator^/, is self-adjoint. By this fact, (28) is valid for 
p = 1 too. To conclude the proof, it remains to apply the Riesz interpolation theorem 
[19]. 
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LEMMA 3. For the operator Ah given by (27) the inequality 

(29) \\R{KAh)\Lpk<Ce-x\\\-\ p=\,oo 

holds for all Uh, e £ (0, TT/2), and A such that | arg A | > TT/2 + e. 

PROOF. By Lemma 2, it is sufficient to use the method of an analytical continuation 
of the resolvent into the corresponding sector [12]. • 

o 

Let us introduce in the space Sh the auxiliary norms || • \\/^, 0 <j < n, defined by 

llK-)ll*w 

= max 
fAfi-l H.-\ 

1<V1<^1-1L*1=1 kJ=l 

IbOlk, = IbOlk* fery = o, 

1/2 
, for 1 <j < n - 1 

and 

U-)\\m = ILKOIk foxj = n. 

LEMMA 4. The imbedding inequalities 

(30) IK)IU(/-i) < C\\[Afy](-)\\m, \<j<n 

o 

hold for all u^, y(x) £ £/,, where A^ are the mesh operators given by 

(3D [ ^ ] W = { - ( ^ - ltZj-1.2.....* 

PROOF. Let us denote by A^j the mesh operators given by (31) in the case afoj) = 1. 
By [18], we have 
(32) 

max\y(xu...,xn)\ 
Xj^UJhj 

< 
l r | V 2 , J*;) 2£ft)' E IKtyXl(*i>• • •>xj-i>x)j\xj+i,...,x„)\ h)' 

\<kj<%-\ 

lV2 
, y = l , 2 , . . . , w 

for all fixed JC/ E uu, I = 1,2,...,n, I ^j. Using the tool of difference summation by 
parts and taking into account (26), we can also derive from (32) 
(33) 

ma\\y(xu---,x„)\ 

<c\ £ K / 2 d ( * i , • • • .xj-utfWu... ,x„)\2hf 
\<kj<%-\ 

1/2 
, 7 = 1 , 2 , . . . , « 
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for all fixed J : / G % / = 1,2,...,«,/ ^ j . Squaring both sides of (33), multiplying by 
hf1^ • • • hjij , and summing over k\,..., kj-\, we have 

£ ... £ ^)...^>max|y(*f ,),...,^ ,U,*/fi,...,*.)|2 

i<At<rv[—I i<^-i<5^-,-i Xj€Whl 

(34) <C £ ... £ I^Kxf), . . . ,^!2^-^ 

7 = 1,2,...,n 

for all fixed k\. I <k < fA -̂i, / =j + 1, . . . , n. Inverting the order of £ and max on the 
left-hand side of (34) only decreases the corresponding expression so that 

( 3 5 ) 

max [ £ . . . £ h^---hf^)\yixf\...,xf^\xj,xM,...,xn)\
2\'2 

i<%<%-iLi<i,<jv;-i i<*,_,<rA£-,-i J 

<c\ £ - £ It^K^...,^)!2^---^]172 

\<ki<9^-\ \<kj<9^-\ J 

7 = 1 , 2 , . . . , H 

for all fixed &/: 1 < £/ < fA£-i, / =7 + 1, . . . , n. In order to obtain (30), it remains to take 
maximum values over kf. 1 < £/ < fA£ — 1, / =7 + 1, . . . , w on both sides of (35). • 

LEMMA 5. For any fixed natural number r such that r > n/2, the estimate 

\\m,Ah)Y\\Lph < C\\\"/2-r, P=l,oo 

holds for all u^ and A such that | arg A| > 7r/4, where Ah is the operator given by (27). 

PROOF. By Lemma 4, we have 
(36) 
\\[R(\,Ak)Yy\\L^ 

< C2\\AfAf{R(.\,Ah)Yy\\h(2) < < C\\A{Jn
2 • • • Af[R(.\,Ah)Yy\\Llh 

o 

for all j>(x) £ Sh, &h, ^ : I arg A| > TT/4. 

Since the operators A/y,j = 1,2,... ,n are the self-adjoint positive-definite in the 
space L2/1 and commute with each other, we have instead of (36) 

\\[R(\,Ah)Yy\\L^ < CX\\(AM +Ah2 + ••• +Ahn)
nl2[R(\,Ah)Yy\\Lu 

= QWAfm^YyK < C2|Ar/2-'|b||i2A < C3|A|-/2—IMÎ  
o 

for all y(x) G £/,, u^ and A such that | arg A| > 7r/4, that is equivalent to 

(37) P(A,40]l4», < C\M"/2~r 
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for all ubh and A such that | arg A | > TT/4. 
Going over to adjoint operators on the left-hand side of (37) and taking into account 

the symmetry of the operator Ah, we also obtain 

|p(A,^)r||il/,<C|A|"/2-'' 

for all ujh and A such that | arg A| > 7r/4. 
This completes the proof. • 

LEMMA 6. The operator Ah given by (27) is uniformly (with respect to hj G (0,1], 
j = \,2,...,n) almost sectorial of power r in the spaces Lph, p = 1, oo. 

PROOF. By Lemmas 3 and 5, we can write 

(38) \\[R(X,Ah)Y\\Lph < Ce-r\X\-r, p=l,oo 

for all <I>h, e € (0, -K/2) and A such that | arg A| > -K/2 + e, as well 

(39) \\[R(\,Ah)Y\\Lph < C\X\"/2-r, p=l,cx> 

for all Uh and A such that | arg A| > 7r/4 + e, e G (0,7r/4). Using the Phragmen-Lindelof 
principle [11, p. 214], we have in view of (38), (39) 

(40) \\[R{\,AH)\r\\Lpk < Ce-r\X\-^4n^\ p = 1,oo 

for all (l>h, £ G (0,7r/8], and A such that | arg A| > 7r/2 — e. Finally, it is enough to 
substitute 7rs/(4n) for e in (40). • 

THEOREM 2. Let the operator Ah be given by (27), and let the scheme (4) satisfy the 
conditions of Theorem 1. Then, for any solution of(4), (27), the a priori estimate 

liu^lk. 
<C{ln(2 + [()t+l)r]-1)}('+1)|1-2p"'1 

x {[(* + l)r]-? | M i * + r E K * - / + mH max \\fh(t,-i + crr)\\Lph), 

1 <p < oo, k=0,l,... 

holds uniformly with respect to r > 0, a;/, and £ G [0,1], where Ur/, is the generator of 
scheme, a(z) is the scheme generator symbol. 

PROOF. By Theorem 1 and Lemma 6, the needed assertion is true for/? = 1, oo. For 
p = 2 this follows from [1], since the original assumptions of that work are satisfied for 
self-adjoint operators in Hilbert spaces. To prove the theorem for all/?, 1 <p< oo, we 
use the Riesz interpolation theorem [19]. • 

In conclusion, note that all the techniques may be easily extended for the case of the 
third initial-boundary value problem. 
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