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ABSTRACT. C band backscatter parameters contain information about the upper snowpack/firn in the
dry snow zone. The wide incidence angle diversity of the Advanced Scatterometer (ASCAT) gives unpre-
cedented characterisation of backscatter anisotropy, revealing the backscatter response to climatic
forcing. The A (isotropic component) and M2 (bi-sinusoidal azimuth anisotropy) parameters are investi-
gated here, in conjunction with data from atmospheric and snowpack models, to identify the backscatter
response to surface forcing parameters (wind speed and persistence, precipitation, surface temperature,
density and grain size). The long-termmean A parameter is successfully recreated with a regression using
these drivers, indicating strong links between the A parameter and precipitation on long timescales.
While the ASCAT time series is too short to determine which factors drive observed trends, factors in-
fluencing the seasonal and short timescale variability are revealed. On these timescales, A strongly
responds to the propagation of surface temperature cycles/anomalies downward through the firn, via
direct modulation of the dielectric constant. The influence of precipitation on A is small at shorter time-
scales. TheM2 parameter is controlled by wind speed and persistence, through modification of monodir-
ectionally-aligned surface roughness. This variability indicates that throughout much of coastal
Antarctica, a microwave ‘snapshot’ is generally not representative of longer-term conditions.

KEYWORDS: Scatterometer, ASCAT, Antarctic Ice Sheet, Dry snow zone, Backscatter, Anisotropy,
Precipitation, Firn temperature

1. INTRODUCTION
Satellite-based microwave observations at C band (4 to 8
GHz) have been used for ice sheet near-surface parameter re-
trieval for several decades (e.g. Spiridonov and Ozerkina,
1984; Bingham and Drinkwater, 2000; Drinkwater and
others, 2001; Winebrenner and others, 2001; Arthern and
others, 2006; Fraser and others, 2014). Observations indicate
a dry snow penetration depth (e−1) of ∼20 m for C band radar
(Rignot, 2002), in agreement with theory (e.g. Bingham and
Drinkwater, 2000), and 99% of the backscatter is contributed
by the top ∼90 m (Partington and Flach, 2003). C band active
microwave returns are sensitive to snow grain size, tempera-
ture, net annual surface mass balance (SMB) and other para-
meters. However, with the exception of very few studies (e.g.
Bingham and Drinkwater (2000), which covered only north
of 72°S because of the instrument orbit), previous parameter re-
trieval in polar ice sheets has always been conducted

using either long-term means of microwave parameters
(e.g. Drinkwater and others, 2001) or temporal snapshots (e.
g. Dierking and others, 2012), without consideration of short
timescale (i.e. monthly or shorter) variability. A quantification
of such variability on a variety of timescales, and an exploration
of potential drivers, are the main aims of the present study.

The first Advanced Scatterometer (ASCAT; Figa-Saldaña
and others, 2002) was launched in 2007 on board the
European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT) MetOp-A satellite. ASCAT is a C
band fan-beam scatterometer with a beam configuration that
provides excellent simultaneous diversity in both azimuth
and incidence angles, particularly equator-ward of ∼78°N/S
(Fraser and others, 2014). ASCAT also has almost complete
polar coverage, with accurate parameter retrieval to ∼88°S.
A second ASCAT instrument was launched in 2012 onboard
MetOp-B, with a third to follow in 2018 (Klaes and others,
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2013). The work presented here uses data only from ASCAT
on MetOp-A.

Multi-angle backscatter observations of the Antarctic
upper snowpack generally show a strong anisotropy, both
in azimuthal and incidence angle. Retrieval of properties of
the upper snowpack thus relies heavily on characterisation
and/or removal of this anisotropy. Incidence angle backscat-
ter anisotropy is well modelled as a linear function of inci-
dence angle in most regions of the Antarctic ice sheet (AIS),
although several regions (e.g. ice shelves, high on the East
Antarctic plateau) show a weakly cubic response (Fraser
and others, 2014). Azimuthal anisotropy is primarily gener-
ated by the interaction between incident down-welling
microwave radiation and monodirectionally-aligned
Rayleigh scale roughness of both the surface and internal
layer boundaries. When the incident microwave radiation
is aligned perpendicular to the direction of surface relief
(i.e. more roughness is encountered by incident micro-
waves), backscatter is enhanced. These microrelief features
are formed by and associated with erosional processes re-
sponsible for the formation of sastrugi. In many parts of the
AIS, particularly in non-coastal sloping regions where kata-
batic winds predominate, wind direction is very persistent
(Parish and Bromwich, 1987), resulting in strongly mono-dir-
ectional surface relief (Long and Drinkwater, 2000). The
presence of such microrelief results in a strong (>5 dB in
some regions) bi-sinusoidal modulation of backscatter as a
function of azimuth angle (Fraser and others, 2014).

Given this non-negligible anisotropy, it is natural for scat-
terometer data to be presented by parameterising surface
backscatter measurements as a function of incidence angle
and azimuth angle: σ0=A+ f(θ)+ g(ϕ), where σ0 is the mea-
sured backscatter, θ is the observation incidence angle and ϕ
the azimuth angle. Fraser and others (2014) give a detailed
comparison of various ASCAT parametrisations for incidence
angle and azimuth angle, concluding that a linear incidence
angle parametrisation combined with a Fourier series param-
etrisation for azimuth angle (with cos(1ϕ), cos(2ϕ) and cos
(4ϕ) terms) accounted for much of the observed anisotropy
of the AIS without over-fitting. This parametrisation is repre-
sented by

σ0 ¼ Aþ Bðθ � 40○Þ þM1 cosð1ðf� f1ÞÞ
þM2 cosð2ðf� f2ÞÞ þM4 cosð4ðf� f4ÞÞ ð1Þ

where A is the isotropic component of backscatter, B is the
(always negative) change in backscatter with increasing inci-
dence angle (here normalised to 40°) and M1, M2, M4, ϕ1, ϕ2
and ϕ4 are the Fourier series coefficients describing the azi-
muthal modulation. M2, the magnitude of the bi-sinusoidal
term, is generally dominant over M1 and M4.

The microwave backscatter characteristics of deep snow
and firn undergo irreversible changes after incorporation of
liquid water into the solid matrix, even after liquid water
has refrozen. Scatterometers are particularly sensitive to
such changes (Trusel and others, 2012). For this reason, we
analyse only those parts of the AIS that experience very
low annual melt (Trusel and others, 2012), here thresholded
at a value of 0.2 days of melt a−1 (hereafter referred to as the
dry snow zone).

Themicrowave signatureof deep,dry snow/firn (i.e.depth>
microwave penetration depth, or ∼90 m in this case) is
complex, and sensitive to many parameters. The reader is
directed to Yurchak (2009) (dealing mainly with the

volume component), Ulaby and others (1996) and
Partington and Flach (2003) for more complete descriptions,
but a short, qualitative summary is provided here, based
largely upon these references. Surface backscatter for a
rough surface depends on dielectric properties, Rayleigh
scale roughness and roughness anisotropy (giving rise to
the aforementioned M2 azimuthal modulation). Volume
backscatter at C band is largely controlled by grain size
within the penetration depth (low backscatter from small
grains; Figure 16 of Yurchak (2009)), temperature (warmer
snow gives lower backscatter) and layer thickness. In the
AIS interior, grains are deposited at an initial radius on the
order of 0.3 mm (Linow and others, 2012). Grain growth in
the upper snowpack is driven by snowpack temperature
and the vertical temperature gradient, following an
Arrhenius-type growth model (e.g. Alley and others, 1982;
Flanner and Zender, 2006). This is balanced by the input of
fresh, small grains in accumulating regions. Upper snowpack
density variations are also of similar phase, peaking in late
summer as sintering and metamorphosis processes are
enhanced during the summertime months (Ligtenberg and
others, 2011).

Bingham and Drinkwater (2000) developed a microwave
backscatter model for multi-layered snow/firn. The model
takes initial grain size, temperature mean and cycle ampli-
tude, layer thickness (related to net annual SMB), surface
density and grain growth rate as inputs and generates a
snow stratigraphy. Volume backscatter is modelled as
Rayleigh backscatter from spherical scatterers. There is no
rough surface backscatter component in the model. This
model was applied to time series of Antarctic (Bingham
and Drinkwater, 2000) and long-term mean Greenland
(Drinkwater and others, 2001) scatterometer observations,
in order to perform parameter retrieval. The Antarctic study
attributed seasonal A parameter cycles mainly to surface tem-
perature cycles, and interannual trends were attributed to
changes in SMB. The Greenland study by Drinkwater and
others (2001) empirically linked A and B to long-term
mean net SMB, and used the backscatter model to verify
these empirical relations. Using the same model, the sensitiv-
ity of modelled backscatter to a wide range of these input
parameters is covered in detail by Partington and Flach
(2003).

Because of the sensitivity of C band backscatter to grain
size and surface roughness, a different signature is expected
from regions experiencing consistent, widespread (on a sub-
pixel level) positive SMB, compared with other SMB regimes.
Megadunes are transverse dunes of small (several metre)
amplitude but large (∼2 km) wavelength (Fahnestock and
others, 2000). On the windward side, SMB is positive, and
the surface is typically characterised by fine grains and sas-
trugi. On the more spatially extensive leeward side, SMB is
low (typically <20 kg m−2 a−1) or negative due to wind-
driven snow redistribution/removal or ablation due to sub-
limation (Scambos and others, 2012; Das and others,
2013). Megadune regions exist in the interior of the East
Antarctic ice sheet (EAIS), are widespread and have a
strong C band emission and backscatter signature
(Fahnestock and others, 2000), so must be considered in
this work. The low-SMB leeward side is typically referred
to as a glaze region, due to the strongly forward-scattering
surface reflection. In glaze regions, SMB is so low that the
layer burial paradigm dominant in non-glaze regions
breaks down, leading to repeated summertime grain growth
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in the upper few metres. Glazed surfaces/sub-surfaces are
thus characterised by very large grain radii (on the order of
1 cm), a shiny appearance (forward-scattering enhancement)
caused by scour and sintering processes, and summertime
surface cracks caused by thermal expansion (Scambos and
others, 2012). Furthermore, glaze surfaces are generally
free from significant sastrugi and centimetre-scale roughness
features, since there is little new snow to be eroded by winds.
Glaze-prevalent regions occupy ∼11.2% of the EAIS above
an elevation of 1500 m (Scambos and others, 2012), and
are detectable in coarse-resolution scatterometer imagery
(Fraser and others, 2014). Glaze regions are an example of
where a layer-type backscatter model is not expected to
perform well. Not only is the layer assumption questionable
in a glazed subsurface where SMB is near-zero, but the
snow–air interface itself has very different characteristics to
that of layered snowpack.

Aside from characterising backscatter variability, another
aim of this work is to elucidate the links between atmospheric
driving factors, and the response of C band backscatter across
the dry snow zone. This is achieved in a variety of ways.
Firstly, the long-term mean values of A and M2 are recreated
using multiple linear regression (MLR), taking input from
various atmospheric and surface datasets. The variability of
backscatter is then analysed on three timescales:
Interannual, to determine if long-term trends are present in
the ASCAT data; intraannual, to quantify and investigate
the causes of variability throughout the annual backscatter
cycle; and 5 days timescale, to assess, quantify and discuss
the short timescale variability.

This study is conducted under the assumption that the
observed ASCAT parameter variability is driven by changes
in the physical properties of the snow surface and upper
snowpack, including changes in density, layer roughness,
grain size and temperature. It is assumed that changes to
the dielectric properties of snow and ice from chemical
species variability is negligible, as has been implicitly
assumed in prior studies. In turn, these snowpack and
surface physical changes are assumed to be driven solely
by atmospheric processes: while intraannual changes to the
radiation field (particularly shortwave radiation) are profound
in Antarctica, these are difficult to accurately quantify
because of the difficulties associated with accurately model-
ling the cloud field in Antarctica (Inoue and others, 2015).

This study makes use of lagged correlation analyses to
study the relationship between atmospheric drivers and
ASCAT parameter response. In the absence of a radiative
transfer model, it is difficult to conclusively attribute the
observed variability to changes in the snowpack/surface,
and then to relate these changes to atmospheric drivers.
Here, knowledge of physical processes is used to guide inter-
pretation, and to assign probable causality. Furthermore, the
sign and magnitude of the lag required to maximise the cor-
relation also contains information on the processes respon-
sible for the correlation (e.g. any correlation where the
surface dataset leads the backscatter response clearly violates
causality). As such, this work should be interpreted as a study
of likely drivers of backscatter parameters, rather than a proven
causal link. While the Partington and Flach (2003) model may
have been of some utility for this purpose, it does not include a
rough surface scattering component, so is of limited use (par-
ticularly for studies of the M2 parameter, which is controlled
primarily by surface roughness). Furthermore, since it was
developed primarily for use with the Greenland ice sheet,

this model assumes a layered subsurface. This assumption
likely breaks down in the spatially-extensive glaze-prevalent
regions on the East Antarctic plateau. Development of a re-
placement model (or modification of previous models) is
outside the scope of this paper.

2. DATASETS
ASCAT Level 1B Hierarchical Data Format version 5 (HDF5)
data (code ASCA_SZR_1B) were acquired from the
EUMETSAT Data Centre (http://www.eumetsat.int). These
swath-level data were then reprojected onto a 12.5 km reso-
lution polar stereographic projection defined by the National
Snow and Ice Data Centre (NSIDC, grid version 3, details
available at https://nsidc.org/data/polar_stereo/ps_grids.html).
Following reprojection, parametrisation was performed using
a linear incidence angle model and a Fourier series with
cos(1ϕ), cos(2ϕ) and cos(4ϕ) terms for azimuthal modulation.
This parametrisation was shown to effectively describe the
observed anisotropy on the AIS, while not over-fitting (Fraser
and others, 2014).

From the eight parameters available, A and M2 were
chosen for analysis because of their relative ease of interpret-
ation, high signal-to-noise ratio and expected relation to phys-
ical properties, as detailed in Section 1. Data prior to July 2007
were discarded due to suspected poorer calibration.

Surface temperature, 10 mwind velocity and precipitation
data were obtained from the Antarctic Mesoscale Prediction
System (AMPS) model, from July 2007 until January 2012
(Powers and others, 2012). A short-term comparison of
various operational atmospheric model and reanalysis pro-
ducts showed that AMPS gives realistic precipitation values
at Mill Island, located on the East Antarctic coast at
∼100.67°E; 66.5°S, with a summit elevation of ∼500 m
(Fig. 1). Although net surface accumulation is a more glacio-
logically-relevant parameter than precipitation, the latter was
chosen as a co-variate due to difficulties associated with ac-
curate modelling of processes such as blowing snow redistri-
bution and sublimation after re-suspension (i.e. precipitation
is implicitly assumed to be a first-order approximation for net
surface accumulation throughout the continent). Grid
spacing was 20 km prior to October 2008, and 15 km there-
after. An advantage of this high spatial resolution is more ac-
curate representation of the surface topography, leading to
better characterisation of katabatic winds (thought to be an
important driver of the M2 parameter (Long and
Drinkwater, 2000)).

While the azimuth of the Antarctic katabatic wind has been
remotely retrieved on a large scale using the ϕ2 parameter from
scatterometer data (Remy and others, 1992; Long and
Drinkwater, 2000), explicit comparisons between wind
speed/persistence and M2 value have not been conducted
on large scales. However, it stands to reason that a high M2

value is only achieved if the wind blows persistently in a
single direction. And while the wind field history must play
a role in M2 enhancement, a more recent wind field likely
contributes more strongly to M2 than an older one. The time-
scale of required wind persistence has yet to be studied. Thus,
in order to address this, and to find a stronger link between
wind and M2, we define P, a wind persistence metric:

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu�wÞ2 þ ðv�wÞ2

q

s�w
ð2Þ
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where u is the mean zonal wind component, v is the mean
meridional wind component and s is the mean wind speed.
The exponential weighing factor, w, is defined as w= e−t*ts.
Here, t is time, and the timescale ts, (d), is a free parameter.
The ts value was selected by maximising the non-glaze-preva-
lent region (i.e. where the correlation betweenM2 and persist-
ence takes a positive value) mean correlation between the
persistence metric and the M2 variability. A maximum correl-
ation value, r= 0.24 (mean value for the dry snow zone) is
achieved at a value of ts= 1/0.06,≃ 16.7 days. Although a
value of r= 0.24 is a low correlation value, it shows consider-
able structure, and locally much higher values (up to r= 0.7)
occur on coastal slopes and in glacier valleys, where katabatic
winds dominate the wind field. This correlation coefficient is
higher than the simple 5 days history wind persistence vs M2

correlation value (r= 0.18), and also higher than the simple
wind speed vs M2 correlation value (also r= 0.18). The tem-
poral window for creating P was truncated at 40 days,
where w diminishes to a value of 0.1. According to this
model, ∼50% of contributions to M2 enhancement arise
from the most recent 10 days wind activity, providing a char-
acteristic timescale for maximum M2 enhancement from sas-
trugi/longitudinal dune/surface microrelief formation.

The uppermost 200 model layers of snow/firn density data
(typically extending to a depth of >2 m) were provided by a
firn densification model (Ligtenberg and others, 2011) driven
by the regional atmospheric climate model RACMO2.1
(Lenaerts and others, 2012). Grid spacing was 27 km
throughout the time series. The data were provided at a
monthly time step. Since most atmospheric-driven variability
is expected to occur in the part of the snow/firn most exposed
to atmospheric drivers, and since radar returns exponentially
decay with depth, these data were first converted from layer

density into an upper 1 m density dataset. Upper 1 m mean
snow grain radius from a snow grain size model (Kuipers
Munneke and others, 2011), also forced by RACMO2.1
(Lenaerts and others, 2012) was reprojected to match the
NSIDC grid. Together with the surface temperature, wind
speed, wind persistence and precipitation, these six datasets
are hereafter collectively referred to as the surface datasets.
These datasets are considered as possible drivers of the scat-
terometer datasets (the A andM2 parameters) in the following
sections. The AMPS fields (surface temperature, wind speed,
wind persistence and precipitation datasets) have the poten-
tial to indirectly drive backscatter changes via changes in the
physical properties of the snowpack/firn. On the other hand,
the RACMO-derived upper 1 m mean density and grain size
datasets are considered as direct potential drivers, since these
fields directly represent snow/firn changes. All datasets cover
the time period from July 2007 to January 2012.

A scatterometer-derived map of annual mean melt dur-
ation (Trusel and others, 2012) was used, together with a
threshold of <0.2 days mean annual melt, to define the dry
snow zone, since ASCAT A and M2 returns were found to
be generally insensitive to melt below this level. A map
showing mean annual melt duration and the dry snow
zone is given in Figure 2. This figure also indicates the
names of regions referred to in the text.

Slope aspect is known to strongly influence the net mean
SMB, particularly in coastal locations (e.g. Law Dome, East
Antarctica; Goodwin and others, 1990). This temporally
static field is used here only as a covariate in the MLR ana-
lysis of long-term means. This field was derived from the
Bamber and others (2009) digital elevation map.

3. METHOD AND RESULTS

3.1. Recreation of long-term mean values using
regression
Assuming the atmosphere determines the physical state of the
snow surface/upper snowpack, it should be possible to recre-
ate the spatial distribution of ASCAT parameters using spatial
time series of atmospheric parameters. One simple tool for
achieving such a recreation is MLR. The MLR output for

Fig. 2. Map of the AIS, showing mean annual melt duration
(rainbow colour scale) from the Trusel and others (2012) dataset,
sub-sampled to a 50 km px−1 resolution; and the dry snow zone
(grey region, defined as mean annual melt duration <0.2 days).
The coastline is rasterised from the MODIS Mosaic of Antarctic
(MOA) product (Scambos and others, 2007). Regions mentioned in
the text are shown as darker grey ellipses.

Fig. 1. Plot of precipitation from various atmospheric model
products vs Mill Island ice core-derived accumulation (solid lines).
Since the AMPS data began in March 2007, the 2007 AMPS data
point has been increased by a factor of 1.2 for comparison against
the other datasets, effectively assuming equal precipitation in all
months. For the RACMO2.1 and AMPS datasets, the closest point
to the north-east of the ice core location was chosen, because of
the orographically-driven nature of snowfall around the East
Antarctic coast. ‘ERA-Interim’ is the closest grid point to the Mill
Island summit for the 1.5° grid spacing European Centre for
Medium-Range Weather Forecasts interim reanalysis dataset (Dee
and others, 2011). ‘RACMO2.1’ is the precipitation field from the
RACMO2.1 dataset (27 km grid spacing). Since the orography of
the Antarctic coast is an important factor determining
precipitation, it is not unexpected that the model with the highest
spatial resolution (AMPS, 20 km spacing prior to October 2008;
15 km thereafter) produces the best precipitation record in regions
of steep orography such as Mill Island.

173Antarctic backscatter variability using ASCAT

https://doi.org/10.1017/jog.2016.29 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2016.29


each grid cell is described in the equation (for the A param-
eter):

Arecreated ¼
Xn
i¼1

ki pi ð3Þ

where n is the number of covariate datasets, pi are the covari-
ates (e.g. wind speed, temperature, wind persistence), and ki
are coefficients calculated during the MLR process. Here,
covariates vary spatially across the dry snow zone, and
values of ki are constant.

MLR works well when the following conditions are met: at
least one covariate has a strong correlation with the depend-
ent variable (A or M2 here) and all relationships between the
covariates and the dependent variable are linear. In the case
of nonlinear relationships, often a transformation of a covari-
ate can increase the linearity of the relationship, sometimes
at a cost of reduced sensitivity to the dependent variables.
In this work, interactions between covariates was examined
by including products of two covariates. This added com-
plexity but only reduced the root mean square (RMS) residual
marginally in each case, so the results are not given here.

MLR was able to effectively recreate the A parameter
when using mean precipitation, surface temperature, wind
persistence, slope aspect and upper 1 m mean grain size
and density as covariates, as shown in Figures 3a–c. The A
parameter response to precipitation displayed strong non-
linearity, so a transformation precip′= (precip+ 0.6)−1 was
employed to linearise the relationship. The addition of 0.6
mm w.e. was chosen by maximising the correlation coeffi-
cient between precip′ and A. Likewise, the relationship
between A and slope aspect was linearised using the trans-
formation aspect′= abs(aspect+ 11°), with the 11°
offset also chosen by maximising the correlation coefficient
with A. The RMS residual was 1.64 dB in this case (distribu-
tion of residual given in Fig. 3c). Given the ∼20 dB range of
A, this represents an RMS error of ∼8.2%.

The success of MLR in recreating A is largely a conse-
quence of the strong correlation between A and transformed
precipitation (Figs 3e and h, r= 0.78). Other covariates act
more subtly to reduce the residual. This is regarded as very
strong evidence that precipitation is the dominant driver of
A on long timescales. Such a hypothesis is supported by
the Bingham layered snowpack model (Bingham and
Drinkwater, 2000), as demonstrated in Greenland by
Drinkwater and others (2001). The favoured physical inter-
pretation is that higher precipitation gives a lower backscatter
by increasing the one-way loss factor L(θ′)= eked.secθ

′
from a

thicker snow layer, where ke is the reciprocal of the penetra-
tion depth, d is the snow layer thickness and θ′ is the refracted
incidence angle in the snow (Drinkwater, 1989).

Temperature also shows a reasonable negative correl-
ation with A (r=−0.55). The negative correlation implies
that this relationship is not due to snow grain growth,
since higher temperatures should enhance grain growth
leading to higher backscatter. With this mechanism
excluded, alternative possible physical interpretations
include direct modification of the dielectric constant with
temperature (as shown by Partington and Flach, 2003), or
a Clausius-Clapeyron-type relation whereby less precipita-
tion falls in colder locations. There is a strong relationship
between A and temperature at shorter time-scales (as
shown in the sections below), so the dielectric constant
modification hypothesis is preferred.”

Slope aspect and wind persistence both show relatively
low correlations with A. However, on long timescales these
covariates are expected to be largely independent of tem-
perature and precipitation, respectively, unlike density and
grain size, so were included in the MLR presented here.
For aspect, backscatter is minimised for a slope aspect
azimuth of 11°. This has important effects along the EAIS
divide: the observed A discontinuity across the divide is not
present in any other covariate. Wind persistence was
chosen as a covariate because of the higher correlation
with A than wind speed (r= + 0.21 vs r=−0.16, respective-
ly), and the possibility of wind modifying the bulk backscatter
via either (isotropic) surface roughening or surface grain size
modification (Linow and others, 2012). Furthermore, wind
persistence was chosen in order to maintain a common set
of covariates for both the A and M2 MLRs (described
below; persistence is important in that case).

Upper 1 m mean grain radius shows a reasonable positive
correlation with A, as predicted by radiative transfer models
(Partington and others, 2003). Upper 1 m mean density also
shows a reasonable correlation with A (r=−0.54). Spatially,
the A recreation based only on density closely resembles that
of precipitation, as expected (higher precipitation gives lower
density). Given this close relationship, there is likely little in-
dependent information added by using both precipitation
and density. Indeed, performing the MLR without the grain
size and density covariates results in a slight increase to the
RMS residual (from 1.64 to 1.73 dB, or from 8.2 to 8.7% of
the range of the A parameter).

The spatial distribution of the A parameter residual
reveals a systematic A underestimation in areas of ex-
posed rock (shown as red regions in Fig. 3c), e.g. along
the Transantarctic Mountains dividing West and East
Antarctica, Fimbulheimen in Dronning Maud Land, the
Prince Charles Mountains lying south-west of the Amery
Ice Shelf, the Shackleton Range upstream of the Filchner
Ice Shelf and particularly the Ellsworth Mountains (∼78.5°S,
85°W). These locations are indicated in Figure 2. This is not
unexpected, since the backscatter of rock is generally higher
than the surrounding polar ice (Fig. 4a in Fraser and others
(2014), particularly around the Crary Mountains (∼76.75°S,
117.6°W) and Mt Takahe (∼112°W; 76.25°S)), and is other-
wise unaccounted for in the MLR process. Other than
regions of exposed rock, A appears to be underestimated in
glaze-prevalent regions. This will be discussed next with the
MLR process for the M2 parameter.

The MLR recreation of M2 is of comparatively limited
success (Figs 4a and b). The recreated M2 parameter residual
error (Fig. 4c) is 0.79 dB, or ∼15.8% of the ∼5 dB range. The
main factor determining this poor recreation is the relatively
low correlation between all covariates and M2 (range: |r|=
0.04 to 0.42; Figs 4k–p). Upper 1 m grain radius shows the
highest correlation with M2 (r=−0.42). This is probably
because of the enhanced near-surface grain growth in
glaze-prevalent regions, i.e. regions characterised by
smooth surfaces (Scambos and others, 2012). That is, grain
size does not drive M2, but both are strongly dependent on
the surface condition. Aspect (transformed for linearity, as
previously described for the A parameter MLR) shows a
similar high correlation coefficient, r=−0.41, followed by
precipitation (transformed, as with the A MLR; r=−0.33),
upper 1 m mean density (r= 0.27), wind persistence (r=
0.24) then surface temperature (r= 0.04). Slopes with a
northerly aspect show a wide range of M2, but those with
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Fig. 3. MLR of covariates slope aspect (d, g), precipitation (e, h), temperature (f, i), wind persistence (j, m), upper 1 m mean grain size (k, m) and upper 1 m mean density (l, o) to recreate A. (a) The
long-term mean A parameter. (b) The MLR recreation of A using the aforementioned covariates. (c) The residual (RMS residual= 1.64 dB or ∼8.2% of the A range).
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Fig. 4. MLR of covariates slope aspect (e, h), precipitation (f, i), temperature (g, j), wind persistence (k, n), upper 1 mmean grain size (l and o) and upper 1 mmean density (m, p) to recreateM2. (a) The
long-term mean M2 parameter. (b) The MLR recreation of M2 using the aforementioned covariates. (c) The residual (RMS residual= 0.86 dB, or ∼17.4% of the M2 range).
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more southerly aspect are limited to low M2 values.
Unexpectedly, the relationship between M2 and slope
aspect is stronger than that of M2 and wind persistence.
Regions with high precipitation (i.e. low transformed precipi-
tation in Fig. 4j) displayM2 values in a wide range of 0–5 dB,
whereas low precipitation regions show only low M2 values,
implying that the latter are glaze-prevalent regions as
detailed by Scambos and others (2012).

Analysis of the spatial distribution of M2 residual (Fig. 4c)
reveals that positive M2 anomalies occur mainly in glaze-
prevalent regions (Scambos and others, 2012). Das and
others (2013) determined that surface scour occurs in
regions with both a low ratio of accumulation to wind
speed (A/W), and a high mean slope in the wind direction
(MSWD). The Das and others (2013) scour criterion is recre-
ated here (using adjusted thresholds of A/W≤11.0 and
MSWD≥0.0013 to account for the lower spatial resolution
used for the calculation here), and presented in Figure 4d.
The Das and others (2013) criterion is a highly nonlinear
process, i.e. surface scour only appears when both A/W
and MSWD exceed certain thresholds. Due to this complex
nonlinearity, properly accounting for surface scour is impos-
sible in a simple MLR analysis. Nevertheless, this result indi-
cates that accumulation and wind processes that generate
glaze-prevalent regions are important driving factors for M2.

In summary, the long-term mean ASCAT A parameter is
successfully recreated using MLR, mainly because of the
strong correlation between A and long-term mean precipita-
tion. The same technique for recreation of M2 suffers due to
complex nonlinearities involving surface scour/glaze in
regions of high MSWD and low A/W ratio (Das and others,
2013).

It is reasonable to expect that all correlations will increase
when using longer time series of atmospheric driver datasets.
However, when the AMPS precipitation was substituted with
the RACMO2.1 long-term mean (1979–2010) SMB dataset
(Lenaerts and others, 2012), the A parameter MLR residual
remained essentially unchanged, at 1.65 dB. This provides
independent validation of the high quality of the AMPS pre-
cipitation dataset.

3.2. Interannual trends
It is desirable to investigate the interannual trends in the
scatterometer parameters to provide information on their
drivers. Alternatively, apparent interannual trends can be

manifestations of the systematic burial of snow with anomal-
ous properties (e.g. burial of a snow melt layer). To investi-
gate the latter phenomenon, we produce a first-order
estimation of time to burial to a depth of 20 m (i.e. the C
band effective penetration depth). Using a Marie Byrd Land
density profile (Ligtenberg and others, 2011) and the positive
SMB provided by the AMPS precipitation field, a dry snow
zone mean burial time of ∼150 years is obtained. This is
much longer than the ASCAT time series (4.5 years data
used here). Thus, it is difficult to distinguish between
genuine trends and burial of transient anomalous layers. In
reality, subsurface snow metamorphism will reduce the con-
trast in properties between the anomalous layer and the
typical snow properties (Linow and others, 2012), so the
burial time is an upper limit for the timescale of the persist-
ence of anomalous signals. According to observations
shown in Figure 5, the timescale for backscatter recovery to
near-quiescent values appears to be on the order of 1 a.
Figure 5 shows an example of a perturbation of A and M2

from Marie Byrd Land, West Antarctica (117.5°W; 83.5°S) in
2011, likely generated by the near-concurrent (austral
autumn) precipitation event shown in the lower panel (no
other surface parameters showed anomalous events at this
time). Over the remainder of the year, both scatterometer para-
meters trend toward the 2008–10 mean value, which may re-
present the long-termmean. There is also evidence for a similar
precipitation anomaly prior to the start of the time series. Given
that the apparent timescale for parameter recovery is on the
order of 20% of the time series length, the possibility for ‘con-
tamination’ of apparent trends by such events is strong.

Nevertheless, a significance analysis (Figs 6a and b) shows
that ASCAT A and M both have extensive regions of statistic-
ally-significant trends (p-value <0.05). The same analysis for
the surface datasets (Figs 6c–h) produces mixed results.
Temperature, wind speed and wind persistence all show
pockets of statistically-significant trends. However precipita-
tion, acknowledged as one of the largest contributors to A on
multi-annual timescales (Bingham and Drinkwater, 2000),
shows no statistically-significant trend anywhere on the con-
tinent. This is likely because of the episodic nature of precipi-
tation, which drastically increases the standard error of the
mean, i.e. reduces the t-statistic.

Although difficult to quantify, it is worth noting that the
spatial pattern of the A parameter trend bears reasonable re-
semblance to the precipitation trend, with areas of negative
precipitation trend and negative A parameter trend observed

Fig. 5. Time series of A, M2 and precipitation from a pixel located at 117.5°W; 83.5°S (Marie Byrd Land, West Antarctica).
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in West Antarctica, Wilkes Land and western Dronning
Maud Land. These are interspersed with positive precipita-
tion and A parameter trends in eastern Dronning Maud
Land/Enderby Land, and George V Land. This points to pre-
cipitation being a driver of the observed A parameter trends.

Thus, while statistically-significant trends are observed in the
ASCAT data, statistical significance is not achieved with the
short precipitation time series. Furthermore, apparent trends
in the ASCAT parameters are strongly influenced by transient
events and their subsequent recovery. In light of this result, it
is concluded that a statistically rigorous investigation of A and
M2 interannual trend forcing requires a much longer time
series, ideally of both ASCAT and forcing parameters.

3.3. Annual cycle investigation
Throughout the dry snow zone, both A andM2 display strong
annual cycles. The aim of this section is to characterise these,
and to elucidate likely drivers of observed seasonality.

The annual cycle is characterised by fitting a two-term
Fourier series to the A and M2 time series for each pixel,
after removing the long-term mean and linear trend. The sea-
sonal cycle thus takes the form:

AðtÞ ¼ k1 cosð2πt � f1Þ þ k2 cosð2ð2πt � f2ÞÞ ð4Þ

where t is the time (a), k1 and k2 are the coefficients of the first
and second Fourier terms and ϕ1 and ϕ2 are the phase angles
(radians). The cos(1t) Fourier parameters are displayed in
Figure 7. k1 is generally larger than k2 everywhere. A varies
largely in-phase across the entire dry snow zone, with a
maximum value typically achieved in July–September
(Fig. 7b). By contrast, the phase angle for M2 shows two dis-
tinct regimes. There is a large region in East Antarctica with a
low phase angle (i.e. a peak M2 in January–March), whereas
coastal regions show an M2 peak much later (Fig. 7d). The
early peak region corresponds well to maps of megadunes
by Fahnestock and others (2000), and glaze-prevalent
regions observed by Scambos and others (2012).

The Fourier analysis is useful for characterising the seasonal
cycle. However, when considering only the two Fourier series
coefficients controlling the cos(1t) Fourier component, the
number of degrees of freedom is reduced to only two per
pixel. In order to retain more independent data, the determin-
ation of which driving factors influence the A andM2 seasonal
cycle is carried out instead using 90 days low-passed time
series data, i.e. four independent data points per year, or 18
independent points for the ASCAT time series. This gives a
two-tailed correlations significance threshold (p <0.05) of
r= 0.47. As stated in Section 1, although proof of attribution
is difficult without using a radiative transfer model, a lag cor-
relation analysis at least indicates which factors could possibly
contribute to the observed variability. When guided by prior
research and knowledge of physical mechanisms affecting
backscatter, lag correlation analysis (including both the mag-
nitude and sign of lag) provides important insights into the pro-
cesses. Furthermore, the spatial structure and coherence of the
correlation shows which relationships are widespread, and
which are localised.

The highest correlation between the low-passed A param-
eter and the driving parameters is between A and tempera-
ture (mean dry snow zone correlation is r=−0.60;
Fig. 8a). This correlation is statistically-significant throughout
the majority of the dry snow zone. An A parameter lag of 25
days is required to maximise the correlation.

As mentioned in the long-term A parameter analysis, the
observed anticorrelation with surface temperature (i.e.
higher temperature gives lower backscatter) implies that tem-
perature drives the A parameter via modification of the di-
electric constant, rather than via grain growth processes.
The lag of maximum correlation at 25 days can be inter-
preted as propagation of the temperature cycle vertically
down through the firn. Assuming temperature propagation
speed is on the order of 20 m a−1 (Cuffey and Paterson,
2010), 25 days represents a propagation of temperature to
a depth of ∼1.4 m. This mechanism presents a plausible
explanation for the observed backscatter response.
Furthermore, this mechanism has been suggested in previous

Fig. 6. Trends in the ASCAT (a, b), AMPS (c–f) and RACMO (g, h) parameters, across the 4.5 years time series. Regions showing statistically-
significant trends are shaded. Seasonal cycles (cos(1t) and cos(2t) Fourier components) have been removed in all cases.

178 Antarctic backscatter variability using ASCAT

https://doi.org/10.1017/jog.2016.29 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2016.29


studies. Bingham and Drinkwater (2000) noted that the
observed cycle of Antarctic backscatter was possibly
explained by temperature variations, rather than precipita-
tion cycles, since the correlation between precipitation and
emissivity variability was low. This mechanism has also
been explicitly investigated in model studies (Partington
and others, 2003).

A also shows a strong correlation with wind speed at
similar lag (A lags by 20 days, r=+0.53; Fig. 8). Wind
speed also has potential links to A, mainly via (isotropic)
changes to surface roughness, removal of fresh snow and re-
duction of surface grain size. However, given the continent-
wide coherence and resemblance to the A vs temperature
correlation, this relationship is interpreted to be a manifest-
ation of the close correlation between temperature and (kata-
batic) wind speed, particularly on a 90 days timescale. This
close correlation is also likely responsible for the reasonable
correlation between A and wind persistence (Fig. 8d).

Precipitation shows very low correlation with A at all lags
on this timescale (Fig. 8c). Furthermore, the structure is
neither coherent across the continent, nor similar to the
glaze/non-glaze structure displayed by manyM2 correlations
(details below). It is thus concluded that precipitation is not
an important factor in determining the seasonal cycle of A,
reinforcing the suggestion of Bingham and Drinkwater
(2000).

Since both grain size and density are snow/firn properties,
i.e. should be directly related to backscatter, the zero-lag
correlation should reveal the most physically-realistic links
between these parameters. Neither grain size nor density
shows widespread correlation patterns (Fig. 8e and f), nor
high mean correlation values, so the seasonal cycle is likely
not driven by either upper 1 m grain size or snowpack density.

As with the A low-frequency variability analysis, M2

shows no strong relation to either precipitation, upper 1 m
grain size or upper 1 m density (Fig. 8i, k and l). The
highest correlation coefficients with M2 are for wind speed
(r= 0.17; 30 days lag), surface temperature (r= + 0.16; 30
days lag) and wind persistence (r= + 0.14; 10 days lag)
(Fig. 8g, h and j). As with the interpretation of the A correla-
tions, it is important to note the strong anticorrelation
between temperature and katabatic wind strength/persist-
ence. The spatial pattern of correlation between M2 and
these three drivers shows an area of opposite correlation in
the centre of East Antarctica, as shown in the seasonal
cycle characterisation in Figure 7d. This is strongly suggestive
of wind speed-driven smoothing of the surface in glaze-
prevalent regions, and wind-speed driven microrelief gener-
ation in accumulating regions.

As with the long-term regression analysis, the A parameter
seasonal cycle is better represented by atmospheric datasets
than the M2 parameter cycle on this timescale. Again, this is
attributed to nonlinearities and complex interactions asso-
ciated with wind scouring in glaze-prevalent regions.

In conclusion, the 90 days low passed A parameter dataset
shows a strong correlation with both surface temperature
(leading by 25 days) and wind speed (leading by 20 days).
Since the temperature correlation is higher and statistically-
significant over a larger area, it is likely that temperature
drives A on this timescale. The high wind speed correlation
is likely a consequence of katabatic wind enhancement
during colder periods. The negative correlation between A
and surface temperature implies that modification of the di-
electric coefficient is the mechanism responsible. The M2

cycle is likely driven by wind speed. Glaze-prevalent
regions show an anticorrelation with wind speed (wind

Fig. 7. Fourier coefficients of the cos(1ϕ) parameter for the seasonal cycles of A (top row) and M2 (bottom row).
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Fig. 8. Analysis of the drivers of the seasonal cycle. Upper panels: correlation coefficient between A orM2 and each driving factor, as a function of lag. Solid curve: dry snow zone mean correlation
coefficient. Dashed (dotted) curve: correlation coefficient mean only for positive (negative) correlation pixels. The ‘X’ on each plot shows the lag chosen for the corresponding lower panel. Lower
panel: correlation map between A or M2 and each driving factor, at the lag indicated in the upper panel. Statistically-significant correlations are shaded.
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scouring of the surface), whereas accumulating regions show
a positive correlation (generation of sastrugi and microrelief).

3.4. High-frequency backscatter driver investigation
Because of the 5 day orbital sub-cycle for MetOp-A, ASCAT
can generate near-complete maps of the polar regions on a 5
days basis. This is exploited here to analyse the high-fre-
quency variability in A and M2, and to investigate potential
drivers.

Both A and M2 parameters show variability at this time-
scale. Noise in the scatterometer parameters is expected to
be much greater in this analysis than in the seasonal cycle
analysis because of less temporal averaging and lower
viewing angle diversity. The ASCAT radiometric RMS error
of ∼0.35 dB (Fraser and others, 2014) is on the same order
as, or larger than, the magnitude of some high-frequency
‘events’ in the A and M2 parameters (e.g. Fig. 5).
Insufficient azimuthal sampling, particularly south of ∼78°S
where only one of the two ASCAT swaths is available, may
also lead to aliasing in the backscatter parameterisation
process. This would most strongly manifest as noise in the
high-frequency analysis. For these reasons, the correlations
between A and M2 and the driving parameters are also
expected to be lower. However, since each data point is es-
sentially independent of the preceding and following points,
DOF ≃ the number of points (n= 335 for the ASCAT time
series used here). The correlation significance threshold is ac-
cordingly reduced, from r= 0.47 (in the seasonal cycle ana-
lysis where n= 18) to r= 0.11 (two-tailed, p< 0.05).

As with the seasonal cycle analysis, a lag correlation ana-
lysis is used to determine potential drivers. In order to be a
potential driver, the lag between impulse and response
must be either zero or positive (i.e. A or M2 must lag the
driver). In the case of this high-frequency analysis, the lag
for maximum correlation is expected to be much shorter
than the seasonal cycle analysis. This analysis is shown in
Figure 9. Since the density and grain size time series were
available only at monthly resolution, these were excluded
from the high-frequency analysis. However, these para-
meters are not expected to be strong drivers of the high-fre-
quency variability, given the low correlations shown in the
seasonal cycle analysis.

As with the seasonal cycle analysis, the largest mean cor-
relation between A and the atmospheric drivers is with the
surface temperature parameter (mean r=−0.18; Fig. 9a).
Again, the correlation is negative, implying that modification
of the dielectric constant is the mechanism responsible for
this relationship. At an A parameter lag of only 5 days, the
penetration of the temperature anomaly signal into the
snow/firn is very shallow (within ∼0.27 m assuming a propa-
gation speed of 20 m a−1). This is a small fraction of the pene-
tration depth (∼20 m), however returns from the near-surface
have a greater weight than deeper returns. This insufficient
penetration time is likely a factor in the relatively low correl-
ation coefficient. Nevertheless, the spatial pattern of negative
correlation is widespread throughout the dry snow zone, as
with the seasonal cycle analysis. Weaker positive correla-
tions are found between the A parameter and wind speed/
persistence. Again, these are considered as secondary
responses to the associated temperature anomaly, and not
as direct drivers of the A parameter. As with the seasonal
cycle, precipitation appears to have little relationship to A
at this timescale.

For the M2 high-frequency analysis, the wind persistence
metric shows the highest correlation coefficient (r= 0.16),
at zero lag (Fig. 9h). The spatial pattern shows widespread
statistical-significance is achieved everywhere outside the
glaze-prevalent regions on the plateau. This fits well with
the conceptual model ofM2 enhancement generated by per-
sistent katabatic winds over a ∼40 days timescale. The glaze/
non-glaze discontinuity seen in the seasonal cycle analysis is
not obvious here, indicating that the characteristic timescale
for forming glaze-prevalent surface conditions is longer than
the 90 days filter cut-off. Mean dry snow zone correlation
coefficients with the other three atmospheric parameters
are much lower (ranging from r=−0.05 to 0.09), indicating
that wind persistence is likely the dominant driver ofM2 vari-
ability on short timescales in non-glaze-prevalent regions.

4. DISCUSSION, IMPLICATIONS AND
CONCLUSIONS
This study has documented the variability in bulk backscatter
(the A parameter) and bi-sinusoidal azimuthal modulation
strength (the M2 parameter) on the dry snow zone of the
AIS. The considerable variability documented here has impli-
cations for ‘snapshot’ studies of the AIS (e.g. parameter retrie-
vals based on a single SAR image), or studies based on sub-
annual means (e.g. work based on the Seasat-A Satellite
Scatterometer (Long and Drinkwater, 1994) dataset, which
is only 4 months in duration; or the NASA Scatterometer
(Long and Drinkwater, 1999; 9 months duration).
Variability may be even larger for higher frequency instru-
ments, since the penetration depth in dry snow is lower,
meaning returns come from closer to the surface. The work
presented here gives an indication of the regions in which
sub-annual means and snapshots may be representative of
longer-term conditions (i.e. inland areas).

The M2 parameter MLR analysis highlighted the need to
account for the nonlinear precipitation and wind processes,
which combine to form surface glaze on the East Antarctic
plateau. The MLR analysis of long-term mean surface para-
meters and the A parameter showed that A is highly corre-
lated with precipitation on long timescales. It is
hypothesised that precipitation may be the primary driver
of A, though there is some suggestion that direct modification
of the dielectric constant of snow/firn via the downward
propagation of temperature signals may also contribute.
Owing to the high correlation between these parameters on
long (>1 a) timescales, it appears that A can be used as a
proxy for precipitation (or long-term mean net SMB) in the
dry snow zone of the AIS (and, by extension, the dry snow
zone of the Greenland ice sheet). Such studies have been
conducted in Greenland (Drinkwater and others, 2001),
and on small scales in Antarctica (Dierking and others,
2012), but have yet to be applied on a large scale in the
Antarctic. Scatterometers such as ASCAT are well suited to
this task, given their wide incidence and azimuth angle diver-
sity, which can be used to characterise and remove anisot-
ropy. Retrieval of long-term mean net SMB from ASCAT is
the topic of future work.

Although there is potential to apply these techniques to
studies of the Greenland ice sheet, recent heavy melt condi-
tions may limit applicability. Prior to 2012, the Greenland ice
sheet had a sizeable dry snow zone, however the entire ice
sheet experienced surface melt in July 2012 (Nghiem and
others, 2012). Thus, studies of this kind using future
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instruments may be impossible due to the inclusion of a
strongly-scattering refrozen layer, and ASCAT prior to 2012
may be the best scatterometer with which to study the pre-
2012 GrIS. The post-2012 GrIS provides an interesting way
of studying the effect on backscatter of burial of a strongly-
scattering layer, and ASCAT is also well suited to this task.

Statistically-significant trends were observed for both the
A and M2 parameters. However, the observed trends poten-
tially reflect the recovery of post-anomaly backscatter values
to the long-term mean value (timescale for recovery is
observed to be ∼1 year). Thus, a longer ASCAT time series
is desirable. While precipitation shows trends with spatial
similarities to the A parameter trends, the episodic nature
of precipitation time series increases the standard error,
meaning significance is not achieved within a 4.5 years
time series. However, given that precipitation is likely the
dominant driver of the A parameter on long timescales, it
stands to reason that trends in precipitation also drive

trends in A. For robust trend analysis, longer time series of
both scatterometer and surface datasets are required.

The seasonal cycles of A and M2 were characterised by
fitting a two-term Fourier series to low-passed time series
data. In contrast to the widespread in-phase seasonal cycle
in the A parameter with a backscatter peak in July–August,
the M2 cycle in accumulating regions is out-of-phase with
the M2 cycle in glaze-prevalent regions where accumulating
faces are interspersed with extensive regions of near-zero net
SMB. In glaze-prevalent regions, theM2 parameter maximum
is observed in January or February, i.e. out-of-phase com-
pared with accumulating regions. This shows the large differ-
ence between surface characteristics in the two regimes:
Glaze prevalent regions are smoothed or scoured by stronger
winter katabatic winds, while fresh snow in accumulating
regions is (highly anisotropically) roughened.

Analysis of dry snow zone mean scatterometer and
surface parameters revealed the complex relationship

Fig. 9. High-frequency response analysis. Upper panels: correlation coefficient between A orM2 and each driving factor, as a function of lag.
Solid curve: dry snow zone mean correlation coefficient. Dashed (dotted) curve: correlation coefficient mean only for positive (negative)
correlation pixels. The ‘X’ on each plot shows the lag chosen for the corresponding lower panel. Lower panel: correlation map between A
or M2 and each driving factor, at the lag indicated in the upper panel. Statistically-significant correlations are shaded.
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between the seasonal cycle of A and surface temperature. In
agreement with theory (Partington and Flach, 2003) and past
studies (Bingham and Drinkwater, 2000), it appears that the
annual cycle of A is primarily driven by the vertical propaga-
tion of the surface snow/firn temperature cycle, with a
maximum A typically occurring in July or August, lagging
the temperature cycle by ∼25 days.

It is generally held that subsurface grain size (within the
penetration depth) is an important driver of microwave back-
scatter (Ulaby and others, 1996; Partington and Flach, 2003).
While this appears to hold to some extent on a multi-year time-
scale (upper 1 m grain size shows a reasonable correlationwith
the long-term mean A parameter (r= + 0.46)), it appears that
precipitation is much more important (r= + 0.78, after trans-
formation). Furthermore, this study has shown that the seasonal
cycle of grain size variability shows no widespread correlation
with the A parameter cycle. Instead, modification of the
dielectric properties of the snow/firn by temperature cycle
propagation dominate the A parameter seasonal cycle.

Analysis of 90 days high-passed time series again reaf-
firmed the strong links between the A parameter and tem-
perature anomalies. For the M2 parameter, as with the
seasonal cycle analysis, wind parameters (especially persist-
ence) showed the highest correlation, particularly in non-
glaze-prevalent regions, as expected.

Polar firn displays much lower backscatter variability than
the return from the ocean, especially on short timescales.
Thus, this dataset provides an ideal means for validation of
the newly-commissioned MetOp-B ASCAT, and future
ASCAT instruments. Furthermore, the launch of identical
ASCAT instruments is important for mission continuation,
and will likely provide the first decade-long scatterometer
dataset. Studies of the ice sheets will benefit greatly from
this longer time series, so ASCAT is set to become an import-
ant instrument for ice sheet change detection and attribution.

Given the difficulties associated with change attribution,
this type of study would benefit from the inclusion of scatte-
rometer data of different frequency and polarisation, pro-
vided the ability to characterise and remove anisotropy is
on par with ASCAT (i.e. azimuth and incidence diversity is
maintained). Higher frequency instruments have much
lower penetration depths, which should enable better attribu-
tion of surface changes. Inclusion of nadir active microwave
instrument information (e.g. radar altimeters) can also con-
tribute independent information which will be helpful for at-
tribution. The conclusions drawn from this study may also
impact on the interpretation of radar altimetry. Thus, a broad-
ening of this kind of study to include other instruments is a
priority.
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