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1. Introduction. In [5, p. 105] attention has been called 
to a set of propositions, due to H. Cox [3, p. 67], which are 
related to another set, due to Clifford [2, p. 145; 4, p. 447], 
concerning points and c i rc les in the plane or on the sphere. 
One may state Cox's chain of theorems as follows: 

In a projective 3-space, S3, let (1), (2), (3), (4) be four 
points lying in a plane a such that no three of them are 
collinear. Every two determine a l ine; let one plane such as 
[12], pass through each line. There are six such planes. The 
planes [12], [23], [13] determine a point (123); there are four 
such points. The first theorem of the chain states that they all 
lie in one plane [1234], It is not difficult to see that this i s , in 
fact, a rewording of Mobius !s theorem on mutually inscribed 
pairs of te t rahedra [4, p. 444]. 

Now if we take a fifth point (5) in at then any four of them 
give r ise by the first theorem to a plane, so that we have five 
planes [1234], [1235], [1245], [1345], [2345]. The second 
theorem of the chain states that these planes pass through the 
same point (12345). 

Continuing in this manner , by introducing a new point in 
each step, we obtain Cox1 s general theorem [4, pp. 446-447] to 
the effect that d coplanar points with a rb i t ra ry planes through 
their lines of of intersections determine an incomplete (Cox's) 
configuration which i s , in fact, complete. The configuration 
consists of 2d~* points and 2d~* planes with d points on each 
plane and d planes on each point. 
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The purpose of this note i s to extend this chain of t h e o r e m s 
to higher spaces . We shall be m o r e concerned with the propo
sit ions of the chain than their corresponding configurations. 
We develop a chain of t h e o r e m s in odd-dimensional spaces which 
spec ia l i z e s to Cox1 s chain in 3 - s p a c e . In the next sect ion, we 
give a detailed treatment of the developed chain in 5 - space ; and 
in the last sect ion, we es tab l i sh the chain in i ts general form. 

2. F i v e - dim en sional analogues . Let (1), (2), (3), (4), 
(5), (6) be s ix points on a hyperplane a of a project ive 5 - s p a c e , 
S5, such that no subset , of this set of points, i s l inearly depen
dent. Every four of them determine a 3 - s p a c e ; let an arbitrary 
hyperplane, different from or, such a s [1234] , p a s s through 
each. There are fifteen such hyperplane s. The hyperplane s 
[1234] , [1235] , [1245] , [1345] , [2345] determine a point (12345); 
there are s ix such points. Then these points l ie in one hyper
plane [123456]. 

The figure involved in this general izat ion of the f irst 
statement of Cox1 s chain i s (unlike i ts 3 - space analogue) not 
s y m m e t r i c . However , it admits a natural project ion, from a 
line joining any two of the given points , into an arbitrary 
3 - space not contained in a, which y i e l d s the corresponding 
Cox's configuration in S3. Indeed, if we project , for example , 
from the l ine joining (5), (6), by planes pass ing through it, we 
obtain the four points ( l ) 1 , (2) ! , (3)1 , (4)' , which are the i m a g e s 
of (1), (2), (3), (4) respec t ive ly , lying in one plane. The s ix 
hyperplane s, each containing a pair of the lat ter four, are 
projected into s ix p lanes , each pass ing through a l ine de ter 
mined by a pair of the former four. Discarding the two points 
(12345) and (12346), the remaining four points (12356), (12456), 
(13456), (23456) are mapped into the points ( 1 2 3 ) \ ( 1 2 4 ) \ (134)' , 
(234)1 r e spec t ive ly (we e r a s e the digits 5, 6). These inc idences 
obviously define an incomplete Cox's configuration correspond
ing to the f irst s tatement . The configuration i s comple te , that 
i s , the four points (123)' , ( 1 2 4 ) \ (134)1 , (234) ! are coplanar, if 
and only if the result ing s ix points l ie in one hyperplane 
[123456]. 

To obtain, in S5, an analogue to the second step of the 
chain, let (7) be a seventh point in a. Every s ix of them, by 
the f irst step, give r i s e to a hyperplane like [123456]; there 
are seven such hyperplanes . We shall prove that they all m e e t 
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in one point (1234567). Let pcïcr be an arbitrary 3 - space . P r o 
ject the figure from the line (6) • (7) into p. The five points 
(1), . . . , (5) are mapped onto five points ( l ) 1 , . . . , (5)f 

respect ive ly , lying in a plane common to a and p. The ten 
hyperplanes , each pass ing through a pair of the f irst se t ,are 
projected into ten planes , each pass ing through a line joining a 
pair of the second. Discarding the two hyperplanes [123456] 
and [123457], the remaining five hyperplanes , namely [123467] , 
[123567], [124567] , [134567], [234567] are projected into the 
five planes [ 1 2 3 4 ] \ [1235] ! , [1245] ' , [1345]' , [2345]' r e spec t 
ively (here a l so we erase the digits 6 ,7 ) . The primed five 
points with the ten planes , each pass ing through a line joining a 
pair of them, together with the five primed planes , determine 
an incomplete Cox1 s configuration in p = S3, corresponding to 
the second statement of the chain. Hence the configuration 
c l o s e s with the point (12345)1 . The two hyperplanes [123456] 
and [123457] in tersec t in a 3 - space y. The plane, determined 
by the point (12345)1 and the line joining (6), (7), in ter sec t s y 
in a point. This point i s incident to the projected five hyper
planes because it i s the image of the point of intersect ion of " 
their projection planes . Thus the seven hyperplanes in tersec t 
in one point (1234567). 

It i s interest ing to observe that one could have obtained 
the result directly by projecting into the t h r e e - s p a c e of inter
sect ion of the two hyperplanes [123456] and [123457]. In fact, 
let us denote the hyperplane [123456] by ^7, . . . , [234567] by 
a^. The five hyperplanes a^ (i = 1, 2, . . . , 5) determine a 
point P ^ - We shall prove that P^-j i s incident to the 3 - space 
#67 common to a^ta^\ and then the result fol lows. Projec t 
the whole figure from the line joining (6), (7) into <*Ln- The 
five hyperplanes ûr̂  in tersec t a/7 in five planes <x-f-> 
(i = 1, 2, . . . , 5), and the arbitrary hyperplanes in tersec t a^ 
in p lanes , each pass ing through a line joining a pair of the 
i m a g e s of (1), (2), . . . , (5). As before , this defines an i n c o m 
plete Cox's configuration corresponding to the second statement. 
Hence the configuration c l o s e s by the point of intersect ion of 
aibl P r o v i d e d that the o . , al l , contain this point; and converse ly . 

3. Odd-dimensional analogues . 

THEOREM 1. Let (1), (2), . . . , (n + 1) be a set of points , 
in general pos i t ion, lying in a hyperplane a of a project ive 
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odd-dimensional space Sn(n > 1). Every n - 1 of them deter 
mine an (n - 2 ) - s p a c e , 5 ^ . 2> * e t a n arbitrary hyperplane, 
such a s [12 . . . n - l ] different from a, pas s through each. 
There are ( n ^ ) such hyperplane s. The hyperplane s 
[123 . . . n - 1] , [123 . . . n - 2 n ] , [123 . . . n - 3 n - 1 n] , . . . , 
[23 . . . n] determine a point (123 . . . n) ; there are n + 1 such 
points . Then these points l i e in one hyperplane [123 . . . n + l ] . 

THEOREM 2. L,et another point (n + 2) be added to the 
set of points in a. By the procedure followed in theorem 1, 
we have n + 2 hyperplanes . Then these hyperplanes are 
incident to one point (123 . . . n + 2). 

THEOREM 3. If a further point (n + 3) i s added, then 
n + 3 points would be obtained. These points wi l l be contained 
in one hyperplane [123 . . . n + 3] . 

And so on . . . . 

Proof of theorem 1. Projec t the figure from the line 
n. (n + 1) into an arbitrary S n _ £ GÉ Q- The points (1) ! , (2)1 , 
. . . , (n - I)1 , which are the. i m a g e s of (1), (2), . . . , ( n - l ) 

n - l r e spec t ive ly , l i e in one hyperplane of S n _ 2 * The ( 2 ) 
hyperplanes pass ing through the projecting l ine are projected 
into hyperplanes of S n _ 2 pass ing through (n - 3)- space s of the 
pr imed set of n - 1 points . Thus we obtain an incomplete 
f igure, corresponding to the same statement, in S n „ 2 î anc* 
therefore the c o m p l e t e n e s s of e i ther i s n e c e s s a r y and sufficient 
for the c o m p l e t e n e s s of the other. As n i s odd, s u c c e s s i v e 
project ions of this type wil l eventually lead to an incomplete 
Cox1 s configuration, corresponding to the same statement, in 
So. Hence the c lo sure of the last i s equivalent to that of the 
f irst in Sn . 

We remark that an analytic proof of this t h e o r e m is given 
in [ l , p . 226] . There , it a r o s e as a special c a s e , in odd d imen
s ions , of a theorem in al l d imens ions . Incidentally, s ince the 
2 -d imens iona l theorem of Pappus i s equivalent to the 3 -d imen-
sional theorem of Mobius [4, p. 445] , we have proved the 
following 

COROJLLARY. T h e o r e m 1 c h a r a c t e r i z e s the commutat iv-
ity of mult ipl icat ion in odd-dimens ional project ive spaces 
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defined over (not necessarily commutative) fields* 

Proof of theorem 2. Denote the n + 2 resulting hyper-
planes by a- (i = 1, 2, . . . , n + 2), where i indicates the 
missing integer in the symbol of each. The first n of them 
determine a point P n + ^ n+ 2» w n i l e t n e i a s t t w o determine an 
(n - 2)-space a . ^ n+2* Projecting the whole figure from tne 
line (n 4- l).(n -I- 2) into an + ^ n + 2» w e n a v e t n e ûr̂  (i = 1, 2, . . . ,n) 
mapped into â  n+ 1 n+ 2»kyPerPlanes °* an+ 1, n+ 2'wkicn a r e 

(n - 3)- spaces in Sn _ 2 ~ an + 1 n+ 2* ^ e a rbitrary hyperplanes 
passing through the projecting line are projected into hyper
planes, of Sn _ 2» each passing through an (n - 4)- subspace 
determined by every n - 3 points of the n images (l)f, (2)f, 
. . . , (n)f. These incidences define an incomplete (Cox's) 
second figure in #n + ^ n + 2» which is of odd-dimension . Con
tinuing the process of projection in this manner, into the next 
lower odd-dimensional space in each, we would arrive at Cox1 s 
second configuration in S3; the last configuration is closed if, 
and only if, the first figure, in Sn, is closed. This completes 
the proof of the theorem. 

The proofs of theorem 3 and the successive theorems of 
the chain are clear now. In each, we project, from a line 
joining two of the given points, into the next lower odd-dimen
sional space, to get the same figure in that space; and hence 
the corresponding configuration in 3-space. Thus, we reduce 
the theorem to the 3-dimensional case. 

Finally, we note that Cox1 s original chain of propositions 
is self-dual. It remains to be seen whether it is possible to 
obtain a s elf-dual extension. 
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