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Abstract. We prove some inequalities for the spectral radius of positive operators
on Banach function spaces. In particular, we prove the following extension of Levinger’s
theorem. Let K be a positive compact kernel operator on L2(X, µ) with the spectral
radius r(K). Then the function φ defined by φ(t) = r(tK + (1 − t)K∗) is non-decreasing
on [0, 1

2 ]. We also prove that ‖A + B∗‖ ≥ 2 · √
r(AB) for any positive operators A and

B on L2(X, µ).
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1. Introduction. In general there is no relation between the spectral radius of a
sum of operators on a Banach space and the sum of the corresponding spectral radii,
so that, under appropriate assumptions, any inequality between these two numbers
might be interesting. In [5] we proved some inequalities for the spectral radius of
a sum of positive compact kernel operators on a Banach function space. We thus
extended the corresponding matrix results proved in [7]. In this article we show their
further generalizations by removing several assumptions from the results in [5]. As an
application of our main result we obtain an extension of Levinger’s theorem to positive
compact kernel operators on L2-spaces. This beautiful result, stated without proof in
[11], asserts that for a non-negative (square) matrix A the function

φ(t) = r(tA + (1 − t)AT )

is non-decreasing on [0, 1
2 ] and is non-increasing on [ 1

2 , 1]. In particular, for all t ∈ [0, 1],
the following inequality holds

r(tA + (1 − t)AT ) ≥ r(A).

This theorem was generalized in Bapat [3], where an elementary proof is given. Recently,
Alpin and Kolotilina [2, Theorem 7] further extended Bapat’s result. Our Theorem 8
includes their extension as a special case. Finally, Theorem 10 proves an inequality that
seems to be new even in the finite-dimensional case. For the theory of Banach function
spaces and Banach lattices we refer the reader to the books [13], [12] and [1]. Here we
shall recall some relevant facts.

Let µ be a σ -finite positive measure on a σ -algebra M of subsets of a non-void set
X . Let M(X, µ) be the vector space of all equivalence classes of (almost everywhere
equal) complex measurable functions on X . A Banach space L ⊆ M(X, µ) is called
a Banach function space if f ∈ L, g ∈ M(X, µ), and |g| ≤ | f | imply that g ∈ L and
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‖g‖ ≤ ‖ f ‖. Throughout the paper, it is assumed that the dimension of L is greater than
one and that X is the carrier of L, that is, there is no subset Y of X of strictly positive
measure with the property that f = 0 a.e. on Y for all f ∈ L (see [13]). The cone of
positive elements in L is denoted by L+. A non-negative function f ∈ L+ is said to be
strictly positive if f (x) > 0 for almost all x ∈ X . The norm of L is said to be a weakly
Fatou norm if there exists a finite constant k ≥ 1 such that 0 ≤ fτ ↑ f in L implies that
‖ f ‖ ≤ k · supτ ‖ fτ‖.

By L′ we denote the associate space (also called the Köthe dual) of all g ∈ M(X, µ)
such that

ϕg( f ) =
∫

X
f g dµ

defines a bounded linear functional ϕg on L. The space L′ is also a Banach function
space with respect to the associate norm ‖ · ‖′ defined by

‖g‖′ = ‖ϕg‖ = sup
{∫

X
| f g| dµ : f ∈ L, ‖ f ‖ ≤ 1

}
,

and it may be considered as a closed subspace of the dual Banach lattice L∗. In view
of the definition of ‖ · ‖′ the following generalized Hölder’s inequality holds∫

X
| f g| dµ ≤ ‖ f ‖ ‖g‖′

for f ∈ L and g ∈ L′. Note that the set X is also the carrier of the associate space L′,
and L′ separates points of L (see [13, Theorem 112.1]). For any non-negative functions
f and g on X we introduce the following notation

〈 f, g〉 =
∫

X
f g dµ.

For brevity, the integration over the whole set X will be denoted by
∫

dµ(x) or even∫
dx.

By an operator on a Banach function space L we always mean a linear operator
on L. The spectrum and the spectral radius of a bounded operator T on L are denoted
by σ (T) and r(T), respectively. An operator T on L is said to be positive if T f ∈ L+
for all f ∈ L+. Given operators S and T on L, we write S ≥ T if the operator S − T is
positive. It should be recalled that a positive operator T on L is automatically bounded
and that r(T) belongs to the spectrum of T . An operator K on L is called a kernel
operator if there exists a µ × µ-measurable function k(x, y) on X × X such that, for
all f ∈ L and for almost all x ∈ X ,∫

X
|k(x, y) f (y)| dµ(y) < ∞ and (K f )(x) =

∫
X

k(x, y) f ( y) dµ(y).

One can check that a kernel operator K is positive iff its kernel k is non-negative almost
everywhere. We say that K is reducible if there exists a set A ∈ M such that µ(A) > 0,
µ(Ac) > 0 and k = 0 a.e. on A × Ac. Otherwise, if there is no such set, K is said to be
irreducible.

Let K be a positive kernel operator on L with kernel k. It is easily seen that L′ is
invariant under the adjoint operator K∗. We denote by K ′ the restriction of K∗ to L′.
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One can show [13, Section 97] that K ′ is also a positive kernel operator with the kernel
k′(x, y) = k(y, x) (x, y ∈ X). The following important observation was already stated
in [6] for general Banach lattices.

PROPOSITION 1. Let L be a Banach function space with a weakly Fatou norm. If K is
a kernel operator on L, then r(K ′) = r(K).

Proof. It follows from [13, Theorem 107.7] (see also the equality (2) on p. 393 of
[13]) that the space L can be (not necessarily isometrically) embedded into (L′)′ as a
Banach space. Then we have r(K) ≥ r(K ′) ≥ r((K ′)′) ≥ r(K), and so r(K ′) = r(K). �

The following important result is contained in [9, Theorems 4.13 and 3.14].

THEOREM 2. Let K be an irreducible positive kernel operator on a Banach function
space L such that r(K) is a pole of the resolvent (λ − K)−1. Then r(K) > 0, r(K) is an
eigenvalue of K of algebraic multiplicity one, and the corresponding eigenspace is spanned
by a strictly positive function.

It is well known that the assumption that r(K) is a pole of the resolvent (λ − K)−1

is satisfied if some power of K is a compact operator. In this case Theorem 2 is known
as the theorem of Jentzsch and Perron (see [9, Theorem 5.2]).

We will also need the following simple result.

PROPOSITION 3. Assume that a positive operator T on a Banach function space L is the
norm limit of a sequence {Tn}n∈IN of positive operators on L such that T1 ≥ T2 ≥ . . . ≥ T.
Then

r(T) = lim
n→∞ r(Tn).

Proof. The sequence {r(Tn)}n∈IN is non-increasing and bounded below by r(T),
so that r(T) ≤ limn→∞ r(Tn). Since the spectral radius is upper semicontinuous, the
equality holds in this inequality. �

2. General Banach function spaces. Throughout this section, let L be a Banach
function space with a weakly Fatou norm. For brevity, we denote by L∞

++(X, µ) the
set of all strictly positive functions f ∈ L∞(X, µ)+ satisfying 1 / f ∈ L∞(X, µ)+. For
d ∈ L∞(X, µ)+ the multiplication operator D is a positive operator on L defined by
D f = d f . Clearly, D is invertible iff d ∈ L∞

++(X, µ).
The following lemma that extends [5, Lemma 2.2] is needed in the proof of

Theorem 5.

LEMMA 4. Let K be a positive kernel operator on L with r(K) = 1. Let d and
e be strictly positive functions in L∞

++(X, µ), and let D and E be the corresponding
multiplication operators on L. Let f ∈ L+ and g ∈ L′

+ be strictly positive functions such
that K f is a strictly positive function satisfying

K f
f

= K ′g
g

and 〈K f, g〉 = 1.

Then

〈DKEu, v〉 ≥ exp
(∫

X
K f g log(d e) dµ

)
(1)
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for any u ∈ L+ and for any nonnegative measurable function v on X satisfying u v = f g.
If, in addition, 〈Ku, v〉 < ∞, then

〈Ku, v〉 ≥ exp
(∫

X
K f g log

(
K u
u

f
K f

)
dµ

)
≥ 1. (2)

Proof. Since 〈K f, g〉 = 1, the integral in (1) exists, while it will be seen below that
the integral in (2) exists provided 〈Ku, v〉 < ∞. In fact, there is no loss of generality in
assuming that 〈DKEu, v〉 < ∞, and consequently, 〈Ku, v〉 < ∞, since it holds

〈Ku, v〉 ≤ ‖1/d‖∞ · ‖1/e‖∞ · 〈DKEu, v〉.
We will first show the right-hand inequality in (2), that is∫

X
K f g log

(
K u
u

f
K f

)
dµ ≥ 0. (3)

We consider the special case when v ∈ L′
+. For almost all x ∈ X we define the

probability measure on M by

νx(A) = 1
(K f )(x)

∫
A

k(x, y) f (y) dy,

where k is the kernel of K . Using the estimate | log(t)| ≤ t + 1
t (t > 0) we obtain that∫

K f g
∣∣∣∣log

(
u
f

)∣∣∣∣ dµ ≤
∫

K f g
(

u
f

+ f
u

)
dµ = 〈u, K ′g〉 + 〈K f, v〉 < ∞. (4)

Now, we have∫
(K f )(y) g(y) log

(
u(y)
f (y)

)
dy =

∫
f (y) (K ′g)(y) log

(
u(y)
f (y)

)
dy

=
∫

f (y) log
(

u(y)
f (y)

) (∫
k(x, y) g(x) dx

)
dy.

Because of (4) we can use Fubini’s theorem to get∫
(K f )(y) g(y) log

(
u(y)
f (y)

)
dy =

∫
g(x)

(∫
k(x, y) f (y) log

(
u(y)
f (y)

)
dy

)
dx

=
∫

(K f )(x) g(x)
(∫

log
(

u(y)
f (y)

)
dνx(y)

)
dx.

Then, an application of Jensen’s inequality gives the inequality∫
(K f )(y) g(y) log

(
u(y)
f (y)

)
dy ≤

∫
(K f )(x) g(x) log

( ∫
u(y)
f (y)

dνx(y)
)

dx

=
∫

(K f )(x) g(x) log
(

(K u)(x)
(K f )(x)

)
dx,

from which (3) follows. To prove the general case, define sequences {un}n∈IN and {vn}n∈IN
of strictly positive functions by un = u + f/n and vn = fg/un. Since vn ≤ n g, we have
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vn ∈ L′
+, and so

∫
X

K f g log
(

K un

un

f
K f

)
dµ ≥ 0, (5)

by the special case of (3). Since

Kun

un
− K f

f
= u

un

(
Ku
u

− K f
f

)
,

it holds that{
x ∈ X :

(Kun)(x)
un(x)

≥ (K f )(x)
f (x)

}
=

{
x ∈ X :

(Ku)(x)
u(x)

≥ (K f )(x)
f (x)

}
,

and the sequence {Kun
un

}n∈IN is non-decreasing on this set. Then, by the Monotone
Convergence Theorem,

lim
n→∞

∫
X

K f g log+
(

Kun

un

f
K f

)
dµ =

∫
X

K f g log+
(

Ku
u

f
K f

)
dµ, (6)

where the limit is finite. Namely, using the inequality log+ t ≤ t (t > 0) we obtain that

0 ≤
∫

X
K f g log+

(
Ku
u

f
K f

)
dµ ≤

∫
X

K f g
Ku
u

f
K f

dµ = 〈Ku, v〉 < ∞.

This shows that the integral in (3) is defined (and its value belongs to [−∞,∞)).
Similarly, we obtain that

lim
n→∞

∫
X

K f g log−
(

Kun

un

f
K f

)
dµ =

∫
X

K f g log−
(

Ku
u

f
K f

)
dµ,

which together with (6) gives that

lim
n→∞

∫
X

K f g log
(

Kun

un

f
K f

)
dµ =

∫
X

K f g log
(

Ku
u

f
K f

)
dµ.

In view of (5) this completes the proof of (3).
We now define the probability measure λ on M by

λ(A) =
∫

A
K f g dµ.

An application of Jensen’s inequality gives that

log (〈Ku, v〉) = log
(∫

Ku
u

f
K f

dλ

)
≥

∫
log

(
Ku
u

f
K f

)
dλ

=
∫

K f g log
(

Ku
u

f
K f

)
dµ,
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so that the left-hand inequality holds in (2). Similarly, we have

log (〈DKEu, v〉) = log
(∫

d e
K(Eu)

Eu
f

K f
dλ

)
≥

∫
log

(
d e

K(Eu)
Eu

f
K f

)
dλ

=
∫

K f g log(d e) dµ +
∫

K f g log
(

K(Eu)
Eu

f
K f

)
dµ.

Since the last integral is non-negative by (3), this gives (1). �
The following result extends Theorems 2.4 and 2.6 in [5]. Its finite-dimensional

version was shown in [7, Theorem 2.3].

THEOREM 5. Let K1, K2, . . . , Kn be positive kernel operators on L. Assume that f1,
f2, . . . , fn ∈ L+ and g1, g2, . . . , gn ∈ L′

+ are strictly positive functions satisfying

Ki fi = r(Ki)fi, K ′
i gi = r(Ki)gi

and be normalized so that

fi · gi = h (i = 1, 2, . . . , n) and
∫

X
h dµ = 1.

Furthermore, let d1, . . . , dn and e1, . . . , en be in L∞(X, µ)+, and let D1, . . . , Dn and
E1, . . . , En be the corresponding multiplication operators on L. Then

r

(
n∑

i=1

DiKiEi

)
≥

n∑
i=1

r(Ki) exp
(∫

X
h log(diei) dµ

)
(7)

adopting the convention exp(−∞) = 0. In particular, for all positive numbers t1, . . . , tn,

r(t1K1 + . . . + tnKn) ≥ t1r(K1) + . . . + tnr(Kn). (8)

Proof. If, for some i, diei = 0 on the set of positive measure, then
∫

X h log(diei)
dµ = −∞, which together with the monotonicity of the spectral radius convinces us
that there is no loss of generality in assuming that {di}n

i=1 and {ei}n
i=1 are strictly positive

functions. Also, we may assume that r(Ki) > 0 for all i.
Consider first the case when {di}n

i=1 and {ei}n
i=1 are in L∞

++(X, µ). Denote K =
D1K1E1 + . . . + DnKnEn, pick λ > r(K), and set

u = (λ − K)−1f1 =
∞∑

j=0

λ−j−1Kjf1.

Then u is a strictly positive function in L satisfying Ku ≤ λu. Denoting v = h/u we
apply (1) of Lemma 4 for the operator Ki/r(Ki), i = 1, . . . , n, to get

〈DiKiEiu, v〉 ≥ r(Ki) exp
(∫

X
h log(diei) dµ

)
.

Summing over i gives the inequality

n∑
i=1

r(Ki) exp
(∫

X
h log(diei) dµ

)
≤

n∑
i=1

〈DiKiEiu, v〉 = 〈Ku, v〉 ≤ 〈λu, v〉 = λ.

Since this is true for any λ > r(K), the inequality (7) follows.
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To remove the assumptions on {di}n
i=1 and {ei}n

i=1, define d(m)
i = max{di,

1
m } and

e(m)
i = max{ei,

1
m } (m ∈ IN, i = 1, . . . , n), and let D(m)

i and E(m)
i be the corresponding

multiplication operators on L. Then, by the above,

r

(
n∑

i=1

D(m)
i KiE(m)

i

)
≥

n∑
i=1

r(Ki) exp
(∫

X
h log

(
d(m)

i e(m)
i

)
dµ

)
.

When m tends to infinity, the left-hand side approaches r(K) by Proposition 3, while

lim
m→∞

∫
X

h log
(
d(m)

i e(m)
i

)
dµ =

∫
X

h log(diei) dµ

by the Monotone Convergence Theorem (for decreasing sequences). This yields the
inequality (7), and the proof is finished. �

A glance at the proof above shows that Theorem 5 also holds in the case when
some operators of K1, K2, . . . , Kn are positive multiples of the identity operator, or in
other words, every Ki is a sum of a positive kernel operator and a non-negative multiple
of the identity.

Given a positive operator T on L, let P+(T) denote the set of all functions p(z) =∑∞
k=0 akzk such that ak ≥ 0 for all k and the convergence radius of p is greater than

r(T). Using the spectral mapping theorem one can show easily that r( p(T)) = p(r(T))
for all p ∈ P+(T).

THEOREM 6. Under the assumptions of Theorem 5, let pi ∈ P+(Ki) for i = 1, . . . , n.
Then

r( p1(K1) + . . . + pn(Kn)) ≥ p1(r(K1)) + . . . + pn(r(Kn)).

In particular, if si > r(Ki) for i = 1, . . . , n, then

r((s1 − K1)−1 + . . . + (sn − Kn)−1) ≥ 1
s1 − r(K1)

+ . . . + 1
sn − r(Kn)

.

Proof. We first claim that every pi(Ki), i = 1, . . . , n, is the sum of a kernel operator
and a non-negative multiple of the identity operator I . If pi(z) = ∑∞

k=0 akzk with ak ≥ 0,
then pi(Ki) − a0I is the limit (in norm and in order) of an increasing sequence of kernel
operators. It follows that it is a kernel operator (see e.g. [13, Theorem 94.5]). This
proves our claim. Now, according to the remark following the proof of Theorem 5 we
may apply the inequality (8) of Theorem 5 for operators p1(K1), . . . , pn(Kn) to get

r( p1(K1) + . . . + pn(Kn)) ≥ r( p1(K1)) + . . . + r( pn(Kn)) = p1(r(K1)) + . . . + pn(r(Kn)).

�
As an extension of Theorem 4.2 in [8] we now show that the inequality (7) of

Theorem 5 for n = 1 can be improved if the operator is of the form (s − K)−1, where
s > r(K).

THEOREM 7. Let K be a positive operator on L with r(K) > 0 that is a sum of a positive
kernel operator and a non-negative multiple of the identity. Assume that f ∈ L+ and
g ∈ L′

+ are strictly positive functions satisfying K f = r(K) f , K ′g = r(K)g and 〈 f, g〉 = 1.
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Let d be in L∞(X, µ)+, and let D be the corresponding multiplication operator on L.
Then

r(DK) ≥ r(K) exp
(∫

X
f g log(d ) dµ

)
. (9)

Furthermore, for s > r(K) it holds

r(D(s − K)−1) ≥ r((s − K)−1)
(∫

X
f g d dµ

)
. (10)

Proof. The inequality (9) is a special case of (7). Denote T = (s − K)−1 and pick
λ > r(DT). Then w = (λ − DT)−1f is a strictly positive function in L satisfying DTw ≤
λw. Set u = Tw and v = f · g/u. If we apply (2) of Lemma 4 for the operator K/r(K),
we obtain that 〈Ku, v〉 ≥ r(K), and so

〈T−1u, v〉 = 〈(s − K)u, v〉 ≤ s − r(K) = 1
r(T)

.

On the other hand, since λT−1u = λw ≥ DTw = du, we have λ〈T−1u, v〉 ≥ 〈du, v〉. It
follows that λ ≥ r(T)〈du, v〉 which implies (10). �

Observe that (10) is really a sharpening of (9) for the special class of positive
operators, since

exp
(∫

X
f g log(d ) dµ

)
≤

∫
X

f g d dµ

by Jensen’s inequality. Also, simple examples show that in (9) exp(
∫

X f g log(d ) dµ)
can not be replaced by

∫
X f g d dµ. (Consider K = [ 0 1

1 0 ] on L = C| 2.)

3. L2-spaces. In [5] we proved an extension of Levinger’s inequality to positive
kernel operators on L2-spaces. Unfortunately, we were able to show it only under some
assumptions on the kernel of the operator. We now show that these assumptions are
redundant, as we expected. In the finite-dimensional case this result was proved in [2,
Theorem 7].

THEOREM 8. Let K be a positive kernel operator on L2(X, µ) such that r(K) is an
isolated point of σ (K) and the corresponding Riesz idempotent has finite rank. Let d ∈
L∞

++(X, µ) be a strictly positive function, and let D be the corresponding multiplication
operator on L2(X, µ). Then, for any t ∈ [0, 1],

r(tDKD−1 + (1 − t)K∗) ≥ r(K). (11)

If, in addition, the operator K is compact and if φ : [0, 1] → [0,∞) is defined by

φ(t) = r(tDKD−1 + (1 − t)K∗),

then φ is non-decreasing on [0, 1
2 ] and is non-increasing on [ 1

2 , 1].

Proof. Consider first the case when D = I , the identity on L. If K is irreducible,
then by Theorem 2 there exist strictly positive functions f, g ∈ L2(X, µ) satisfying
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K f = r(K)f , K∗g = r(K)g and 〈 f, g〉 = 1, and the inequality (11) follows from
Theorem 5 with K1 = K , K2 = K∗, f1 = g2 = f and g1 = f2 = g. For general K pick
any strictly positive function u ∈ L2(X, µ). (Such functions exist because the measure
µ is σ -finite.) Denote by K0 an irreducible kernel operator with strictly positive kernel
u(x)u(y) (x, y ∈ X ). For each m ∈ IN define an irreducible positive kernel operator on
L2(X, µ) by Km = K + 1

m K0. Then r(Km) ≥ r(K), and the left (and, similarly, the right)
essential spectra of Km and K coincide. Now, Proposition XI.6.9 and Theorem XI.6.8
of [4] imply that r(Km) is an isolated point of σ (Km) and the corresponding Riesz
idempotent has finite rank. By the first part of the proof, we then have

r
(

tK + (1 − t)K∗ + 1
m

K0

)
= r

(
t
(

K + 1
m

K0

)
+ (1 − t)

(
K + 1

m
K0

)∗)
≥ r

(
K + 1

m
K0

)
.

Letting m → ∞ we get φ(t) ≥ r(K) by Proposition 3, which proves (11) in the case
D = I . Since φ(t) = φ(1 − t), it remains to show in this special case that φ is non-
decreasing on [0, 1

2 ] provided K is compact. Let 0 ≤ t < s ≤ 1
2 . Then, by (11),

φ(t) ≤ r(u(tK + (1 − t)K∗) + (1 − u)(tK + (1 − t)K∗)∗)

= r((2ut − u − t + 1)K + (t + u − 2ut)K∗)

for all u ∈ [0, 1]. Put u = 1 − s − t
1 − 2t to obtain that φ(t) ≤ r(sK + (1 − s)K∗) = φ(s).

The general case follows from the special one. To show this, let E be the
multiplication operator on L the multiplier of which is

√
d, so that E2 = D. Introducing

the notation

φK,D(t) = r(tDKD−1 + (1 − t)K∗)

we have, for all t ∈ [0, 1],

φK,D(t) = r(E(tEKE−1 + (1 − t)E−1K∗E)E−1)

= r(tEKE−1 + (1 − t)(EKE−1)∗) = φEKE−1,I (t).

Since φEKE−1,I (t) ≥ r(EKE−1) = r(K) by the special case, (11) follows. If, in addition,
K is compact, then φEKE−1,I is non-decreasing on [0, 1

2 ] and is non-increasing on
[ 1

2 , 1] by the special case, and so the same is also true for φK,D. This completes the
proof. �

We do not know whether Theorem 8 is valid for every positive operator K on
L2(X, µ). However, we shall show below that for t = 1/2 the inequality (11) holds for
all positive operators on L2(X, µ). To do this, we recall that the numerical radius w(A)
of a bounded operator A on L2(X, µ) is defined by

w(A) = sup{|〈A f, f 〉| : f ∈ L2(X, µ), ‖ f ‖2 = 1}.
If, in addition, A is positive, then we have

w(A) = sup{〈A f, f 〉 : f ∈ L2(X, µ)+, ‖ f ‖2 = 1}.
Indeed, this follows from the estimate

|〈A f, f 〉| ≤
∫

X
|A f | | f | dµ ≤ 〈A| f |, | f |〉
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that holds for any f ∈ L2(X, µ). It is well known [10] that

r(A) ≤ w(A) ≤ ‖A‖
for all bounded operators A on L2(X, µ).

THEOREM 9. Let A be a positive operator on L2(X, µ). Then, for any t ∈ [0, 1],

‖A‖ ≥ ‖tA + (1 − t)A∗‖ ≥ w(tA + (1 − t)A∗) = w(A) ≥ r(A) (12)

and

‖(tA + (1 − t)A∗)2‖ ≥ w((tA + (1 − t)A∗)2) ≥ w(A2) ≥ (r(A))2. (13)

Furthermore, if d is in L∞
++(X, µ) and D is the corresponding multiplication operator on

L2(X, µ), then

r(DAD−1 + A∗) ≥ 2 r(A) (14)

Proof. The equality in (12) follows from

〈(tA + (1 − t)A∗) f, f 〉 = t〈A f, f 〉 + (1 − t)〈 f, A f 〉 = 〈A f, f 〉,
which holds for all f ∈ L2(X, µ)+. The remaining inequalities in (12) are clear. Similarly,
only the second inequality in (13) needs a proof. This relation is a consequence of the
following inequality

〈(tA + (1 − t)A∗)2f, f 〉 ≥ 〈A2f, f 〉
that holds for every f ∈ L2(X, µ)+, since it is equivalent to t(1 − t)‖A f − A∗f ‖2

2 ≥ 0.
Setting t = 1/2 in (12) we obtain (14) in the case D = I , since r(A + A∗) = w(A + A∗) =
‖A + A∗‖. The general case can be obtained from the special one as in the proof of
Theorem 8. Namely, if E is the multiplication operator on L with the multiplier

√
d,

then

r(DAD−1 + A∗) = r(E(EAE−1 + E−1A∗E)E−1)

= r(EAE−1 + (EAE−1)∗) ≥ 2 r(EAE−1) = 2 r(A). �
An application of Berberian’s trick concerning 2 × 2 operator matrices gives the

following result which seems to be new even in the finite-dimensional case.

THEOREM 10. Let A and B be positive operators on L2(X, µ). Then

‖A + B∗‖ ≥ 2 ·
√

r(AB).

If, in addition, A and B are compact kernel operators, then, for each t ∈ [0, 1],

max{‖tA + (1 − t)B∗‖, ‖tB + (1 − t)A∗‖} ≥
√

r(AB).

Proof. Let T be a positive operator on L2(X, µ) ⊕ L2(X, µ) defined by 2 × 2
operator matrix

T =
[

0 A
B 0

]
.
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Then r(T + T∗) = ‖T + T∗‖ = ‖A + B∗‖ and (r(T))2 = r(T2) = r(AB). By (14), we
obtain that

‖A + B∗‖ = r(T + T∗) ≥ 2 r(T) = 2
√

r(AB).

If, in addition, A and B are compact kernel operators, then T is a compact kernel
operator as well. Then, for each t ∈ [0, 1],√

r(AB) = r(T) ≤ r(tT + (1 − t)T∗) ≤ ‖tT + (1 − t)T∗‖
= max{‖tA + (1 − t)B∗‖, ‖tB + (1 − t)A∗‖},

where we have used (11). This completes the proof. �
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6. R. Drnovšek, Bounds for the spectral radius of positive operators, Comment. Math.

Univ. Carolinae 41 (2000), 459–467.
7. L. Elsner and C. R. Johnson, Nonnegative Matrices, Zero Patterns, and Spectral

Inequalities, Lin. Alg. Appl. 120 (1989), 225–236.
8. S. Friedland and S. Karlin, Some inequalities for the spectral radius of non-negative

matrices and applications, Duke Math. J. 42 (1975), 459–490.
9. J. J. Grobler, Spectral theory on Banach lattices, in Operator theory in function spaces

and Banach lattices, Oper. Theory Adv. Appl. No. 75 (Birkhäuser, 1995).
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