OBSERVABLE PROPERTIES OF PASSIVELY-EVOLVING GALAXIES AT HIGH REDSHIFT

TORU YAMADA
Cosmic Radiation Laboratory
The Institute of Physical and Chemical Research
AND
NOBUO ARIMOTO
Institute of Astronomy
University of Tokyo

1. Basic Idea

There are evidences which suggest that many of the early-type galaxies in rich cluster environment formed at fairly high redshift, z > 2. If the galaxies formed at such early epoch have experienced no intensive star-formation events, their photometric properties can be traced with less ambiguity by using the stellar evolutionary sinthesis models. Here we demonstrate what conspicuous feature can be observed for those passively-evolving galaxies at high redshift and how we can constrain the epoch and period of their formation.

2. Conspicuous Turn-Off in the Optical-NIR Colours

If the model galaxies are observed at higher redshift, their opt-NIR colours become redder by the shift of the 4000 Å break, while they becomes bluer by the "revival" of more massive and bluer main-sequence stars. As a result, conspicuous colour-turn-off points, which depend on the galaxy-formation epoch very strongly, are seen in their colour evolution. We also simulated the expected I-K distributions of K-band magnitude-limited sample in order to make more realistic predictions. Unfortunately, present-day NIR detector is so small that we can obtain any statistical data set to compere with models. However, next-generation wide-field NIR cameras will bring us the opportunities to search and investigate properties and distributions of those passively-evolving galaxies at high-redshift.