
EXTREMA IN SPACE-TIME 

LOUIS V. QUINTAS AND FRED SUPNICK 

1. Introduction. Consider an astronomer and his observation field, i. e., 
the set of observable (light or radio) signal-emitting loci of the universe. Let 
the observation field be ordered by attaching a date to each observable locus 
indicating the time in the history of the universe that the signal was emitted 
from its source. Whereas both the astronomer and his observation field age 
with time, the observations of the astronomer may trace a sequence of loci 
whose time labels proceed forward or backward in time (cf. Appendix). 

Consider now a finite set 5 of events in Ln, ^-dimensional space-time 
(Riemannian w-space having the fundamental form 

$ = (dx1)2 + . . . + (dof-1)* - (dt)2, n > 2). 

A rectilinear world-line segment with end points in S will be called a rectilinear 
connection in S, and a set of rectilinear connections that form a polygon with 
vertex set 5 a polygonal connection of S. The clock time of a polygonal connection 
is defined to be the sum of all the time separations of its rectilinear connections. 
(The time separation of a rectilinear connection with end points 

•LL>u'. \P^u > • • • » 3Cu J *u) a n Q -E>v- \%v > • • • > %v i *v) 

is equal to 

1/ \yv tu) / J \pCv %u ) 
r i=l 

and will be denoted by s(EuEv).) A polygonal connection having either the 
least or the greatest clock time of all possible ''circuit states," i.e., all possible 
polygonal connections of S, will be called extreme with respect to S. In this 
paper criteria are established, which, if satisfied by a set S of events in Ln, 
enable one to obtain extreme polygonal connections of S immediately. 

2. Summary of results. A set S of events is called a timelike distribution 
if each event of S is in the interior of the time cone of every other event in 5. 

A timelike distribution 5 in Ln (n > 2) is said to satisfy the Four Point 
Condition if the events of 5* can be labelled Pi , P2 , . . . , Pfc so as to satisfy the 
following condition: 

(For all sets of integers {a, b, c, d] such that 
(2.1) ) 1 <a < b < c <d < k 

\ it follows that 
{s(PaFb) + s(PcPd) < s(PaPc) + s(Pb Pd) < s(PaPd) + s(PbPc). 
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BASIC LEMMA. If a timelike distribution S ofk events in Ln (n > 2) satisfies 

the Four Point Condition, then the polygonal connections 

I . . P 7 P 5 P 3 P 1 P 2 P 4 P 6 . . . ] 

and 

[. . . JPjc-b Ph Pk-Z P% P/c—l Pi Pk P2 Pk-2 PA Pk-A PQ • . .] 

have respectively the least and the greatest clock time of the set of all possible 
polygonal connections of S. 

T h e proof of this lemma is identical with t h a t of (1 , Theorem I I I ). T h e la t ter 
was proved in a Euclidean sett ing, bu t it is verified directly t h a t this is no t 
necessary. 

In 1964, Lerman obtained the result (unpublished) tha t , if a set of k non-
collinear points in the Euclidean plane satisfies the Four Point Condition, 
i.e., the hypothesis of (1, Theorem I I I ) , then k < 8. This is contrasted with 
the fact t h a t in L2, for any k > 4, it is possible to select k non-collinear events 
and label them so as to satisfy (2.1), e.g., any k events lying on a convex 
timelike arc (in L2) can be so labelled (cf. Theorem 4 below). Higher-dimen
sional curves having this proper ty are constructed in §10. A still wider class 
of event distributions in Ln (n > 2) satisfying the Four Point Condition is 
given in Theorem 2 below. 

Our first theorem consists of a necessary and sufficient condition t h a t a 
timelike distribution satisfy the Four Point Condition. 

T H E O R E M 1. Let 

S = {£1, £ 2 , . . . , £*} (*i < h < • • • < /*; k > 4) 

denote a timelike distribution in Ln (n > 2) . Then S satisfies the Four Point 
Condition if and only if at least one of the following four labellings of S 

( {Pi, PU = {EhE2}, 
(2.2) <Pi = Et (i = 3 , 4 , . . . , & - 2 ) , 

[and {Pk-i, Pk) = {Ek-i, Ek) 

is a labelling for which (2.1) is satisfied) cf. §4. 

Remark. Since there are only four labellings to check, Theorem 1 yields an 
effective computat ional method for determining whether or no t a timelike 
distr ibution in Ln (n > 2) satisfies the Four Point Condition. 

Let U, V, and " ^ d e n o t e three events in Ln (n > 2) , F{W) the interior of 
the future t ime cone of W, and 

R(U, V; W) = {E e F(W): s(UW) - s(VW) < s(UE) - s(VE)}. 

T H E O R E M 2. Let S = {£1, E2, . . . , Ek] (k > 4) denote a set of events in Ln 

(n > 2) such that for t = 2, 3, 

Et G F(£«_i) 
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and for t = 4, 5 , . . . , k, 

Ete H i ? ( £ „ £ , ; £ , _ ! ) ( K i < i < ( - 1 ) ; 

then S is a timelike distribution satisfying the Four Point Condition] cf. §5. 

In the next theorem we define a class of event distributions which includes 
the class of event distributions given in Theorem 2; cf. (5.2). For each S in 
this class we are able to determine a minimal polygonal connection. 

THEOREM 3. Let S = {Ei, £ 2 , . . • , Ek} (k > 4) denote a set of events in Ln 

(n > 2) such that for t = 2, 3, 

Et e F(Et^) 

and for t = 4, 5, . . . , k, 

Et e n ^ ( £ , _ 3 , £,_2 ; E|_i) (i = 4, 5, . . . , / ) ; 

then [. . . E7 E5 E$ Ei E2 E± EQ . . .] has the least clock time of the set of all 
possible polygonal connections of S; cf. §6. 

The following lemma and Theorem 4 below state some geometric properties 
of event distributions in L2 that satisfy the Four Point Condition. 

LEMMA 1. If the events of a non-collinear timelike distribution of events in L2 

fall on the boundary B of their convex hull and are labelled so as to satisfy (2.1), 
then the labelling must be cyclic with respect to B ; cf. §7. 

THEOREM 4. Let k events (k > 4) of a timelike distribution of events in L2 fall 
on the boundary B of their convex hull. Let P, Q, R, and S denote the events with 
the minimal, next to minimal, next to maximal, and maximal t-co-ordinates 
respectively. Then, the k events satisfy the Four Point Condition if and only if 
B — {P, S} consists of one component or one of its two components contains at 
most two events from among the k given events and if an event is in this component, 
then that event is either Q or R; cf. §8. 

A feature of Ln is the existence of rectilinear connections having time 
separation equal to zero (world-lines of photons). This gives rise to the con
sideration of a special class of minimal polygonal connections, namely those 
with clock time equal to zero. We call these zero polygonal connections. An event 
distribution 5 is said to be zero separated if each pair of events in S constitutes 
the end points of a polygonal path consisting of rectilinear connections of S 
each of which has time separation equal to zero. 

Remark. The vertex set of a zero polygonal connection is zero separated, 
but not conversely; cf. (9.1). 

Let C(E) denote the light cone centred at E, i.e., the boundary of the time 
cone of the event E. 
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THEOREM 5. Let S = {Eh E2, . . . , Ek] (k > 4) denote a set of events in Ln 

{n > 2) which is zero separated and such that for each i = 1, 2, . . . , k, the set 
C{Ei) C\S contains exactly three events) then S is the vertex set of a unique zero 
polygonal connection] cf. §9. 

Remark. I t is possible for a set S = {Ei, E2, . . . , Ek] to have the property 
that for each i = 1, 2, . . . , &, C{Et) C\S contains exactly three events and 
yet not be the vertex set of a zero polygonal connection ; cf. (9.2). 

We conclude by formulating some open questions; cf. §11. 

3. Some lemmas. Properties of sets in Ln (n > 2) that satisfy the 
Four Point Condition. 

(3.1) If Ea, Eb, EX1 and Ey denote four events of a timelike distribution of 
events in Ln {n > 2) such that ta < tb < tz < tyi then 

s(EaEb) +s(ExEy) < 
s{EaEx) +s(EbEy), 
s(EaEv) + s(EbEx). 

Proof. By the triangle inequality in Ln, s(EaEb) < s(EaEx) and 
s(ExEy) < s(EbEy). Thus, 

s{EaEb) + s(ExEy) < s(EaEx) + s(EbEy). 
Since 

s(EaEb) + s(ExEy) < s(EaEx) + s(ExEy) 

and by the triangle inequality we have s{EaEx) + s(ExEy) < s(EaEy), it 
follows that 

s(EaEb) + s(ExEy) < s{EaEy) + s(EbEx). 

(3.2) Any set of four events of a timelike distribution in Ln {n > 2) satisfies the 
Four Point Condition. 

Proof. Let the events be labelled as in (3.1). If 

s{EaEx) + s{EbEy) < s{EaEy) + s(EbEx), 

then if Ex and Ey are relabelled Ec and Ed respectively, the four events will 
satisfy (2.1). If 

s{EaEx) + s(EbEy) > s{EaEy) + s(EbEx), 

then relabel Ex and Ey, Ed and Ec respectively. 

(3.3) There exist timelike distributions S of five events in L2 for which the 
events of S cannot be labelled so as to satisfy (2.1). 

Proof. Cf. §7; also see the six-point condition given at the end of §8. 

(3.4) Let Ea, Eb1 EC1 and Ed (a < b < c < d) denote four events of a timelike 
distribution of events in Ln (n > 2) labelled so as to satisfy (2.1). If tai tb, tc, and 
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td denote the t-co-ordinates of these events, then the two intervals defined by [taj tb} 
and {/c, td} do not have any points in common. 

Proof. Let 

ta = min{/a, tb, te, td}, tfi = min[{/a, tb, tc, td\ — {/«}], 

and 
[tX, ty\ = \taj tb, tC, td\ — \ta, tp\ . 

Then by (3.1), s(EaEp) + s(ExEy) is strictly less than both 

s(EaEx) + s{EpEy) and s(EaEy) + s(EpEx), 

where £«, Ep, Ex, and Ey are the events corresponding to ta, tp, tx, and ty re
spectively. Since under the present hypothesis, the events Ea, Eb, £ c , and Ed 

are labelled so as to satisfy (2.1), it is necessary that either {tai tp] = {tai tb] 
or {ta, tp} = {tc, td}. However, this condition is realized if and only if the two 
intervals defined by {/a, tb} and {/<., td\ do not have any points in common. 
Thus, (3.4) is proved. 

(3.5) / / P i , P 2 , . . . , Pic is a timelike distribution of events in Ln (n > 2) 
labelled so as to satisfy (2.1), then the relabelling Qf = Pk_i+1 (i = 1, 2, . . . . k) 
of these events also satisfies (2.1). 

Pr oof. This assertion is proved by noting that, ( i ) i f l Ka<b<c<d*Ck, 
then 

l<k-d + l < k - c + l < k - b + l < k - a + l<k, 

and (ii) 5 ( P t . z + i P H + i ) = s(QxQy). 

4. Proof of Theorem 1. Let 5 satisfy the Four Point Condition and 
Pi , P 2 , . . . , Pa be a labelling of the events of S for which (2.1) is satisfied. 

We first show that P i G {£1, £ 2 , £*_i, Ek}. If P i (? {£1, £2 , £*-i, Ek}, then 
by (3.4) we have P 2 $ {£1, Ek}. Since 5 (Pi P2) + 5 (£1 Ek) is not less than both 
s{PiEx) +s(P2Ek) and s(PiEk) + s ( P 2 £ i ) (cf. (3.1)), no labelling of £1 and 
Ek exists such that (2.1) is satisfied. Thus, P i £ {£1, £ 2 , £^-1, Ek}. 

By (3.4), P i and P 2 must have /-co-ordinates that are not separated by any 
/-co-ordinate of any member of S. Thus, if P i = P i or P i = Ek, then P 2 = £ 2 

or P 2 = Ek„i respectively. If P i = £ 2 and P 2 = £3, then {Pi, P 2 , £1, Ek} 
would not satisfy (2.1), since s ( P i P 2 ) + s(EiEk) is not minimal. Similarly, 
if P i = £*_! and P 2 = £*_2, then {Pi, P 2 , £1, Ek] would not satisfy (2.1). 
Thus, we have shown that {Pi, P2} = {£1, £2} or {Pi, P2} = {Ek_lyEk\. 

Applying (3.4) again we see that, if {Pi, P2} = {£1, £ 2 } , then Pt = Et 

(i = 3, 4, . . . , k — 2) and since only Pk-i and Pk remain, we must have 
{P,_i, Pk) = {£,_i, Ek). Similarly, if {Pu P2} = [E^l9 £ , } , then Pi = Ek_i+1 

(i = 3, 4, . . . , k - 2) and {P*_i, Pk] = {Eh £ 2 } . Thus, either we have (2.2) 
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and we are finished, or we have the case of the preceding sentence. In the latter 
case, applying (3.5) we obtain a labelling Qh Q2} . . . , Qk of the events of 5 
such that 

{QuQ*} = {EUE%}, 

Qt = Et (i = 3,4, . . . , & - 2 ) , 
and 

{Qk-lj Qk] = {Ek-l,Ek}, 

and for which (2.1) is satisfied. This completes the proof of the necessity part 
of the theorem. 

Conversely, if one of the four labellings (2.2) of the events of 5 is a labelling 
for which (2.1) is satisfied, then by definition S satisfies the Four Point Con
dition. This completes the proof of Theorem 1. 

5. Proof of Theorem 2. Let 1 < a < b < c < d < k. 
Since Et Ç F(Et_i) for t = 2, 3, . . . , k, the events Ei, £2 , . . . , Ek constitute 

a time-ordered, i.e. t\ < ti < . . . < tk, timelike distribution of events in Ln. 
Thus, by (3.1), 

(5.1) s(EaEb) + s(EcEd) < s(EaEc) + s(EbEd). 

We now show that 

(5.2) if 1 < a < b < c < k, then R{Ea, Eb; Ec+1) C R(Ea, Eb; Ec). 

This is proved by noting that, if E G R(Ea, Eb; Ec+i), then 

E 6 F(EC+1) C F(EC) 
and 

s(EaEc+1) - s(EbEc+1) < s(EaE) - s{EbE). 

Since, by hypothesis, Ec+i G R{Ea, Eb; Ec), we have 

s{EaEc) - s(EbEc) < s(EaEc+1) - s(EbEc+1). 

Therefore, E G R(Ea, Eb; Ec). 
Now by hypothesis, Ed G R(Ea, Eb\ Ed_i) for 1 < a < b < d — 1 < k. By 

(5.2) we have 

R(Ea, Eb; Ed_x) CR(Ea,Eb;Ec) for c = b + 1, b + 2, . . . , d - 1. 

Thus, 

Ed 6 R(Eaj Eb]Ec) (l<a<b<c<d< k). 

Therefore, 

s(EaEc) - s(EbEc) < s(EaEd) - s(EbEd) 
or 

(5.3) s{EaEc) + s{EbEd) < s(EaEd) + s(EbEc). 
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The inequalities (5.1) and (5.3) taken together show that the events 
Ei, E2} • . . , Ek satisfy (2.1). This completes the proof of Theorem 2. 

6. Proof of Theorem 3. The proof of (1, Theorem I) does not depend on 
its Euclidean setting and it can be shown directly that it is valid for timelike 
distributions in Ln (n > 2) and polygonal connections. We shall now show 
that any set of events satisfying the hypothesis of Theorem 3 of this paper also 
satisfies the system of inequalities (with d replaced by s) in the hypothesis 
of (1, Theorem I) . 

Since Et 6 F(Et-i) for t = 2, 3, . . . , k, the events Eh E2, • • • , Ek con
stitute a time-ordered timelike distribution of events in Ln. Thus, by (3.1), 

(6.1) s(E1E2) +s(EtEj) KsiExEt) + s(E2Ej) 

for all (i, j ) (i = 3, . . . , k; j = 3, . . . , k; i ^ j) and 

(6.2) s(Eh Eh+2) + s(Et Ej) < s(Eh Et) + s(Eh+2 E,) 

where h assumes the values 1, 2, . . . , k — 3 and for each h (6.2) holds for 
all pairs (i, j) of the set {h + 3, h + 4, . . . , k) (i ^ j). 

We now show that 

(s(E1Ez) + s(EtE2) < 5 ( £ i £ 0 + s(E2Ez) (i = 4, 5, . . . , k), 
(6.3) )s{E2Et)+s(EtEz) < s(E2Et) + s(EtEA) (i = 5, 6, . . . , k), 

\s(EzEs) + . . . , 

where the sequence of inequalities (6.3) is extended until the set of integers 
over which i ranges becomes void. 

The inequalities (6.3) hold if 

s(EhEh+2) - s(En+1Eh+2) < s(EhEi) - s(Eh+1Ei) 

for i = h + 3, h + 4, . . . , k and h = 1, 2, . . . , k — 3. Now, if 

E G R(Eh, Eh+i\ Eh+2), 

then E satisfies 

s(EhEh+2) - s(Eh+1Eh+2) < s(EhE) — s(Eh+1E). 

By hypothesis {Eh+Z, Eh+i, . . . , Eh) C R(Eh, Eh+1; Eh+2) for h = 1, 2, . . . , 
k — 3. Thus, (6.3) is true. 

The inequalities (6.1), (6.2), and (6.3) taken together imply that the events 
Ei, E2, . . . , Ek satisfy the system of inequalities in the statement of (1, 
Theorem I) . 

7. Proof of Lemma 1. Let S = {Ei, E2f . . . , Ek) (k > 4) denote a set 
of events satisfying the hypothesis of the lemma. Then, the events of S are 
cyclically labelled with respect to the boundary B of their convex hull if and 

https://doi.org/10.4153/CJM-1966-069-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-069-1


EXTREMA IN SPACE-TIME 685 

only if B coincides with the polygonal connection [E\ E2. . . Ek], If B does 
not coincide with [E\ E%. . . Ek], then there exist four non-collinear events 
Ea, Eb, Ec, and Ed in S with a < b < c < d> for which the labelling is not cyclic 
with respect to B. We now show that this is impossible. 

If ta = min{/a, tb, tc, td}, then, by (3.4), /& = min{/6, tc, td}. From the triangle 
inequality in L2 it follows directly that among the three pairs of non-adjacent 
rectilinear connections of the complete quadrilateral defined by a timelike 
distribution of four events that fall on the boundary of their convex hull, the 
diagonals have intermediate time separation. This fact together with the hypo
thesis that the events Ea, Eb, Ec, and Ed satisfy (2.1) implies that Ea Ec and 
EbEd are the diagonals. Therefore, a labelling that satisfies (2.1) is uniquely 
determined once the event with the minimal ^-co-ordinate is labelled. Clearly, 
this labelling is cyclic with respect to the boundary of the convex hull of the 
given four events and consequently with respect to B. 

By considering the cases where tb, tc, and td are respectively equal to 
min{£a, tb, tc, td) and repeating the above argument, we arrive at the same con
clusion in each case. This completes the proof of Lemma 1. 

Proof of (3.3). Let four events Ea, Ebj EC1 and Ed {ta < tb < tc < td) con
stitute a set of events in L2 that fall on a strictly convex world-line and let Ee 

denote any event on the rectilinear connection Eb Ed. We now show that no 
labelling of these five events satisfies (2.1). 

By Lemma 1, if four non-collinear events of a timelike distribution of events 
in L2 fall on the boundary of their convex hull, any labelling that satisfies (2.1) 
must be cyclic with respect to their convex hull. Consider now the sets: 

Ed], {Ea, Eb1 Ee, Ed}, and {Eb, Ee, Ec, Ed\. 

Each of these sets has the property that its events fall on the boundary of their 
convex hull. Thus, if the five events are to be labelled so as to satisfy (2.1), the 
labelling must be cyclic with respect to each boundary of these convex hulls. 
However, it is directly verified that such a labelling cannot exist. 

8. Proof of Theorem 4. (i) Necessity. Let the given k events satisfy the 
Four Point Condition. If k = 4, 5, or if all the given events other than P and S 
lie in the same component of B — {P, S], then the assertion of the theorem is 
valid. Thus, we assume that k > 6 and B — \P, S} consists of two components 
B\ and B2, each of which contains at least one event of the given set of events. 

Let Piy P2, . . . , PJC denote a labelling of the given events P , Q, Es, . . . , 
JEA;_2, R, S (tp < tg < h < . . . < 4-2 < tT < ts) such that (2.1) is satisfied 
and (by Theorem 1) 

{PUP2} = {P,Q}, 

Pi = Et (i = 3, 4, . . . , k - 2), 
and 

{P*-i, iM = {R,S}-
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Assume that P3 , P4, • • • » Pjt-2 is not entirely contained in the same com
ponent of B — {P, S}. Then there are two events P& and Pc with 

3<b<c<k-2 

such that Ph and Pc lie in separate components of B — {P, S\. Then the 
events P , P6 , P c , and 5 lie on the boundary of their convex hull, but are not 
cyclically labelled with respect to the boundary of the convex hull. This is a 
contradiction of Lemma 1. Thus, {P3, P4, . . . , PK-I} is contained in the same 
component of B — {P, S). 

(ii) Sufficiency. Let 

t\ < t<L < tz < t\ < . . . < tjc-2 < ^ - 1 < ^ 

denote the ^-co-ordinates of the given £ events 

(8.1) P , Q, £3, £4, . . . , £,-2, P , 5. 

If the events Q, P3 , P4, . . • , P^-2, P all lie in the same component of 
B - {P, 5}, then let the events (8.1) be relabelled 

£ l , £2 , P3 , £4, . • . , Pfc-2, Pfc-1, Pfc 

respectively. Now, i f l < a < £ < c < d < & , we have by (3.1) 

s(EaEb) + s(EcEd) < s(EaEc) + s(EbEd). 

Since the events (8.1) lie on a convex world-line in L2, it follows from the 
triangle inequality that 

s(EaEc) + s(EbEd) < s(EaEd) + s(EbEc). 

Thus, in the case just considered, the events (8.1) can be labelled so as to 
satisfy (2.1). 

Let B - {P, S} = Bi\J B2, P i H P 2 = 0, where Bx is the component 
containing the lesser number of events from (8.1). There are three cases to 
consider: (i) Q G P i a n d P <2 Pi , (ii) Q g P i and P Ç Pi , and (iii) {Q, R\ C P i . 
If the events (8.1) are relabelled in case (i) 

P2 , Ei} P3 , P4 , . . . , Pfc-2, Pfc-i> Ek, 
in case (ii) 

Pi , P2 , P3 , P4, . . . , Pfc-2, Ek, Ek-i, 

and in case (iii) 

P2 , Pi , P3 , P4, • • • , Pfc-2, P&, Pfc-l» 

then it is verified directly that in each case the events (8.1) have been labelled 
so as to satisfy (2.1). This completes the proof of Theorem 4. 

A six-point condition. The proof of the necessity part of Theorem 4 contains 
the following assertion: 
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Let S denote a set of events in Ln (n > 2) such that S contains a timelike 
distribution 

S' = {Eh £2 , . . . , E*} (h < h < . . . < h) 

which lies in a plane and for which the sets {E2, E±] and {£3, £5} lie in opposite 
half-planes determined by the line through E\ and E&. Then S' cannot be labelled 
so as to satisfy (2.1) and consequently S does not satisfy the Four Point Condition. 

9. Proof of Theorem 5. With respect to the hypothesis of Theorem 5 we 
note the following: 
(9.1) 5 = {(0,0), (1,1), (0,2), (1,3)} is zero separated but is not the 
vertex set of a zero polygonal connection. 
(9.2) The events 

P i : (0,0), P 2 : ( l , 1), E , : ( 0 , 2 ) , P 4 : ( - l , 1), 

£ 5 : (1,2), P 6 : (2,3), E7: (1,4), P 8 : (0,3) 

form a set S such that for each i = 1, 2, . . . , 8, C{Et) C\ S contains exactly 
three events, but S is not the vertex set of a zero polygonal connection. 
(9.3) 5 = {(0, 0), (1, 1), (2, 2), (1, 3), ( - 1 , 1)} is the vertex set of exactly 
one zero polygonal connection and C((0, 0)) C\ S contains four events. Thus, 
the conditions given in Theorem 5 are sufficient but not necessary for the 
existence of a unique zero polygonal connection. 

By a light-line we mean a rectilinear world-line having the property that any 
two events on this line have zero time separation. 
(9.4) The hypothesis of Theorem 5 implies that no three events of S lie on 
the same light-line. 

Proof of (9.4). Assume that Pi , P2, and P 3 are three events of 5 that lie on 
the same light-line. Then, {Pi, P2, P%] is contained in C(Pj) P\ 5 (J = 1, 2, 3). 
Let E £ 5 — {Pi, P2, P3}. Since 5 is zero separated, there is a polygonal path 
with end points P i and E consisting of rectilinear connections of 5, each having 
time separation equal to zero. Let P'E' be a rectilinear connection in this path 
such that 

P' £ {Pi, P2, Pz) and E' £S- {Pi, P2 , P 3 }. 

Then, {Pi, P2, P3, E'} is contained in C(P') C\S. But, this contradicts the 
assumption that C(Pf) C\ S contains exactly three events. 

Before proving Theorem 5 we shall prove the following lemma and corollary. 

LEMMA 2. Let S = {Pi, E2, . . . , E^} (k > 4) denote a set of events in Ln 

(n > 2). Then 

{Ek} Pi , E2} C C(Pi) and 

{E<-i, Eu Ei+1] C C(Et) (i = 2, 3, . . . , k - 1) 

if and only if [E1E2. . . E}c] is a zero polygonal connection of S. 
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Proof. (9.5) implies that EkEi and EiEi+i (i = 1, 2, . . . , k — 1) each 
have time separation equal to zero. Hence, [Ei £ 2 . . . Ek] is a zero polygonal 
connection of S. 

Conversely, if [Ei £ 2 . . . £A] is a zero polygonal connection of 5, then 

{£*, £ i , E2} C C(£i) and {£*_i, £ „ E,+1} C C(E,) 

(* = 2, 3, . . . , k - 1). 

COROLLARY. If 

{Ek, Ei, E2} = C(Ei) H 5 and 
(9.6) 

{£,_!, £ „ £ m } = C(£,) H 5 (* = 2, 3, . . . , k - 1), 

then [E\ E 2 . . . Ek] is the unique zero polygonal connection of S. 

Proof. By Lemma 2, h = [Ei E 2 . . . £*] is a zero polygonal connection. Let 
h1 = [Pi Pi. . . Pfcl denote any zero polygonal connection of S. H h 9e h', then 
there exists a vertex E;- = Pm such that E ;_i Ey £ ; + i ^ Pw_i P w Pw+i (sub
scripts reduced modulo k). Since each of the rectilinear connections Ej^iEjf 

Ej Ej+i, Pm-i Pmi and Pm Pm+i have time separation equal to zero, the set 

U = {E^-i, Ej, EJ+i} \J {Pm_i, Pm+i) 

is contained in C{Ej) = C(Pm). Since U contains at least four events, this is a 
contradiction of (9.6). Hence h is unique. 

Proof of Theorem 5. Let P i = £ i , 

c(Pi) r\s= {p„ Pi, p2}, c(pm) ns= \pm^ pm, pm+1} 
(2 < m < k - 1). 

We note first that Pz ^ Pk; for P 3 = Pk would imply that [Pi P 2 P3] has 
clock time equal to zero. But this is impossible for any three non-collinear 
events. Now, let m be the least integer of {3,4,. . . , k — 1} such that Pm+i = Pj 
with Pj Ç {P^ P i , P 2 , . . . , P™_2}. We shall show that m = k — 1 and 
P^ = Pk. For if we assume that Pm+i = Pj and m < k — 1, then 

O {P;> Pj+h • • • > Pm} 

(subscripts reduced modulo &) is not empty and [P^P^+i. . . Pm] is a zero 
polygonal connection. Since 5 is zero separated, there exists a polygonal path 
$ consisting of rectilinear connections of 5 each having time separation equal 
to zero, such that $ has its initial point in S — {Pj, P ;+i, . . . , Pm} and its 
terminal point a vertex of [ P ; P ; + i . . . Pm]. Then, as in the proof of (9.4), it 
follows that there exists a vertex of [P^P^+i. . . Pm] whose light-cone inter
sected with S contains at least four events. Thus, if Pm+i = Pj we must have 
m = k — 1, i.e., when m = k — 1, P m + i is an event that has already been 
labelled. By the same method as above we see that this event must be Pk} i.e., 
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Pj = Pk. Consequently, the events Ph P2, . . . , Pk are distinct and satisfy 
the hypothesis (9.6). Therefore, [P\P2. . . Pk] is the unique zero polygonal 
connection of S. 

10. A class of curves in Ln (n > 2). Theorem 4 contains the result that, 
if k events fall on a convex timelike arc in Z,2, then these events satisfy the 
Four Point Condition. The following generalizes this to a class of curves in Ln 

(n > 2). 

(10.1) Let y denote the curve in Ln (n > 2) defined by 

| V = yj(u) (j = 1, 2, . . . , n - 1), 
7 ^ \t = 7nW dyjdu > 0. 

Let 0 < U\ < u2 < . . . < Ujc denote k values of the parameter u, Et = y(ut) 
(i = 1, 2, . . . , k), and s(y(x)y(y)) = h(x, y). 

If h(x, y) is a differentiate function defined onO < x < y such that 

dh dh d2h 
T- < 0, — > 0, and -r-— < 0, 
dx dy dxdy 

then the events Eu E2, . . . , Ek satisfy (2.1). 
Proof. Since dyjdu > 0, the events Et = y(ut) (i = 1, 2, . . . , k) are 

distinct and are ordered by their corresponding parameter values ut. The 
inequalities l < a < 6 < c < d < & imply ua < ub < uc < ud. Then, a 
straightforward argument using the Law of the Mean yields 

h(uai ub) + h(uc, ud) < h(ua, uc) + h(ub, ud) < h(ua, ud) + h(ub9 uc), 

which when written in terms of the separation function 5 is precisely (2.1). 

A realization of (10.1). Let y denote the curve in Z,4 defined by yi(u) = cos u, 
yz(u) = sin u, yz(u) = sinh u, and y±(u) = cosh u (u > 0). Then y satisfies 
the hypothesis of (10.1). 

Proof, dyt/du = sinh u > 0 when u > 0, 

s(y(x)y(y)) — h(x,y) = V^tcoshfy — x) — cos(y — x)], 

which upon differentiation yields 

-— = —[sinh(y — x) + sin(y — x)]h(x, y)~x < 0, when 0 < x < y, 
ox 

— = [sinh(y — x) + sin(y — x)]h(x, y)"1 > 0, when 0 < x < y, 
dy 

and 

— = — h(x, y)[cosh(y — x) + cos(y — x)] 
oy L dxdy 

which is negative whenever 0 < x < y. 

+ [sinh(y - x) + sin(y - x)] ^ J ^ ( ^ J j) 2» 
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11. Open questions. We conclude by listing some open problems in the 
development of the preceding investigations. 

1. What are extreme polygonal connections of a timelike distribution of k 
events in L2 that fall on the boundary of their convex hull? 

2. Describe the class of all timelike distributions of events in L2 (then in Ln 

(n > 2)) that satisfy the Four Point Condition. 
3. Establish criteria which if satisfied by a set of events offer a prespecified 

ordering for an extreme polygonal connection (as exemplified by the convex 
case in the Euclidean plane (2; 3; 4), the Four Point Condition (1, Theorem 
III and §6; Basic Lemma §2 this paper), the realization of Theorem I (1, §5), 
and Theorems 3 and 5 of this paper). 

Appendix. Record spaces. In this section we formalize more precisely 
(and more naively) the concept expressed in the first paragraph of §1. Let R 
denote a set, / a closed interval of real numbers a < r < by and for each 
r G / l e t RT denote the set of ordered triplets (r, tr, r ) , where r G R and tr is a 
real number dependent on r. We call the set 9ï = \JRT{r G / ) a record space 
and RT the record at the time r. A function O defined on a closed subset Dom O 
of i" such that O(r) G RT we call an observation function. The set 

r ( O ) = {O(r) : r G DomOI 

will be called an observation track and is said to be generated as r ranges in
creasingly over Dom £). 

If (r, tri T0) is a point in RT0 and r0 < ri, then the point (r, tr, n ) G RTl is 
called the projection of (r, /r, r0) onto PT1. For each value n G / , let all the 
points D ( T ) (T G Dom D, r < n ) of an observation track be projected onto 
RT1. The resultant point set is called the cumulative track at the time n . The 
generation of the cumulative track as r ranges increasingly over Dom O 
induces a linear ordering on its points and hence a linear ordering on the 
complete cumulative track in Rd, where d is the greatest element in Dom £). 
(There are numerous examples of record spaces. A file of letters ordered by 
their dates corresponds to an RT at a given time r and a set of letters selected 
from this file in linear order with respect to r corresponds to an observation 
track. Similarly, a geologist analysing strata, a genealogist considering ancestral 
ordering, a palaeontologist studying evolutionary patterns, or a psycho
therapist interpreting memory tracks can each be considered in a record space 
context.) 

Now, let 9Î be the set of triplets ((x1, . . . , xn~1
1 t),t,r) where (x1,. . . ,xn~1

ft) 
belongs to Ln (n > 2), and r G I, a closed interval. Then for each r G I, RT 

can be thought of as Ln ordered by the /-co-ordinates of its elements. Let the 
w-flat t — 0 have the structure of ^-dimensional space-time and be construed 
as the space of an observer's world-line. In what follows, the domain of the 
observation function D will be equal to / = { r : a < r < 6 } . Consider now 
the following situation of * 'restricted observation." Let Pi , P2 , . . . , Pic be k 
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points that are fixed in the moving n-flat RT as r ranges from a to b. We wish a 
cumulative track, as it is generated in RT, to pass through these k points. The 
ordering of these points in the track will depend on the discretion of the 
observer, i.e., on the observation function. This immediately gives rise to 
a set of possible "states" corresponding to the different ways in which cumula
tive tracks can be routed through these points. Questions may now be posed 
as to which state is "best" or "extreme" in accordance with some specified 
point of view. The results of this paper can thus be interpreted as extremum 
properties of complete cumulative tracks that are polygonal connections. 
Since we were concerned only with complete cumulative tracks we were able 
to restrict our attention to the n-flat Rb, or equivalently, to n-dimensional 
space-time Ln. 
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