EXTREMA IN SPACE-TIME

LOUIS V. QUINTAS AND FRED SUPNICK

1. Introduction. Consider an astronomer and his observation field, i. e., the set of observable (light or radio) signal-emitting loci of the universe. Let the observation field be ordered by attaching a date to each observable locus indicating the time in the history of the universe that the signal was emitted from its source. Whereas both the astronomer and his observation field age with time, the observations of the astronomer may trace a sequence of loci whose time labels proceed forward or backward in time (cf. Appendix).

Consider now a finite set S of events in L^{n}, n-dimensional space-time (Riemannian n-space having the fundamental form

$$
\left.\Phi=\left(d x^{1}\right)^{2}+\ldots+\left(d x^{n-1}\right)^{2}-(d t)^{2}, \quad n \geqslant 2\right) .
$$

A rectilinear world-line segment with end points in S will be called a rectilinear connection in S, and a set of rectilinear connections that form a polygon with vertex set S a polygonal connection of S. The clock time of a polygonal connection is defined to be the sum of all the time separations of its rectilinear connections. (The time separation of a rectilinear connection with end points

$$
E_{u}:\left(x_{u}{ }^{1}, \ldots, x_{u}{ }^{n-1}, t_{u}\right) \quad \text { and } \quad E_{v}:\left(x_{v}{ }^{1}, \ldots, x_{v}{ }^{n-1}, t_{v}\right)
$$

is equal to

$$
\sqrt{\left(t_{v}-t_{u}\right)^{2}-\sum_{i=1}^{n-1}\left(x_{v}{ }^{i}-x_{u}{ }^{i}\right)^{2}}
$$

and will be denoted by $s\left(E_{u} E_{v}\right)$.) A polygonal connection having either the least or the greatest clock time of all possible "circuit states," i.e., all possible polygonal connections of S, will be called extreme with respect to S. In this paper criteria are established, which, if satisfied by a set S of events in L^{n}, enable one to obtain extreme polygonal connections of S immediately.
2. Summary of results. A set S of events is called a timelike distribution if each event of S is in the interior of the time cone of every other event in S.

A timelike distribution S in $L^{n}(n \geqslant 2)$ is said to satisfy the Four Point Condition if the events of S can be labelled $P_{1}, P_{2}, \ldots, P_{k}$ so as to satisfy the following condition:

$$
\left\{\begin{array}{l}
\text { For all sets of integers }\{a, b, c, d\} \text { such that } \tag{2.1}\\
\text { it follows that } \quad 1 \leqslant a<b<c<d \leqslant k \\
s\left(P_{a} P_{b}\right)+s\left(P_{c} P_{d}\right) \leqslant s\left(P_{a} P_{c}\right)+s\left(P_{b} P_{d}\right) \leqslant s\left(P_{a} P_{d}\right)+s\left(P_{b} P_{c}\right) .
\end{array}\right.
$$

Received April 6, 1965.

Basic Lemma. If a timelike distribution S of k events in $L^{n}(n \geqslant 2)$ satisfies the Four Point Condition, then the polygonal connections

$$
\left[\ldots P_{7} P_{5} P_{3} P_{1} P_{2} P_{4} P_{6} \ldots\right]
$$

and

$$
\left[\ldots P_{k-5} P_{5} P_{k-3} P_{3} P_{k-1} P_{1} P_{k} P_{2} P_{k-2} P_{4} P_{k-4} P_{6} \ldots\right]
$$

have respectively the least and the greatest clock time of the set of all possible polygonal connections of S.

The proof of this lemma is identical with that of (1, Theorem III). The latter was proved in a Euclidean setting, but it is verified directly that this is not necessary.

In 1964, Lerman obtained the result (unpublished) that, if a set of k noncollinear points in the Euclidean plane satisfies the Four Point Condition, i.e., the hypothesis of (1 , Theorem III), then $k \leqslant 8$. This is contrasted with the fact that in L^{2}, for any $k \geqslant 4$, it is possible to select k non-collinear events and label them so as to satisfy (2.1), e.g., any k events lying on a convex timelike arc (in L^{2}) can be so labelled (cf. Theorem 4 below). Higher-dimensional curves having this property are constructed in §10. A still wider class of event distributions in $L^{n}(n \geqslant 2)$ satisfying the Four Point Condition is given in Theorem 2 below.

Our first theorem consists of a necessary and sufficient condition that a timelike distribution satisfy the Four Point Condition.
Theorem 1. Let

$$
S=\left\{E_{1}, E_{2}, \ldots, E_{k}\right\} \quad\left(t_{1}<t_{2}<\ldots<t_{k} ; k \geqslant 4\right)
$$

denote a timelike distribution in $L^{n}(n \geqslant 2)$. Then S satisfies the Four Point Condition if and only if at least one of the following four labellings of S

$$
\left\{\begin{array}{c}
\left\{P_{1}, P_{2}\right\}=\left\{E_{1}, E_{2}\right\}, \tag{2.2}\\
P_{i}=E_{i} \quad(i=3,4, \ldots, k-2), \\
\text { and } \quad\left\{P_{k-1}, P_{k}\right\}=\left\{E_{k-1}, E_{k}\right\}
\end{array}\right.
$$

is a labelling for which (2.1) is satisfied; cf. §4.
Remark. Since there are only four labellings to check, Theorem 1 yields an effective computational method for determining whether or not a timelike distribution in $L^{n}(n \geqslant 2)$ satisfies the Four Point Condition.

Let U, V, and W denote three events in $L^{n}(n \geqslant 2), F(W)$ the interior of the future time cone of W, and

$$
R(U, V ; W)=\{E \in F(W): s(U W)-s(V W) \leqslant s(U E)-s(V E)\}
$$

Theorem 2. Let $S=\left\{E_{1}, E_{2}, \ldots, E_{k}\right\}(k \geqslant 4)$ denote a set of events in L^{n} ($n \geqslant 2$) such that for $t=2,3$,

$$
E_{t} \in F\left(E_{t-1}\right)
$$

and for $t=4,5, \ldots, k$,

$$
E_{t} \in \cap R\left(E_{i}, E_{j} ; E_{t-1}\right) \quad(1 \leqslant i<j<t-1)
$$

then S is a timelike distribution satisfying the Four Point Condition; cf. §5.
In the next theorem we define a class of event distributions which includes the class of event distributions given in Theorem 2; cf. (5.2). For each S in this class we are able to determine a minimal polygonal connection.

Theorem 3. Let $S=\left\{E_{1}, E_{2}, \ldots, E_{k}\right\}(k \geqslant 4)$ denote a set of events in L^{n} $(n \geqslant 2)$ such that for $t=2,3$,

$$
E_{t} \in F\left(E_{t-1}\right)
$$

and for $t=4,5, \ldots, k$,

$$
E_{t} \in \cap R\left(E_{i-3}, E_{i-2} ; E_{i-1}\right) \quad(i=4,5, \ldots, t) ;
$$

then [... $E_{7} E_{5} E_{3} E_{1} E_{2} E_{4} E_{6} \ldots$] has the least clock time of the set of all possible polygonal connections of S; cf. $\S 6$.

The following lemma and Theorem 4 below state some geometric properties of event distributions in L^{2} that satisfy the Four Point Condition.

Lemma 1. If the events of a non-collinear timelike distribution of events in L^{2} fall on the boundary B of their convex hull and are labelled so as to satisfy (2.1), then the labelling must be cyclic with respect to B; cf. §7.

Theorem 4. Let k events $(k \geqslant 4)$ of a timelike distribution of events in L^{2} fall on the boundary B of their convex hull. Let P, Q, R, and S denote the events with the minimal, next to minimal, next to maximal, and maximal t-co-ordinates respectively. Then, the k events satisfy the Four Point Condition if and only if $B-\{P, S\}$ consists of one component or one of its two components contains at most two events from among the k given events and if an event is in this component, then that event is either Q or R; cf. §8.

A feature of L^{n} is the existence of rectilinear connections having time separation equal to zero (world-lines of photons). This gives rise to the consideration of a special class of minimal polygonal connections, namely those with clock time equal to zero. We call these zero polygonal connections. An event distribution S is said to be zero separated if each pair of events in S constitutes the end points of a polygonal path consisting of rectilinear connections of S each of which has time separation equal to zero.

Remark. The vertex set of a zero polygonal connection is zero separated, but not conversely; cf. (9.1).

Let $C(E)$ denote the light cone centred at E, i.e., the boundary of the time cone of the event E.

Theorem 5. Let $S=\left\{E_{1}, E_{2}, \ldots, E_{k}\right\}(k \geqslant 4)$ denote a set of events in L^{n} $(n \geqslant 2)$ which is zero separated and such that for each $i=1,2, \ldots, k$, the set $C\left(E_{i}\right) \cap S$ contains exactly three events; then S is the vertex set of a unique zero polygonal connection; cf. §9.

Remark. It is possible for a set $S=\left\{E_{1}, E_{2}, \ldots, E_{k}\right\}$ to have the property that for each $i=1,2, \ldots, k, C\left(E_{i}\right) \cap S$ contains exactly three events and yet not be the vertex set of a zero polygonal connection; cf. (9.2).

We conclude by formulating some open questions; cf. §11.

3. Some lemmas. Properties of sets in $L^{n}(n \geqslant 2)$ that satisfy the Four Point Condition.

(3.1) If E_{a}, E_{b}, E_{x}, and E_{y} denote four events of a timelike distribution of events in $L^{n}(n \geqslant 2)$ such that $t_{a}<t_{b}<t_{x}<t_{y}$, then

$$
s\left(E_{a} E_{b}\right)+s\left(E_{x} E_{y}\right)<\left\{\begin{array}{l}
s\left(E_{a} E_{x}\right)+s\left(E_{b} E_{y}\right), \\
s\left(E_{a} E_{y}\right)+s\left(E_{b} E_{x}\right) .
\end{array}\right.
$$

Proof. By the triangle inequality in $L^{n}, s\left(E_{a} E_{b}\right)<s\left(E_{a} E_{x}\right)$ and $s\left(E_{x} E_{y}\right)<s\left(E_{b} E_{y}\right)$. Thus,

$$
s\left(E_{a} E_{b}\right)+s\left(E_{x} E_{y}\right)<s\left(E_{a} E_{x}\right)+s\left(E_{b} E_{y}\right)
$$

Since

$$
s\left(E_{a} E_{b}\right)+s\left(E_{x} E_{y}\right)<s\left(E_{a} E_{x}\right)+s\left(E_{x} E_{y}\right)
$$

and by the triangle inequality we have $s\left(E_{a} E_{x}\right)+s\left(E_{x} E_{y}\right) \leqslant s\left(E_{a} E_{y}\right)$, it follows that

$$
s\left(E_{a} E_{b}\right)+s\left(E_{x} E_{y}\right)<s\left(E_{a} E_{y}\right)+s\left(E_{b} E_{x}\right)
$$

(3.2) Any set of four events of a timelike distribution in $L^{n}(n \geqslant 2)$ satisfies the Four Point Condition.

Proof. Let the events be labelled as in (3.1). If

$$
s\left(E_{a} E_{x}\right)+s\left(E_{b} E_{y}\right) \leqslant s\left(E_{a} E_{y}\right)+s\left(E_{b} E_{x}\right)
$$

then if E_{x} and E_{y} are relabelled E_{c} and E_{d} respectively, the four events will satisfy (2.1). If

$$
s\left(E_{a} E_{x}\right)+s\left(E_{b} E_{y}\right)>s\left(E_{a} E_{y}\right)+s\left(E_{b} E_{x}\right)
$$

then relabel E_{x} and E_{y}, E_{d} and E_{c} respectively.
(3.3) There exist timelike distributions S of five events in L^{2} for which the events of S cannot be labelled so as to satisfy (2.1).

Proof. Cf. §7; also see the six-point condition given at the end of $\S 8$.
(3.4) Let E_{a}, E_{b}, E_{c}, and $E_{d}(a<b<c<d)$ denote four events of a timelike distribution of events in $L^{n}(n \geqslant 2)$ labelled so as to satisfy (2.1). If t_{a}, t_{b}, t_{c}, and
t_{d} denote the t-co-ordinates of these events, then the two intervals defined by $\left\{t_{a}, t_{b}\right\}$ and $\left\{t_{c}, t_{d}\right\}$ do not have any points in common.

Proof. Let

$$
t_{\alpha}=\min \left\{t_{a}, t_{b}, t_{c}, t_{d}\right\}, \quad t_{\beta}=\min \left[\left\{t_{a}, t_{b}, t_{c}, t_{d}\right\}-\left\{t_{\alpha}\right\}\right],
$$

and

$$
\left\{t_{x}, t_{y}\right\}=\left\{t_{a}, t_{b}, t_{c}, t_{d}\right\}-\left\{t_{\alpha}, t_{\beta}\right\}
$$

Then by (3.1), $s\left(E_{\alpha} E_{\beta}\right)+s\left(E_{x} E_{y}\right)$ is strictly less than both

$$
s\left(E_{\alpha} E_{x}\right)+s\left(E_{\beta} E_{y}\right) \quad \text { and } \quad s\left(E_{\alpha} E_{y}\right)+s\left(E_{\beta} E_{x}\right)
$$

where $E_{\alpha}, E_{\beta}, E_{x}$, and E_{y} are the events corresponding to $t_{\alpha}, t_{\beta}, t_{x}$, and t_{y} respectively. Since under the present hypothesis, the events E_{a}, E_{b}, E_{c}, and E_{d} are labelled so as to satisfy (2.1), it is necessary that either $\left\{t_{\alpha}, t_{\beta}\right\}=\left\{t_{a}, t_{b}\right\}$ or $\left\{t_{\alpha}, t_{\beta}\right\}=\left\{t_{c}, t_{d}\right\}$. However, this condition is realized if and only if the two intervals defined by $\left\{t_{a}, t_{b}\right\}$ and $\left\{t_{c}, t_{d}\right\}$ do not have any points in common. Thus, (3.4) is proved.
(3.5) If $P_{1}, P_{2}, \ldots, P_{k}$ is a timelike distribution of events in $L^{n}(n \geqslant 2)$ labelled so as to satisfy (2.1), then the relabelling $Q_{i}=P_{k-i+1}(i=1,2, \ldots k)$ of these events also satisfies (2.1).

Proof. This assertion is proved by noting that, (i) if $1 \leqslant a<b<c<d \leqslant k$, then

$$
1 \leqslant k-d+1<k-c+1<k-b+1<k-a+1 \leqslant k
$$

and (ii) $s\left(P_{k-x+1} P_{k-y+1}\right)=s\left(Q_{x} Q_{y}\right)$.
4. Proof of Theorem 1. Let S satisfy the Four Point Condition and $P_{1}, P_{2}, \ldots, P_{k}$ be a labelling of the events of S for which (2.1) is satisfied.

We first show that $P_{1} \in\left\{E_{1}, E_{2}, E_{k-1}, E_{k}\right\}$. If $P_{1} \notin\left\{E_{1}, E_{2}, E_{k-1}, E_{k}\right\}$, then by (3.4) we have $P_{2} \notin\left\{E_{1}, E_{k}\right\}$. Since $s\left(P_{1} P_{2}\right)+s\left(E_{1} E_{k}\right)$ is not less than both $s\left(P_{1} E_{1}\right)+s\left(P_{2} E_{k}\right)$ and $s\left(P_{1} E_{k}\right)+s\left(P_{2} E_{1}\right)$ (cf. (3.1)), no labelling of E_{1} and E_{k} exists such that (2.1) is satisfied. Thus, $P_{1} \in\left\{E_{1}, E_{2}, E_{k-1}, E_{k}\right\}$.

By (3.4), P_{1} and P_{2} must have t-co-ordinates that are not separated by any t-co-ordinate of any member of S. Thus, if $P_{1}=E_{1}$ or $P_{1}=E_{k}$, then $P_{2}=E_{2}$ or $P_{2}=E_{k-1}$ respectively. If $P_{1}=E_{2}$ and $P_{2}=E_{3}$, then $\left\{P_{1}, P_{2}, E_{1}, E_{k}\right\}$ would not satisfy (2.1), since $s\left(P_{1} P_{2}\right)+s\left(E_{1} E_{k}\right)$ is not minimal. Similarly, if $P_{1}=E_{k-1}$ and $P_{2}=E_{k-2}$, then $\left\{P_{1}, P_{2}, E_{1}, E_{k}\right\}$ would not satisfy (2.1). Thus, we have shown that $\left\{P_{1}, P_{2}\right\}=\left\{E_{1}, E_{2}\right\}$ or $\left\{P_{1}, P_{2}\right\}=\left\{E_{k-1}, E_{k}\right\}$.

Applying (3.4) again we see that, if $\left\{P_{1}, P_{2}\right\}=\left\{E_{1}, E_{2}\right\}$, then $P_{i}=E_{i}$ ($i=3,4, \ldots, k-2$) and since only P_{k-1} and P_{k} remain, we must have $\left\{P_{k-1}, P_{k}\right\}=\left\{E_{k-1}, E_{k}\right\}$. Similarly, if $\left\{P_{1}, P_{2}\right\}=\left\{E_{k-1}, E_{k}\right\}$, then $P_{i}=E_{k-i+1}$ $(i=3,4, \ldots, k-2)$ and $\left\{P_{k-1}, P_{k}\right\}=\left\{E_{1}, E_{2}\right\}$. Thus, either we have (2.2)
and we are finished, or we have the case of the preceding sentence. In the latter case, applying (3.5) we obtain a labelling $Q_{1}, Q_{2}, \ldots, Q_{k}$ of the events of S such that

$$
\begin{gathered}
\left\{Q_{1}, Q_{2}\right\}=\left\{E_{1}, E_{2}\right\} \\
Q_{i}=E_{i} \quad(i=3,4, \ldots, k-2)
\end{gathered}
$$

and

$$
\left\{Q_{k-1}, Q_{k}\right\}=\left\{E_{k-1}, E_{k}\right\}
$$

and for which (2.1) is satisfied. This completes the proof of the necessity part of the theorem.

Conversely, if one of the four labellings (2.2) of the events of S is a labelling for which (2.1) is satisfied, then by definition S satisfies the Four Point Condition. This completes the proof of Theorem 1.
5. Proof of Theorem 2. Let $1 \leqslant a<b<c<d \leqslant k$.

Since $E_{t} \in F\left(E_{t-1}\right)$ for $t=2,3, \ldots, k$, the events $E_{1}, E_{2}, \ldots, E_{k}$ constitute a time-ordered, i.e. $t_{1}<t_{2}<\ldots<t_{k}$, timelike distribution of events in L^{n}. Thus, by (3.1),

$$
\begin{equation*}
s\left(E_{a} E_{b}\right)+s\left(E_{c} E_{d}\right)<s\left(E_{a} E_{c}\right)+s\left(E_{b} E_{d}\right) \tag{5.1}
\end{equation*}
$$

We now show that
(5.2) if $1 \leqslant a<b<c<k$, then $R\left(E_{a}, E_{b} ; E_{c+1}\right) \subset R\left(E_{a}, E_{b} ; E_{c}\right)$.

This is proved by noting that, if $E \in R\left(E_{a}, E_{b} ; E_{c+1}\right)$, then

$$
E \in F\left(E_{c+1}\right) \subset F\left(E_{c}\right)
$$

and

$$
s\left(E_{a} E_{c+1}\right)-s\left(E_{b} E_{c+1}\right) \leqslant s\left(E_{a} E\right)-s\left(E_{b} E\right)
$$

Since, by hypothesis, $E_{c+1} \in R\left(E_{a}, E_{b} ; E_{c}\right)$, we have

$$
s\left(E_{a} E_{c}\right)-s\left(E_{b} E_{c}\right) \leqslant s\left(E_{a} E_{c+1}\right)-s\left(E_{b} E_{c+1}\right)
$$

Therefore, $E \in R\left(E_{a}, E_{b} ; E_{c}\right)$.
Now by hypothesis, $E_{d} \in R\left(E_{a}, E_{b} ; E_{d-1}\right)$ for $1 \leqslant a<b<d-1<k$. By (5.2) we have

$$
R\left(E_{a}, E_{b} ; E_{d-1}\right) \subset R\left(E_{a}, E_{b} ; E_{c}\right) \quad \text { for } \quad c=b+1, b+2, \ldots, d-1
$$

Thus,

$$
E_{d} \in R\left(E_{a}, E_{b} ; E_{c}\right) \quad(1 \leqslant a<b<c<d \leqslant k)
$$

Therefore,

$$
s\left(E_{a} E_{c}\right)-s\left(E_{b} E_{c}\right) \leqslant s\left(E_{a} E_{d}\right)-s\left(E_{b} E_{d}\right)
$$

or

$$
\begin{equation*}
s\left(E_{a} E_{c}\right)+s\left(E_{b} E_{d}\right) \leqslant s\left(E_{a} E_{d}\right)+s\left(E_{b} E_{c}\right) \tag{5.3}
\end{equation*}
$$

The inequalities (5.1) and (5.3) taken together show that the events $E_{1}, E_{2}, \ldots, E_{k}$ satisfy (2.1). This completes the proof of Theorem 2.
6. Proof of Theorem 3. The proof of (1, Theorem I) does not depend on its Euclidean setting and it can be shown directly that it is valid for timelike distributions in $L^{n}(n \geqslant 2)$ and polygonal connections. We shall now show that any set of events satisfying the hypothesis of Theorem 3 of this paper also satisfies the system of inequalities (with d replaced by s) in the hypothesis of (1 , Theorem I).

Since $E_{t} \in F\left(E_{t-1}\right)$ for $t=2,3, \ldots, k$, the events $E_{1}, E_{2}, \ldots, E_{k}$ constitute a time-ordered timelike distribution of events in L^{n}. Thus, by (3.1),

$$
\begin{equation*}
s\left(E_{1} E_{2}\right)+s\left(E_{i} E_{j}\right)<s\left(E_{1} E_{i}\right)+s\left(E_{2} E_{j}\right) \tag{6.1}
\end{equation*}
$$

for all $(i, j)(i=3, \ldots, k ; j=3, \ldots, k ; i \neq j)$ and

$$
\begin{equation*}
s\left(E_{h} E_{h+2}\right)+s\left(E_{i} E_{j}\right)<s\left(E_{h} E_{i}\right)+s\left(E_{h+2} E_{j}\right) \tag{6.2}
\end{equation*}
$$

where h assumes the values $1,2, \ldots, k-3$ and for each h (6.2) holds for all pairs (i, j) of the set $\{h+3, h+4, \ldots, k\}(i \neq j)$.

We now show that

$$
\begin{cases}s\left(E_{1} E_{3}\right)+s\left(E_{i} E_{2}\right) \leqslant s\left(E_{1} E_{i}\right)+s\left(E_{2} E_{3}\right) & (i=4,5, \ldots, k), \tag{6.3}\\ s\left(E_{2} E_{4}\right)+s\left(E_{i} E_{3}\right) \leqslant s\left(E_{2} E_{i}\right)+s\left(E_{3} E_{4}\right) & (i=5,6, \ldots, k) \\ s\left(E_{3} E_{5}\right)+\ldots \\ \ldots \ldots & \end{cases}
$$

where the sequence of inequalities (6.3) is extended until the set of integers over which i ranges becomes void.

The inequalities (6.3) hold if

$$
s\left(E_{h} E_{h+2}\right)-s\left(E_{h+1} E_{h+2}\right) \leqslant s\left(E_{h} E_{i}\right)-s\left(E_{h+1} E_{i}\right)
$$

for $i=h+3, h+4, \ldots, k$ and $h=1,2, \ldots, k-3$. Now, if

$$
E \in R\left(E_{h}, E_{h+1} ; E_{h+2}\right),
$$

then E satisfies

$$
s\left(E_{h} E_{h+2}\right)-s\left(E_{h+1} E_{h+2}\right) \leqslant s\left(E_{h} E\right)-s\left(E_{h+1} E\right)
$$

By hypothesis $\left\{E_{h+3}, E_{h+4}, \ldots, E_{k}\right\} \subset R\left(E_{h}, E_{h+1} ; E_{h+2}\right)$ for $h=1,2, \ldots$, $k-3$. Thus, (6.3) is true.

The inequalities (6.1), (6.2), and (6.3) taken together imply that the events $E_{1}, E_{2}, \ldots, E_{k}$ satisfy the system of inequalities in the statement of (1, Theorem I).
7. Proof of Lemma 1. Let $S=\left\{E_{1}, E_{2}, \ldots, E_{k}\right\}(k \geqslant 4)$ denote a set of events satisfying the hypothesis of the lemma. Then, the events of S are cyclically labelled with respect to the boundary B of their convex hull if and
only if B coincides with the polygonal connection $\left[E_{1} E_{2} \ldots E_{k}\right]$. If B does not coincide with $\left[E_{1} E_{2} \ldots E_{k}\right.$], then there exist four non-collinear events E_{a}, E_{b}, E_{c}, and E_{d} in S with $a<b<c<d$, for which the labelling is not cyclic with respect to B. We now show that this is impossible.

If $t_{a}=\min \left\{t_{a}, t_{b}, t_{c}, t_{a}\right\}$, then, by (3.4), $t_{b}=\min \left\{t_{b}, t_{c}, t_{a}\right\}$. From the triangle inequality in L^{2} it follows directly that among the three pairs of non-adjacent rectilinear connections of the complete quadrilateral defined by a timelike distribution of four events that fall on the boundary of their convex hull, the diagonals have intermediate time separation. This fact together with the hypothesis that the events E_{a}, E_{b}, E_{c}, and E_{d} satisfy (2.1) implies that $E_{a} E_{c}$ and $E_{b} E_{d}$ are the diagonals. Therefore, a labelling that satisfies (2.1) is uniquely determined once the event with the minimal t-co-ordinate is labelled. Clearly, this labelling is cyclic with respect to the boundary of the convex hull of the given four events and consequently with respect to B.

By considering the cases where t_{b}, t_{c}, and t_{d} are respectively equal to $\min \left\{t_{a}, t_{b}, t_{c}, t_{d}\right\}$ and repeating the above argument, we arrive at the same conclusion in each case. This completes the proof of Lemma 1.

Proof of (3.3). Let four events E_{a}, E_{b}, E_{c}, and $E_{d}\left(t_{a}<t_{b}<t_{c}<t_{d}\right)$ constitute a set of events in L^{2} that fall on a strictly convex world-line and let E_{e} denote any event on the rectilinear connection $E_{b} E_{d}$. We now show that no labelling of these five events satisfies (2.1).

By Lemma 1, if four non-collinear events of a timelike distribution of events in L^{2} fall on the boundary of their convex hull, any labelling that satisfies (2.1) must be cyclic with respect to their convex hull. Consider now the sets:

$$
\left\{E_{a}, E_{b}, E_{c}, E_{d}\right\}, \quad\left\{E_{a}, E_{b}, E_{e}, E_{d}\right\}, \quad \text { and }\left\{E_{b}, E_{e}, E_{c}, E_{d}\right\} .
$$

Each of these sets has the property that its events fall on the boundary of their convex hull. Thus, if the five events are to be labelled so as to satisfy (2.1), the labelling must be cyclic with respect to each boundary of these convex hulls. However, it is directly verified that such a labelling cannot exist.
8. Proof of Theorem 4. (i) Necessity. Let the given k events satisfy the Four Point Condition. If $k=4,5$, or if all the given events other than P and S lie in the same component of $B-\{P, S\}$, then the assertion of the theorem is valid. Thus, we assume that $k \geqslant 6$ and $B-\{P, S\}$ consists of two components B_{1} and B_{2}, each of which contains at least one event of the given set of events.

Let $P_{1}, P_{2}, \ldots, P_{k}$ denote a labelling of the given events P, Q, E_{3}, \ldots, $E_{k-2}, R, S\left(t_{p}<t_{q}<t_{3}<\ldots<t_{k-2}<t_{r}<t_{s}\right)$ such that (2.1) is satisfied and (by Theorem 1)

$$
\begin{gathered}
\left\{P_{1}, P_{2}\right\}=\{P, Q\}, \\
P_{i}=E_{i} \quad(i=3,4, \ldots, k-2)
\end{gathered}
$$

and

$$
\left\{P_{k-1}, P_{k}\right\}=\{R, S\}
$$

Assume that $P_{3}, P_{4}, \ldots, P_{k-2}$ is not entirely contained in the same component of $B-\{P, S\}$. Then there are two events P_{b} and P_{c} with

$$
3 \leqslant b<c \leqslant k-2
$$

such that P_{b} and P_{c} lie in separate components of $B-\{P, S\}$. Then the events P, P_{b}, P_{c}, and S lie on the boundary of their convex hull, but are not cyclically labelled with respect to the boundary of the convex hull. This is a contradiction of Lemma 1. Thus, $\left\{P_{3}, P_{4}, \ldots, P_{k-2}\right\}$ is contained in the same component of $B-\{P, S\}$.
(ii) Sufficiency. Let

$$
t_{1}<t_{2}<t_{3}<t_{4}<\ldots<t_{k-2}<t_{k-1}<t_{k}
$$

denote the t-co-ordinates of the given k events

$$
\begin{equation*}
P, Q, E_{3}, E_{4}, \ldots, E_{k-2}, R, S \tag{8.1}
\end{equation*}
$$

If the events $Q, E_{3}, E_{4}, \ldots, E_{k-2}, R$ all lie in the same component of $B-\{P, S\}$, then let the events (8.1) be relabelled

$$
E_{1}, E_{2}, E_{3}, E_{4}, \ldots, E_{k-2}, E_{k-1}, E_{k}
$$

respectively. Now, if $1 \leqslant a<b<c<d \leqslant k$, we have by (3.1)

$$
s\left(E_{a} E_{b}\right)+s\left(E_{c} E_{d}\right)<s\left(E_{a} E_{c}\right)+s\left(E_{b} E_{d}\right)
$$

Since the events (8.1) lie on a convex world-line in L^{2}, it follows from the triangle inequality that

$$
s\left(E_{a} E_{c}\right)+s\left(E_{b} E_{d}\right) \leqslant s\left(E_{a} E_{d}\right)+s\left(E_{b} E_{c}\right)
$$

Thus, in the case just considered, the events (8.1) can be labelled so as to satisfy (2.1).

Let $B-\{P, S\}=B_{1} \cup B_{2}, B_{1} \cap B_{2}=\emptyset$, where B_{1} is the component containing the lesser number of events from (8.1). There are three cases to consider: (i) $Q \in B_{1}$ and $R \notin B_{1}$, (ii) $Q \notin B_{1}$ and $R \in B_{1}$, and (iii) $\{Q, R\} \subset B_{1}$. If the events (8.1) are relabelled in case (i)

$$
E_{2}, E_{1}, E_{3}, E_{4}, \ldots, E_{k-2}, E_{k-1}, E_{k},
$$

in case (ii)

$$
E_{1}, E_{2}, E_{3}, E_{4}, \ldots, E_{k-2}, E_{k}, E_{k-1}
$$

and in case (iii)

$$
E_{2}, E_{1}, E_{3}, E_{4}, \ldots, E_{k-2}, E_{k}, E_{k-1}
$$

then it is verified directly that in each case the events (8.1) have been labelled so as to satisfy (2.1). This completes the proof of Theorem 4.

A six-point condition. The proof of the necessity part of Theorem 4 contains the following assertion:

Let S denote a set of events in $L^{n}(n \geqslant 2)$ such that S contains a timelike distribution

$$
S^{\prime}=\left\{E_{1}, E_{2}, \ldots, E_{6}\right\} \quad\left(t_{1}<t_{2}<\ldots<t_{6}\right)
$$

which lies in a plane and for which the sets $\left\{E_{2}, E_{4}\right\}$ and $\left\{E_{3}, E_{5}\right\}$ lie in opposite half-planes determined by the line through E_{1} and E_{6}. Then S^{\prime} cannot be labelled so as to satisfy (2.1) and consequently S does not satisfy the Four Point Condition.
9. Proof of Theorem 5. With respect to the hypothesis of Theorem 5 we note the following:
(9.1) $S=\{(0,0),(1,1),(0,2),(1,3)\}$ is zero separated but is not the vertex set of a zero polygonal connection.
(9.2) The events

$$
\begin{aligned}
& E_{1}:(0,0), \quad E_{2}:(1,1), \quad E_{3}:(0,2), \quad E_{4}:(-1,1), \\
& E_{5}:(1,2), \quad E_{6}:(2,3), \quad E_{7}:(1,4), \quad E_{8}:(0,3)
\end{aligned}
$$

form a set S such that for each $i=1,2, \ldots, 8, C\left(E_{i}\right) \cap S$ contains exactly three events, but S is not the vertex set of a zero polygonal connection.
(9.3) $S=\{(0,0),(1,1),(2,2),(1,3),(-1,1)\}$ is the vertex set of exactly one zero polygonal connection and $C((0,0)) \cap S$ contains four events. Thus, the conditions given in Theorem 5 are sufficient but not necessary for the existence of a unique zero polygonal connection.

By a light-line we mean a rectilinear world-line having the property that any two events on this line have zero time separation.
(9.4) The hypothesis of Theorem 5 implies that no three events of S lie on the same light-line.

Proof of (9.4). Assume that P_{1}, P_{2}, and P_{3} are three events of S that lie on the same light-line. Then, $\left\{P_{1}, P_{2}, P_{3}\right\}$ is contained in $C\left(P_{j}\right) \cap S(j=1,2,3)$. Let $E \in S-\left\{P_{1}, P_{2}, P_{3}\right\}$. Since S is zero separated, there is a polygonal path with end points P_{1} and E consisting of rectilinear connections of S, each having time separation equal to zero. Let $P^{\prime} E^{\prime}$ be a rectilinear connection in this path such that

$$
P^{\prime} \in\left\{P_{1}, P_{2}, P_{3}\right\} \quad \text { and } \quad E^{\prime} \in S-\left\{P_{1}, P_{2}, P_{3}\right\}
$$

Then, $\left\{P_{1}, P_{2}, P_{3}, E^{\prime}\right\}$ is contained in $C\left(P^{\prime}\right) \cap S$. But, this contradicts the assumption that $C\left(P^{\prime}\right) \cap S$ contains exactly three events.

Before proving Theorem 5 we shall prove the following lemma and corollary.
Lemma 2. Let $S=\left\{E_{1}, E_{2}, \ldots, E_{k}\right\}(k \geqslant 4)$ denote a set of events in L^{n} $(n \geqslant 2)$. Then

$$
\begin{gather*}
\left\{E_{k}, E_{1}, E_{2}\right\} \subset C\left(E_{1}\right) \quad \text { and } \tag{9.5}\\
\left\{E_{i-1}, E_{i}, E_{i+1}\right\} \subset C\left(E_{i}\right) \quad(i=2,3, \ldots, k-1)
\end{gather*}
$$

if and only if $\left[E_{1} E_{2} \ldots E_{k}\right]$ is a zero polygonal connection of S.

Proof. (9.5) implies that $E_{k} E_{1}$ and $E_{i} E_{i+1}(i=1,2, \ldots, k-1)$ each have time separation equal to zero. Hence, $\left[E_{1} E_{2} \ldots E_{k}\right]$ is a zero polygonal connection of S.

Conversely, if $\left[E_{1} E_{2} \ldots E_{k}\right.$] is a zero polygonal connection of S, then

$$
\begin{aligned}
& \qquad\left\{E_{k}, E_{1}, E_{2}\right\} \subset C\left(E_{1}\right) \text { and }\left\{E_{i-1}, E_{i}, E_{i+1}\right\} \subset C\left(E_{i}\right) \\
& (i=2,3, \ldots, k-1) . \\
& \text { Corollary. If }
\end{aligned}
$$

$$
\begin{gather*}
\left\{E_{k}, E_{1}, E_{2}\right\}=C\left(E_{1}\right) \cap S \text { and } \\
\left\{E_{i-1}, E_{i}, E_{i+1}\right\}=C\left(E_{i}\right) \cap S \quad(i=2,3, \ldots, k-1), \tag{9.6}
\end{gather*}
$$

then $\left[E_{1} E_{2} \ldots E_{k}\right]$ is the unique zero polygonal connection of S.
Proof. By Lemma $2, h=\left[E_{1} E_{2} \ldots E_{k}\right]$ is a zero polygonal connection. Let $h^{\prime}=\left[P_{1} P_{2} \ldots P_{k}\right]$ denote any zero polygonal connection of S. If $h \neq h^{\prime}$, then there exists a vertex $E_{j}=P_{m}$ such that $E_{j-1} E_{j} E_{j+1} \neq P_{m-1} P_{m} P_{m+1}$ (subscripts reduced modulo k). Since each of the rectilinear connections $E_{j-1} E_{j}$, $E_{j} E_{j+1}, P_{m-1} P_{m}$, and $P_{m} P_{m+1}$ have time separation equal to zero, the set

$$
U=\left\{E_{j-1}, E_{j}, E_{j+1}\right\} \cup\left\{P_{m-1}, P_{m+1}\right\}
$$

is contained in $C\left(E_{j}\right)=C\left(P_{m}\right)$. Since U contains at least four events, this is a contradiction of (9.6). Hence h is unique.

Proof of Theorem 5. Let $P_{1}=E_{1}$,

$$
\begin{aligned}
& C\left(P_{1}\right) \cap S=\left\{P_{k}, P_{1}, P_{2}\right\}, \quad C\left(P_{m}\right) \cap S=\left\{P_{m-1}, P_{m}, P_{m+1}\right\} \\
&(2 \leqslant m \leqslant k-1) .
\end{aligned}
$$

We note first that $P_{3} \neq P_{k}$; for $P_{3}=P_{k}$ would imply that $\left[P_{1} P_{2} P_{3}\right.$] has clock time equal to zero. But this is impossible for any three non-collinear events. Now, let m be the least integer of $\{3,4, \ldots, k-1\}$ such that $P_{m+1}=P_{j}$ with $P_{j} \in\left\{P_{k}, P_{1}, P_{2}, \ldots, P_{m-2}\right\}$. We shall show that $m=k-1$ and $P_{j}=P_{k}$. For if we assume that $P_{m+1}=P_{j}$ and $m<k-1$, then

$$
S-\left\{P_{j}, P_{j+1}, \ldots, P_{m}\right\}
$$

(subscripts reduced modulo k) is not empty and $\left[P_{j} P_{j+1} \ldots P_{m}\right]$ is a zero polygonal connection. Since S is zero separated, there exists a polygonal path \mathfrak{P} consisting of rectilinear connections of S each having time separation equal to zero, such that \mathfrak{P} has its initial point in $S-\left\{P_{j}, P_{j+1}, \ldots, P_{m}\right\}$ and its terminal point a vertex of $\left[P_{j} P_{j+1} \ldots P_{m}\right]$. Then, as in the proof of (9.4), it follows that there exists a vertex of $\left[P_{j} P_{j+1} \ldots P_{m}\right]$ whose light-cone intersected with S contains at least four events. Thus, if $P_{m+1}=P_{j}$ we must have $m=k-1$, i.e., when $m=k-1, P_{m+1}$ is an event that has already been labelled. By the same method as above we see that this event must be P_{k}, i.e.,
$P_{j} \equiv P_{k}$. Consequently, the events $P_{1}, P_{2}, \ldots, P_{k}$ are distinct and satisfy the hypothesis (9.6). Therefore, $\left[P_{1} P_{2} \ldots P_{k}\right.$] is the unique zero polygonal connection of S.
10. A class of curves in $L^{n}(n \geqslant 2)$. Theorem 4 contains the result that, if k events fall on a convex timelike arc in L^{2}, then these events satisfy the Four Point Condition. The following generalizes this to a class of curves in L^{n} ($n \geqslant 2$).
(10.1) Let γ denote the curve in $L^{n}(n \geqslant 2)$ defined by

$$
\gamma(u)= \begin{cases}x^{j}=\gamma_{j}(u) & (j=1,2, \ldots, n-1), \\ t=\gamma_{n}(u) & d \gamma_{n} / d u>0 .\end{cases}
$$

Let $0<u_{1}<u_{2}<\ldots<u_{k}$ denote k values of the parameter $u, E_{i}=\gamma\left(u_{i}\right)$ $(i=1,2, \ldots, k)$, and $s(\gamma(x) \gamma(y))=h(x, y)$.

If $h(x, y)$ is a differentiable function defined on $0<\mathrm{x}<y$ such that

$$
\frac{\partial h}{\partial x} \leqslant 0, \quad \frac{\partial h}{\partial y} \geqslant 0, \quad \text { and } \frac{\partial^{2} h}{\partial x \partial y} \leqslant 0
$$

then the events $E_{1}, E_{2}, \ldots, E_{k}$ satisfy (2.1).
Proof. Since $d \gamma_{n} / d u>0$, the events $E_{i}=\gamma\left(u_{i}\right)(i=1,2, \ldots, k)$ are distinct and are ordered by their corresponding parameter values u_{i}. The inequalities $1 \leqslant a<b<c<d \leqslant k$ imply $u_{a}<u_{b}<u_{c}<u_{d}$. Then, a straightforward argument using the Law of the Mean yields

$$
h\left(u_{a}, u_{b}\right)+h\left(u_{c}, u_{d}\right) \leqslant h\left(u_{a}, u_{c}\right)+h\left(u_{b}, u_{d}\right) \leqslant h\left(u_{a}, u_{d}\right)+h\left(u_{b}, u_{c}\right)
$$

which when written in terms of the separation function s is precisely (2.1).
A realization of (10.1). Let γ denote the curve in L^{4} defined by $\gamma_{1}(u)=\cos u$, $\gamma_{2}(u)=\sin u, \gamma_{3}(u)=\sinh u$, and $\gamma_{4}(u)=\cosh u(u>0)$. Then γ satisfies the hypothesis of (10.1).

Proof. $d \gamma_{4} / d u=\sinh u>0$ when $u>0$,

$$
s(\gamma(x) \gamma(y))=h(x, y)=\sqrt{2[\cosh (y-x)-\cos (y-x)]}
$$

which upon differentiation yields

$$
\begin{aligned}
& \frac{\partial h}{\partial x}=-[\sinh (y-x)+\sin (y-x)] h(x, y)^{-1}<0, \quad \text { when } 0<x<y \\
& \frac{\partial h}{\partial y}=[\sinh (y-x)+\sin (y-x)] h(x, y)^{-1}>0, \quad \text { when } 0<x<y
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial^{2} h}{\partial x \partial y}=-[h(x, y)[\cosh (y-x)+\cos (y-x)] \\
& \left.+[\sinh (y-x)+\sin (y-x)] \frac{\partial h}{\partial x}\right] h(x, y)^{-2}
\end{aligned}
$$

which is negative whenever $0<x<y$.
11. Open questions. We conclude by listing some open problems in the development of the preceding investigations.

1. What are extreme polygonal connections of a timelike distribution of k events in L^{2} that fall on the boundary of their convex hull?
2. Describe the class of all timelike distributions of events in L^{2} (then in L^{n} ($n \geqslant 2$)) that satisfy the Four Point Condition.
3. Establish criteria which if satisfied by a set of events offer a prespecified ordering for an extreme polygonal connection (as exemplified by the convex case in the Euclidean plane $(2 ; 3 ; 4)$, the Four Point Condition (1, Theorem III and $\S 6$; Basic Lemma $\S 2$ this paper), the realization of Theorem I (1, §5), and Theorems 3 and 5 of this paper).

Appendix. Record spaces. In this section we formalize more precisely (and more naïvely) the concept expressed in the first paragraph of $\S 1$. Let R denote a set, I a closed interval of real numbers $a \leqslant \tau \leqslant b$, and for each $\tau \in I$ let R_{τ} denote the set of ordered triplets $\left(r, t_{r}, \tau\right)$, where $r \in R$ and t_{r} is a real number dependent on r. We call the set $\Re=\bigcup R_{\tau}(\tau \in I)$ a record space and R_{τ} the record at the time τ. A function \mathfrak{D} defined on a closed subset Dom \mathfrak{D} of I such that $\mathfrak{D}(\tau) \in R_{\tau}$ we call an observation function. The set

$$
T(\mathfrak{O})=\{\mathfrak{O}(\tau): \tau \in \operatorname{Dom} \mathfrak{O}\}
$$

will be called an observation track and is said to be generated as τ ranges increasingly over Dom \mathfrak{D}.

If (r, t_{r}, τ_{0}) is a point in $R_{\tau_{0}}$ and $\tau_{0}<\tau_{1}$, then the point $\left(r, t_{r}, \tau_{1}\right) \in R_{\tau_{1}}$ is called the projection of (r, t_{r}, τ_{0}) onto $R_{\tau_{1}}$. For each value $\tau_{1} \in I$, let all the points $\mathfrak{O}(\tau)\left(\tau \in \operatorname{Dom} \mathfrak{D}, \tau \leqslant \tau_{1}\right)$ of an observation track be projected onto $R_{\tau_{1}}$. The resultant point set is called the cumulative track at the time τ_{1}. The generation of the cumulative track as τ ranges increasingly over Dom \mathfrak{D} induces a linear ordering on its points and hence a linear ordering on the complete cumulative track in R_{d}, where d is the greatest element in Dom \mathfrak{D}. (There are numerous examples of record spaces. A file of letters ordered by their dates corresponds to an R_{τ} at a given time τ and a set of letters selected from this file in linear order with respect to τ corresponds to an observation track. Similarly, a geologist analysing strata, a genealogist considering ancestral ordering, a palaeontologist studying evolutionary patterns, or a psychotherapist interpreting memory tracks can each be considered in a record space context.)

Now, let \Re be the set of triplets $\left(\left(x^{1}, \ldots, x^{n-1}, t\right), t, \tau\right)$ where $\left(x^{1}, \ldots, x^{n-1}, t\right)$ belongs to $L^{n}(n \geqslant 2)$, and $\tau \in I$, a closed interval. Then for each $\tau \in I, R_{\tau}$ can be thought of as L^{n} ordered by the t-co-ordinates of its elements. Let the n-flat $t=0$ have the structure of n-dimensional space-time and be construed as the space of an observer's world-line. In what follows, the domain of the observation function \mathfrak{D} will be equal to $I=\{\tau: a \leqslant \tau \leqslant b\}$. Consider now the following situation of "restricted observation." Let $P_{1}, P_{2}, \ldots, P_{k}$ be k
points that are fixed in the moving n-flat R_{τ} as τ ranges from a to b. We wish a cumulative track, as it is generated in R_{r}, to pass through these k points. The ordering of these points in the track will depend on the discretion of the observer, i.e., on the observation function. This immediately gives rise to a set of possible "states" corresponding to the different ways in which cumulative tracks can be routed through these points. Questions may now be posed as to which state is "best" or "extreme" in accordance with some specified point of view. The results of this paper can thus be interpreted as extremum properties of complete cumulative tracks that are polygonal connections. Since we were concerned only with complete cumulative tracks we were able to restrict our attention to the n-flat R_{b}, or equivalently, to n-dimensional space-time L^{n}.

References

1. F. Supnick, Extreme Hamiltonian lines, Ann. Math. (2), 66 (1957), 179-201.
2. F. Supnick and L. V. Quintas, Extreme Hamiltonian circuits. Resolution of the convex-odd case, Proc. Amer. Math. Soc., 15 (1964), 454-456.
3. L. V. Quintas and F. Supnick, Extreme Hamiltonian circuits. Resolution of the convex-even case, Proc. Amer. Math. Soc., 16 (1965), 1058-1061.
4. - On some properties of shortest Hamiltonian circuits, Amer. Math. Monthly, 72 (1965), 977-980.

St. John's University, New York, and
The City University of New York

