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Viscous damping of steady-state resonant
sloshing in a clean rectangular tank
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A machine learning of the unknown a priori viscous damping, incorporated into the
single-dominant nonlinear ‘inviscid’ modal theory by Faltinsen et al. (J. Fluid Mech.,
vol. 407, 2000, pp. 201–234) on resonant sloshing (the forcing frequency close to the
lowest natural sloshing frequency) in a clean (no internal structures) rigid rectangular
tank, is proposed. The learning procedure requires a set of measured phase lags between
the harmonic horizontal tank excitation and the steady-state resonant wave response.
A good consistency with experiments by Bäuerlein & Avila (J. Fluid Mech., vol. 925, 2021,
A22) on the liquid-mass centre motions is shown. The latter confirms that the free-surface
nonlinearity (causing an energy flow from the primary-excited to higher natural sloshing
modes) and viscous damping of the higher natural sloshing modes matter, as well as that
the damping rates can depend on the steady-state wave amplitude.

Key words: interfacial flows (free surface)

1. Introduction

When a clean rigid rectangular tank with a finite liquid depth is longitudinally excited
with the forcing frequency close to the lowest natural sloshing frequency, the free-surface
nonlinearity causes an energy flow (Faltinsen & Timokha 2009; Pilipchuk 2013) from
the lowest (primary-excited) to higher natural sloshing modes so that the nonlinearity
becomes a prevailing mechanism preventing an infinite resonant wave-amplitude response.
Viscous damping plays then a secondary role (Faltinsen & Timokha 2001). This explains
why the single-dominant (applicable for smaller excitation amplitudes, Faltinsen et al.
2000) and adaptive (it should be adopted with increasing the forcing amplitude and
at the critical liquid depth, Faltinsen & Timokha 2001) ‘inviscid’ weakly nonlinear
modal theories/systems provide satisfactory agreement with the measured steady-state
wave-amplitude characteristics. However, these theories fail to predict the phase-lag
response curve, which is, theoretically, piecewise (the phase lag possesses the values 0 and
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±π) in the inviscid approximation while accounting for damping makes it continuous. The
phase-lag response is most sensitive to the damping in those mechanical systems. Hence,
having known a set of measured phase lags and introducing physically and mathematically
consistent unknown a priori damping terms in the modal systems, one could implement
(according to the so-called hidden-physics concept by Raissi & Karniadakis 2018; Raissi,
Perdikaris & Karniadakis 2019; Ahmed et al. 2021), as discussed by Ahmed et al. (2021)
for the reduced order modelling as well as by Saltari et al. (2022) for violent liquid
sloshing due to vertical excitations, a machine learning procedure to implicitly deduce
the introduced viscous damping terms.

Appropriate measurements of the phase lag were recently reported by Bäuerlein &
Avila (2021) who utilised them to evaluate a constant damping ratio in the Duffing
equation, which was adopted by the authors as a phenomenological mathematical
model of horizontal motions of the liquid-mass centre (spring and pendulum-type
phenomenological models are often employed for sloshing: see Miles 1962; NASA 1968;
Aliabadi, Johnson & Abedi 2003; Godderidge, Turnock & Tan 2012, and references
therein). This damping ratio, ξ , had to equal 15 × 10−3 to more or less satisfactory
approximate the experimental data. Using the same experimental set-up, Bäuerlein &
Avila (2021) analysed logarithmic decrements of the first (lowest) natural sloshing mode
and, thereby, computed its damping ratio ξ

exp
1 = 8.4 × 10−3. This experimental value is

larger than its theoretical prediction (ξ (0)
1 = 5.7 × 10−3) by Keulegan (1959). Because

the first differential equation of the single-dominant nonlinear modal system by Faltinsen
et al. (2000) governs perturbations of the first natural sloshing mode, Bäuerlein & Avila
(2021) inserted the linear damping term with ξ

exp
1 into this equation, derived a steady-state

wave (periodic) solution, and showed that even in that case, the single-dominant
modal theory is not able to satisfactory fit the measured steady-state resonant
response.

A way of getting an excellent agreement is a purely data-driven (phenomenological)
modelling dealing with dynamical systems with respect to amplitude and phase-lag
parameters as it is demonstrated by Cenedese et al. (2022) exploiting the
Stuart–Landau-type equation. Another way consists of following the hidden-physics
concept suggesting a machine learning of physics-based dynamical models (ROMs) on
sloshing derived from the original free-surface boundary problem. In the present paper, we
step the second way. The single-dominant inviscid modal system by Faltinsen et al. (2000)
is modified by incorporating the theoretically consistent damping terms. Implementing
Moiseev’s asymptotic scheme, a periodic (steady-state) solution of the modified system is
derived, which, as the derivations show, depends on three unknown a priori parameters
associated with the introduced damping. One parameter is responsible for the constant
damping ratio of the second (-order) generalised coordinate (mode) but the other two are
coefficients in the linear regression (by the dominant non-dimensional steady-state wave
amplitude) chosen as the amplitude-dependent damping ratio for the first (lowest-order)
generalised coordinate (mode). After defining the loss function as an integral distance
between experimental (measured) and theoretical phase-lag curves, the gradient descent is
applied to compute the three damping-related parameters. How it works is demonstrated
with experimental phase lags by Bäuerlein & Avila (2021). An excellent agreement
is shown except for the cases when, according to observations by Bäuerlein & Avila
(2021), applicability of the single-dominant modal theory is questionable. Discrepancy
between the linear damping quantities predicted by Keulegan (1959), coming from direct
measurements by Bäuerlein & Avila (2021), and following from the present machine
learning procedure is extensively discussed.
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2. Single-dominant modal theory

We consider two-dimensional sloshing of an ideal liquid with irrotational flows in a
rectangular tank of the width L and breadth B. The non-dimensional hydrodynamic
statement suggests that L is the characteristic size and T = 2π/σ1 is the characteristic
time, where σ1 is the lowest natural sloshing frequency. The tank is filled to a finite
liquid depth which means that the non-dimensional (L-scaled) depth h � 0.4 (Faltinsen
& Timokha 2009, chap. 8). The tank oscillates harmonically with the forcing frequency
σ close to σ1. Based on rigorous mathematical results by Faltinsen (1974) and Ockendon
& Ockendon (1973) concerning the steady-state resonant sloshing in a rectangular tank
with a finite liquid depth (§ 8.2.2 in the textbook by Faltinsen & Timokha 2009), Faltinsen
et al. (2000) proved that, if the non-dimensional forcing amplitude is relatively small,
the nonlinear resonant sloshing, both steady-state and transient, can be described by
employing the so-called single-dominant nonlinear modal system whose hydrodynamic
generalised coordinates obligatory satisfy specific asymptotic relations in terms of the
forcing amplitude. After inserting the framed viscous damping terms, the system takes the
following non-dimensional form:

β̈1 + β1 + 2ξ1[β̇1 + Ξ1(βm, β̇m|m=1,2)] + d1(β̈1β2 + β̇1β2) + d2(β̈1β
2
1 + β̇2

1β1)

+ d3β̈1β1 = P1η2aσ̄
2 cos(σ̄ t − θ), (2.1a)

β̈2 + σ̄ 2
2 β2 + 2σ̄2ξ2[β̇2 + Ξ2(βm, β̇m|m=1,2)] + d4β̈1β1 + d5β̇

2
1 = 0, (2.1b)

β̈3 + σ̄ 2
2 β3 + 2σ̄3ξ3[β̇3 + Ξ3(βm, β̇m|m=1,2)] + q1β̈1β2 + q2β̈1β

2
1 + q3β̈2β1 + q4β̇

2
1β1

+ q5β̇1β̇2 = P3η2aσ̄
2 cos(σ̄ t − θ), (2.1c)

β̈m + σ̄ 2
mβm + 2σ̄mξmβ̇m = Pmη2aσ̄

2 cos(σ̄ t − θ), m � 4, (2.1d)

where the hydrodynamic generalised coordinates βm(t) come from the functional (modal)
representation of the free surface and necessarily fulfil the aforementioned Moiseev’s
asymptotic relations proven by Faltinsen (1974) and Ockendon & Ockendon (1973) (see
also § 8.2.2 by Faltinsen & Timokha 2009),

z = ζ( y, t) =
∞∑

m=1

βm(t) cos
(

πm
(

y + 1
2

))
, (2.2a)

β1 = O(ε1/3); β2 = O(ε2/3); β3 = O(ε); βn � O(ε), n � 4; P1η2a = ε � 1,

(2.2b)

respectively. Here, σm are the natural sloshing frequencies, σ̄ = σ/σ1, Pm =
2/(πm) tanh(πmh)((−1)m − 1), σ̄ 2

m = σ 2
m/σ 2

1 = m tanh(πmh)/ tanh(πh), the hydro-
dynamic coefficients dn, qn depend on the non-dimensional liquid depth h, η2a = O(ε) �
1 is the non-dimensional forcing amplitude, and θ is the phase lag in the external horizontal
harmonic forcing. The computed values of the hydrodynamic coefficients are tabled by
Faltinsen & Timokha (2009, chap. 9). A novelty with respect to the original work by
Faltinsen et al. (2000) is the framed damping terms which we do not know a priori. As
notified by Faltinsen & Timokha (2009, § 7.4), applicability of modal theories implicitly
assumes a low-viscous liquid, i.e. the incorporated damping terms should be relatively
small. What does it mean in the present paper is discussed below.
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Because (2.1) is based on the Moiseev-type asymptotic relations (2.2b) with neglecting
the o(ε)-order quantities, only β1 and β2 are nonlinearly coupled (there is an energy
flow between these two lower natural sloshing modes); β3 is the ‘driven’ generalised
hydrodynamic coordinate of the highest asymptotic order O(ε) but the natural sloshing
modes with m � 4 are considered within the framework of the linear sloshing theory.

The same asymptotic relations should be true for the incorporated damping terms, that
is, Ξi are only nonlinear functions of β1 and β2 and their first derivatives. Furthermore,
in the linear limit with η2a = 0 (free oscillations), the linear damping ratios ξi can be
associated with logarithmic decrements of the natural sloshing modes cos(πi( y + 1

2 )) in
(2.2a). These ratios should be small for low-viscous liquids and, because our nonlinear
analysis will centre around the two nonlinearly coupled generalised coordinates, β1 and β2,
one can assume, as the ‘most worse’ case, that ξ1 ∼ ξ2 possess the lowest asymptotic order
O(ε1/3). Finally, because the asymptotic modal theory neglects the o(ε)-order contribution
in (2.1), one concludes Ξ3 = Ξ2 = 0 but Ξ1 = Ξ1(β1, β̇1) is a quadratic function, which
we do not know a priori as well as ξi.

The steady-state resonant sloshing is associated with periodic solutions of (2.1).
Following Moiseev’s asymptotic scheme (Faltinsen & Timokha 2009, chap. 8), one
can find an asymptotic approximation of these solutions even if (2.1) is equipped with
the framed damping terms. In Moiseev’s approximation, the lowest-order generalised
hydrodynamic coordinates β1 and β2 take the form

β1(t) = a cos(σ̄ t) + O(a3), β2(t) = a2[l0 + l1 cos(2σ̄ t) + l2 sin(2σ̄ t)] + O(a4),
(2.3a,b)

where a = O(ε1/3) > 0 is the dominant (lowest-order) wave amplitude,

l0 = d4 − d5

2σ̄ 2
2

, l1(ξ2) = (d4 + d5)(σ̄2 − 4)

2((σ̄ 2
2 − 4)2 + 16σ̄ 2

2 ξ2
2 )

, l2(ξ2) = 2(d4 + d5)σ̄2ξ2

(σ̄ 2
2 − 4)2 + 16σ̄ 2

2 ξ2
2
;

(2.4a–c)
the amplitude a > 0 and the phase lag θ come from the so-called secular system

a(m1(ξ2)a2 + σ̂ 2 − 1) = ε cos θ, a(m2(ξ2)a2 − 2ξ1[1 + ξa]) = ε sin θ, (2.5a,b)

which is derived after substituting (2.3a,b) into (2.1a) and collecting all quantities at
cos(σ̄ t) and sin(σ̄ t) after applying the cosine angle-difference identity in the right-hand
side and dividing by σ̄ 2; here,

m1(ξ2) = −1
2 d2 − 2d3l1 + d1(−l0 + 1

2 l1), m2(ξ2) = 1
2 l2(d1 − 4d3), σ̂ = σ̄−1

(2.6a–c)
and

ξ = − σ̄

π

∫ 2π/σ̄

0
Ξ1(cos(σ̄ t), − sin(σ̄ t)) sin(σ̄ t) dt � 0, (2.7)

remembering that, from physical reasons,∫ 2π/σ̄

0
Ξ1(cos(σ̄ t), − sin(σ̄ t)) cos(σ̄ t) dt = 0. (2.8)

The steady-state analysis does not require to explicitly know Ξ1(β1, β̇1). Any quadratic
function Ξ1 satisfying (2.7) and (2.8) is allowed. An appropriate expression of Ξ1 for
transient wave computations by (2.1) is discussed in § 4 Conclusions.
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Taking the sum of squares in (2.5a,b) makes it possible to rewrite the secular system to
the form

a2[(m1(ξ2)a2 + (σ̂ 2 − 1))2 + (m2(ξ2)a2 − 2ξ1(1 + ξa))2] = ε2, (2.9a)

θ = atan2([m2(ξ2)a2 − 2ξ1(1 + ξa)], [m1(ξ2)a2 + (σ̂ 2 − 1)]) (2.9b)

(atan2( y, x) is the 2-argument arctangent) that can be solved to get an analytical prediction
of the resonant response curves. Indeed, (2.9a) gives

σ̄−2(a; ξ1, ξ2, ξ, ε) = σ̂ 2(a; ξ1, ξ2, ξ, ε)

= 1 − m1(ξ2)a2 ±
√

ε2

a2 − [m2(ξ2)a2 − 2ξ1(1 + ξa)]2, (2.10)

which has the physical meaning when both the right-hand side and expression under the
square root are non-negative that yields the left and right bounds in

amin(ξ1, ξ2, ξ, ε) � a � amax(ξ1, ξ2, ξ, ε). (2.11)

Furthermore, inserting (2.10) into (2.9b) derives

θ(a; ξ1, ξ2, ξ, ε) = atan2(m2(ξ2)a2 − 2ξ1(1 + ξa), m1(ξ2)a2 + (σ̂ 2(a; ξ1, ξ2, ξ, ε) − 1),

(2.12)
where σ̂ 2 should be taken from (2.10).

Hence, when varying a in the interval (2.11) for a fixed set of ξ1, ξ2, ξ and ε, (2.10) and
(2.12) parametrically define the phase-lag response curve in the (σ̄, θ)-plane but (2.10) as
function of a determines the wave-amplitude response curve in the (σ̄, a)-plane.

3. Learning ξ1, ξ2 and ξ from measurements of the phase lag

The unknowns ξ1, ξ2 and ξ can be ‘learnt’ by using a set of the measurements of θ
(n)
i

with the given σ̄
(i,n)
1 and εn = P1η

(n)
2a , n = 1, . . . , Nη2a . For this purpose, we introduce

the distance function D between the phase-lag response curve by (2.10)–(2.12) and
(σ̄

(i,n)
1 , θ

(n)
i ) as

D(n, i; ξ1, ξ2, ξ)

=
√

min
amin�a�amax

[(σ̄ (a; ξ1, ξ2, ξ, εn) − σ̄
(i,n)
1 )2 + (θ(a; ξ1, ξ2, ξ, εn) − θ

(n)
i )2]; (3.1)

it depends on the indexes n and i enumerating σ̄
(i,n)
1 , θ

(n)
i and εn. Therefore, the integral

distance

C(ξ1, ξ2, ξ) =
Nη2a∑
n=1

∑
i

D(n, i; ξ1, ξ2, ξ) > 0 (3.2)

between all the adopted measurement points and asymptotic solution (2.10)–(2.12) may be
taken as the loss function in the machine learning procedure. The wanted damping-related
parameters ξ1, ξ2 and ξ realise the absolute minimum of the mean-square error-function C.
Minimisation of the loss function (3.2) can be done by the gradient descent. The absolute
minimum of C exists and, from geometrical and physical point of view, is unique.
Hypothetically, if the absolute minimum is realised on a manifold in the (ξ1, ξ2, ξ)-space,
standard gradient-descent algorithms should effectively detect it.
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3.1. Employing the measurements by Bäuerlein & Avila (2021)
Experimental data on the liquid-mass centre (horizontal steady-state wave amplitude
and phase lag) were reported by Bäuerlein & Avila (2021). Horizontal position of the
liquid-mass centre is, according to Faltinsen & Timokha (2009, (8.73)), described by

yC(t) = − 2
π2h

β1(t) + O(a3) = − 2
π2h

a cos σ̄ t + O(a3). (3.3)

This means that the theoretical steady-state phase lag and wave amplitude in experiments
by Bäuerlein & Avila (2021) could in the lowest-order approximation be associated with θ

and 2a/(π2h) coming from the asymptotic solution (2.10)–(2.12).
The experimental model tests by Bäuerlein & Avila (2021) were done with

the non-dimensional liquid depth h = 0.8 that implies (Faltinsen & Timokha
2009, table 9.1) d2 = 3.142, d2 = 2.533, d3 = −0.021, d4 = −0.042, d5 = −3.225. The
experimental forcing amplitudes were η2a = 0.0009, 0.0017, 0.0032 and 0.0064. The
low-viscous (fresh water) liquid with the kinematic viscosity ν = 10−6 m2 s−1 is
used. At the same time, visual observations with η2a = 0.0064 discovered wave
breaking, overturning and serious contribution of higher modes/harmonics that indicates
inapplicability of the single-dominant modal theory for the experimental series with the
largest excitation amplitude.

Utilising experimental series with η2a = 0.009 (I), 0.0017 (II) and 0.0032 (III) in
the above-proposed machine learning procedure makes it possible to compute ξ1, ξ2
and ξ . The theoretical accuracy should statistically depend on the accuracy of the
measured data. Ideally, if all the measurements I + II + III are used for training,
that computes ξ1 = ξ l

1 = 0.007167965, ξ2 = ξ l
2 = 0.01002107 and ξ = ξ l = 0.2636.

Other acceptable trainings were: I + III → 0.00710169946, 0.0095860284, 0.193322; I +
II → 0.00733898346, 0.010288244, 0.0931; III → 0.0073849521, 0.005228571, 0.37915.
Inserting these values into expressions (2.10)–(2.12) makes it possible to draw the
theoretical phase-lag response curves to be compared with measurements adopted for
both training and testing. Our numerical experiments showed that the training strategies
III, I + II, I + III and I + II + III lead to visually almost identical curves. The triad ξ1 =
ξ l

1 = 0.007167965, ξ2 = ξ l
2 = 0.01002107, ξ = ξ l = 0.2636 with I + II + III is therefore

adopted in the graphical analysis.
Figure 1(a) confirms applicability of the single-dominant modal theory (2.1).

Agreement is excellent, especially, in contrast to Bäuerlein & Avila (2021, figure 14) who
adopted ξ1 = ξ

exp
1 = 8.4 × 10−3 (coming from the measured logarithmic decrements)

and ξ2 = ξ = 0 in their computations by the single-dominant modal system. Agreement
in figure 1(a) is also much better than with using the Duffing mathematical model by
Bäuerlein & Avila (2021, figure 13). As matter of the fact, we showed that damping of the
second-order mode (non-zero ξ2 in (2.1b)) and the quadratic damping Ξ1 in the first modal
equation (2.1a) matter.

Even though, as we remarked above, the single-dominant modal theory is not applicable
for the largest experimental forcing amplitude η2a = 0.0064, the computed ξ1 = ξ l

1,
ξ2 = ξ l

2, ξ = ξ l and ε = P1η2a = P1 × 0.0064 were used in (2.10)–(2.12) to draw the
theoretical phase-lag response curve and compare it with the corresponding measurements
by Bäuerlein & Avila (2021). The numerical results are shown in figure 1(b). The figure
detects a zone where the single-dominant modal theory is clearly non-applicable (wave
breaking and other free-surface phenomena indeed matter!). Far from this zone, agreement
between the learnt solution and experiments is also excellent.
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Figure 1. The theoretical (lines) and experimental (symbols) phase-lag (in grads) response curves for the
experimental set-up by Bäuerlein & Avila (2021). The measured phase lags with the forcing amplitudes
η2a = 0.0009, 0.0017 and 0.0032 from the (a) were used in the machine learning procedure from § 3 to compute
ξ1 = ξ l

1 = 0.007167965, ξ2 = ξ l
2 = 0.01002107 and ξ = ξ l = 0.2636 and substitute them into (2.10)–(2.12).

Panel (b) is drawn for the largest experimental forcing amplitude η2a = 0.0064 when the single-dominant
modal system is, generally, not applicable; it detects a zone where this happens.

We used asymptotic solution (2.10)–(2.12) with ξ1 = ξ l
1 = 0.007167965, ξ2 = ξ l

2 =
0.01002107 and ξ = ξ l = 0.2636 to compare the theoretical mass-centre amplitude by
(3.3) with measurements by Bäuerlein & Avila (2021). The results are presented in
figure 2. Figure 2(a) is drawn for the cases from figure 1(a) but figure 2(b) corresponds to
η2a = 0.0064. The dashed lines in figure 2(a) imply the inviscid single-dominant theory
for η2a = 0.0009 and 0.0032.

Damping is responsible for the horizontal position of the jump-down bifurcation point P
(demonstrated for the Duffing-type systems, e.g. by Faltinsen & Timokha 2009, § 8.2.1.3).
As for the horizontal position of P, agreement between the ‘learnt viscous’ solution
and measurements by Bäuerlein & Avila (2021) is rather good in figure 2(a) but the
single-dominant theory is not applicable in the case in figure 2(b). Except in the left of P
on the upper subbranch, discrepancy between theoretical viscous and inviscid amplitudes
does not look dramatic for the larger forcing amplitude η2a = 0.0032, whereas both
theories are rather inaccurate to fit the measurements. The situation is opposite for the
lowest tested forcing amplitude η2a = 0.0009. The latter facts confirm earlier conclusions
by Faltinsen & Timokha (2001) who showed for clean tanks that viscous damping may
cause almost negligible effect on the wave amplitude with increasing excitation amplitude
when, contrarily, the free-surface nonlinearity and associated energy flow between the
generalised hydrodynamic coordinates (modes) play dominant roles. Faltinsen & Timokha
(2001) showed that agreement for the wave-amplitude response curves with increasing
forcing amplitude can be improved when using an adaptive modal theory with zero
damping or small damping following from the single-dominant prediction.

3.2. Linear damping ratios ξ1 and ξ2

Neglecting nonlinear terms in (2.1) leads to an infinite set of linear oscillators, equations
of the so-called linear modal theory by Faltinsen & Timokha (2009, chap. 5), which is
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Figure 2. The same as in figure 1 but for the liquid-mass centre amplitude. The fully inviscid branching by the
single-dominant theory is shown in (a) by the dashed lines for η2a = 0.0009 and 0.0032 to confirm that it cannot
predict horizontal position of the jump-down bifurcation point P, which is a function of viscous damping. For
the smaller forcing, η2a = 0.0009, discrepancy between viscous and inviscid theoretical amplitude near the
amplitude peak is huge while, for the larger one, η2a = 0.0032, it does not look dramatical.

applicable to non-resonant sloshing of a low-viscous liquid. When posing η2a = 0, its
solution determines a superposition of decaying standing Stokes waves whose logarithmic
decrements are associated with the linear damping ratios ξi.

Rigorous linear mathematical theory of viscous unforced sloshing was created by Selim
Krein (1964). Krein’s theorem states that only a finite number of oscillatory sloshing
modes exists, i.e. interpreting his result in terms of the linear modal theory with η2a = 0,
there exists N such that ξi > σ̄i for i � N. Numerical analysis by Barnyak & Barnyak
(1996) also shows that only lower sloshing modes and frequencies of viscous liquids can be
approximated within the framework of the inviscid hydrodynamic theory. The inequality
and computations are in conflict with assumptions of the linear damped modal theory,
which requires small ξi to weakly affect the natural sloshing frequencies and modes,
namely, the theory requires ξi � σ̄i on an asymptotic scale. The latter can only be fulfilled
for a few lower natural sloshing modes. Now, readers may understand why we postulated
O(ε1/3) = ξi � σ̄i = O(1) only for i = 1, 2 and 3.

When associating ξi � 1 with logarithmic decrements of lower natural sloshing
modes, these can be estimated from below (Faltinsen & Timokha 2009, chap. 6) by
using asymptotic formulas, which are based on the laminar boundary-layer theory for
low-viscous liquids and accounting for the bulk damping effects, ξ

(0)
i = ξ

layer
i + ξbulk

i �
ξi. Miles (1967), Miles & Henderson (1998) and Faltinsen & Timokha (2009, chap. 6)
discussed why and when the bulk damping may matter as well as how other potentially
valuable viscous mechanisms including the dynamic contact angle, wave breaking,
free-surface contamination and roof impact can significantly increase the damping.
Taking Keulegan’s estimate for ξ

layer
i and (6.139) by Faltinsen & Timokha (2009)

for ξbulk
i gives

ξ
(0)
i =

√
ν

2σi

1
B

(
1 + B

L

[
1 + πi

1 − 2h
sinh(2πih)

])
+ 2ν

π2i2

L2σ 2
i

, (3.4)
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where ν is the kinematic viscosity. Specifically, the formula provides ξ0
i /σ̄i → ∞ as i →

∞ but, as we stated above, (3.4) is valid only for lower indices i and strongly requires
ξ

(0)
i � O(1).

For the experimental set-up by Bäuerlein & Avila (2021, L = 0.5 m, B = 0.05 m and
h = 0.8) with fresh water, (3.4) outputs ξ

(0)
1 = 0.0057 and ξ

(0)
2 = 0.0047; the computed

values are practically not affected by the bulk damping and, therefore, one can say that
these imply the Keulegan’s approximation. The Keulegan’s damping ratios are definitely
lower than ξ l

1 = 0.007167965 and ξ l
2 = 0.01002107 coming from the machine learning

procedure with η2a = 0.0009, 0.0017 and 0.0032. The inequality is correct because (3.4)
estimates from below.

Bäuerlein & Avila (2021) conducted special model tests attempting to estimate ξ1. They
interrupted harmonic excitations of the steady-state wave with η2a = 0.0064 at an instant
t = t0 and, thereafter, measured logarithmic decrements of the wave decay. The averaged
experimental value of ξ1 coming from the measured decrements was estimated at ξ1 =
ξ

exp
1 = 0.0084. This value is larger than ξ l

1 = 0.007167965 because of, most probably,
very specific free-surface phenomena discovered for model tests with η2a = 0.0064 that
could affect logarithmic decrements even after interrupting the harmonic forcing.

On the other hand, the theoretical linear damping rate of the second natural sloshing
mode, ξ

(0)
2 = 0.0047, is too low with respect to ξ l

2 = 0.01002107. The discrepancy
between ξ

(0)
2 and ξ l

2 may be explained by an ‘inaccurate’ modelling of energy flow between
the second and higher modes. The single-dominant modal theory simply ignores this.
Using an adaptive modal system by Faltinsen & Timokha (2001) would lead to a more
accurate distribution of ξi, i � 2 and improve agreement in figure 2(a). However, the
adaptive modal systems do not have analytical solutions, that is, the machine learning
procedure becomes then much more complicated.

4. Conclusions

Estimates of viscous damping in liquid sloshing dynamics can be done by applying
a machine learning procedure to multimodal systems with unknown a priori viscous
damping terms. Such a procedure was developed for the single-dominant modal
system/theory by Faltinsen et al. (2000) when the steady-state wave (periodic) solution
can analytically be derived by using Moiseev’s asymptotic scheme. The solution becomes
a function of three unknown parameters, ξ1, ξ2 and ξ , responsible for damping in the
hydrodynamic system. Having known measurements of the phase lags makes it possible to
compute (learn) these parameters. The measured phase lags by Bäuerlein & Avila (2021)
are employed to evaluate abilities of the proposed procedure and find ξ1 = ξ l

1, ξ2 = ξ l
2

and ξ = ξ l. An excellent agreement is demonstrated except when, according to visual
observations in Bäuerlein & Avila (2021), the single-dominant system is not applicable.
Following the physics-driven machine learning instead of the data-driven approach by
Cenedese et al. (2022) did not provide good agreement for all the steady-state amplitude
parameters but made it possible to make several physical conclusions on nonlinear
sloshing. The obtained results can also be generalised to transient waves and coupling
with tank motions, including in ship dynamics.

One conclusion is that effect of higher (here, second) natural sloshing modes (nonlinear
energy transfer from the primary-excited to the higher modes) and viscous damping of
these modes cannot be neglected. Furthermore, viscous damping of the primary-excited
(first) natural sloshing mode should, generally speaking, be a function of the wave
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amplitude and, moreover, for the single-dominant system, the function is just the linear
regression. Finally, the proposed procedure can be an efficient tool for estimating the
viscous damping of the lowest (dominant) natural sloshing mode, but it fails for the higher
(order) modes. To get more accurate ξ2, one should use an adaptive multimodal system by
Faltinsen & Timokha (2001) where β1 ∼ β2. Such a system is also required for an accurate
prediction of the wave-amplitude response curves.

Derivations of the steady-state wave (periodic) solution does not require an exact
analytical expression for Ξ1(β1, β̇1). Any analytical quadratic form of Ξ1 is allowed if
it deduces the two integrals (2.7) and (2.8). An example could be

Ξ1(β1, β̇1) = ξ
3π

8
|β̇1| β̇1, (4.1)

which physically implies a drag force. Based on model tests by Faltinsen et al. (2000) and
other authors with transient waves, one should check whether (4.1) is indeed applicable.
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