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Abstract. The progress over the last years in modelling the atmospheres and winds of PN
central stars is reviewed. We discuss the effect of the inclusion of the blanketing by millions of
metal lines in NLTE on the diagnostics of photospheric and stellar wind lines, which can be used
to determine stellar parameters such as effective temperature, gravity, radius, mass loss rate and
distance. We also refer to recent work on the winds of massive O-type stars, which indicates
that their winds are possibly inhomogeneous and clumped. We investigate implications from
this work on the spectral diagnostics of PN central stars and introduce a method to determine
wind clumping factors from the relative strengths of Hα and He ii 4686. Based on new results
we discuss the wind properties of CSPN.
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1. Introduction: a brief history
Since many decades model atmospheres have been a fundamental tool to understand

the physical nature of PN Central Stars and the ionization and emission of their surround-
ing nebulae. After the pioneering work by Aller (1948), which revealed the importance
and enormous potential of CSPN spectroscopy, and Heap (1979, and references therein),
which provided the first quantitative spectral analyses based on model atmospheres, the
field was advanced by Méndez et al. (1983), Kudritzki and Méndez (1989) and Méndez
et al. (1988). In this work, high quality spectra obtained with new 4m-class telescopes
and very efficient spectrographs and detectors were analyzed in detail using a new gen-
eration of hydrostatic, plane parallel NLTE model atmospheres to determine effective
temperatures, gravities and helium abundances. This work demonstrated nicely that O-
type CSPN form an evolutionary sequence in the (log g, log Teff )-plane and that the
gravities and temperatures determined spectroscopically could be used to estimate stellar
masses, radii, luminosities and distances by comparison with the predictions of post-AGB
evolution and the core mass - luminosity relationship.

While this new concept seemed compelling, there were clear indications of quantita-
tive deficiencies. The masses determined seemed systematically larger than white dwarf
masses and some of the objects (such as NGC 2392) had unrealistically high masses.
The model atmospheres used, though in NLTE and certainly state-of-the art, did not
include the opacities of metal lines and they also neglected the effects of stellar winds
and spherical extension, which were suspected to be substantial, in particular for cooler
objects, where the gravities are lower, and for more massive objects, which are closer to
the Eddington limit.

Indeed, Perinotto (1989) and Kudritzki and Méndez (1989) stressed the importance
of stellar winds not only for the evolution of CSPN but also for their diagnostics. With
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a new generation of “unified model atmospheres”, which included the effects of stellar
winds and spherical extension, many CSPN were re-analysed and, indeed, somewhat
lower masses were found (Kudritzki and Méndez 1993, Kudritzki et al. 1997). In addition,
the mechanical momenta of the stellar winds determined were in rough agreement with
general scaling relations obtained from the theory of radiation driven winds and compared
to the momenta of massive O-stars, however the scatter around this relationship was
large.

The major remaining model atmosphere deficiency at this stage was the neglect of
metal line opacity, which - if included - needed to be calculated in NLTE, certainly a
formidable problem. This problem has been overcome in recent years and a wide variety
of very efficient model atmosphere codes does exist now taking into account the effects
of millions of metal lines in NLTE and the velocity fields of stellar winds together with
spherical extension. These new codes allow for detailed studies of the UV spectra and a
re-analysis of the optical spectrum now with the inclusion of line-blanketing. This is the
subject of the review presented here. We will focus on low gravity, relatively cool O-type
CSPN. WR-type objects and objects of higher gravity are discussed in other reviews in
these proceedings.

2. UV spectroscopy of CSPNs
A significant number of good UV-spectra of CSPN obtained with IUE, HST, and

recently with FUSE are available. Many of them show the signatures of stellar winds
through broad P-Cygni profiles of resonance lines, which are frequently used to determine
terminal velocities of the stellar winds and estimates of mass-loss rates. However, the
latter are usually very uncertain, either because the wind lines are strongly saturated or
because the ionization equilibria in the wind are uncertain and affected, for instance, by
the presence of soft X-rays and EUV radiation emitted in stellar wind shocks.

On the other hand, there are also thousands of photospheric metal lines in the UV
spectra of CSPN and their analysis provides independent means to determine effective
temperatures through photospheric ionization equilibria such as Fe iv/v. They also allow
for an accurate determination of stellar metallicity. Pauldrach et al. (2004) and Herald
and Bianchi (2004a) have carried out such studies and determined temperatures and
metallicities for a larger sample of CSPN. Compared to Méndez et al. (1988) and Ku-
dritzki et al. (1997), this work generally confirms the effective temperatures derived from
the optical line spectrum. This is important in the cases of those CSPN which have a
much higher He ii “Zanstra-temperature” (the standard example is NGC 2392). The UV
work makes it clear that the high nebular ionization observed in these cases is not caused
by a central star with an extremely high atmospheric temperature.

The downside of the “photospheric” UV-work is that it does not allow for a direct
spectroscopic determination of stellar gravities. Thus, if not combined with optical spec-
troscopy, there is no direct spectroscopic way to determine masses, radii, and luminosities.
This is only possible, if independent assumptions about the distance are made. A beau-
tiful example is the work by Herald and Bianchi (2004b) of 7 LMC CSPN. Assuming
a distance to the LMC, the determination of Teff from the UV spectrum allows to
determine radii, luminosities and, then, with post-AGB evolution, stellar masses. Very
convincingly, the authors obtain stellar masses between 0.55 and 0.65 M�.

Pauldrach et al. (2004) use a very interesting different approach. Realizing that the
theory of radiation driven winds predicts a strong dependence of mass-loss rates and
terminal velocities on stellar luminosity and stellar mass (see Kudritzki and Puls, 2000,
and references therein), they use a concept first worked out by Kudritzki et al. (1992)
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Figure 1. Upper part: isocontours of the logarithm of log [Wλ(HeI4471)/Wλ(HeII4542)] and
Wλ(Hγ ) in the (log g, log Teff ) - plane. Dashed isocontours are unblanketed models, solid are
blanketed. Vectors indicate the shifts caused by the effects of NLTE metal line blanketing. The
calculations were done with the NLTE code FASTWIND (Puls et al., 2005). Lower part: Shifts
in the (log g, log Teff ) – plane (left) and HRD (right) caused by the use of blanketed model
atmospheres overplotted to post-AGB evolutionary tracks by Vassiliadis & Wood (1994). The
tracks are labelled by their stellar masses.

to determine stellar masses and luminosities from the observed terminal velocities and
the UV-mass-loss rates. They study the same CSPN sample as Kudritzki et al. (1997)
and obtain very similar effective temperatures. But for many objects, the masses and
luminosities are significantly different leading to the conclusion that either the stellar
wind hydrodynamics or the core mass-luminosity relationship of post-AGB evolution,
which was the basis for the work by Kudritzki et al. (1997), are not completely accurate.

The second conclusion, if true, would have enormous repercussions for the interpre-
tation of post-AGB evolution. Looking critically at the results obtained by Pauldrach
et al., we note that only two of their nine objects have masses below 0.8 M�, five have
masses between 1.3 and 1.4 M� just below the Chandrasekhar limit, and two are in be-
tween. For a number of reasons, that seems to be in conflict with galactic evolution and
dynamics (see Napiwotzki 2006). We also note that in their determination of mass-loss
rates, Pauldrach et al. (as did Kudritzki et al.) assumed homogeneous, unclumped winds,
an assumption which might not be justified, as we will discuss later. A re-analysis of the
optical spectra of these CSPN, now using blanketed models, can perhaps help to clarify
the situation. This will also be described later.
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3. The effects of metal line blanketing
The inclusion of the opacity of millions of spectral lines in NLTE has two major effects.

First, it changes the spectral energy distribution in the UV because of strong metal line
absorption in the outer atmosphere (“line-blanketing”). However, about 50 percent of the
photons absorbed are scattered back to the inner photosphere providing additional energy
input and, thus, heating of the deeper photospheres. This second “backwarming” effect
increases the continuum emission from the photosphere and modifies ionization equilibria
such as He i/ii, which are used for the determination of Teff . Fig. 1 demonstrates how the
He i/ii ionization equlibrium is shifted towards lower Teff because of the backwarming
effect. At the same time, the pressure-broadened wings of the Balmer lines (the standard
diagnostic for log g) become weaker, because the millions of metal lines increase the
radiative acceleration grad and decrease the effective gravity geff = g – grad. As a result
higher gravities are needed to fit the Balmer lines (see Fig. 1) in addition to the lower
temperatures obtained from the helium ionization equlibrium. In summary, the use of
blanketed models leads to systematic shifts in the (log g, log Teff ) – plane, which if
compared with post-AGB evolutionary tracks result in systematically lowering CSPN
masses, radii, luminosities and distances. Note that the presence of dense stellar wind
envelopes increases the effects of backwarming and introduce an additional dependence
on mass-loss rates (see Sellmaier et al. 1993, Repolust et al. 2004).

The combined effects of line blanketing and backwarming affect also the ionizing fluxes.
Amazingly, for the ionization of hydrogen the changes are very small as the effects of
blanketing and backwarming balance each other. However, the ionization of ions with
absorption edges shorter than the one for hydrogen is significantly affected (see Kudritzki
2002, Martins et al. 2005).

4. Detailed analysis of optical spectra and the effects
of wind clumping

The significant effects caused by NLTE line-blanketing make it worthwhile to re-analyse
the optical spectra of the sample studied by Kudritzki et al. (1997). This will also allow
for a comparison with the UV-study carried out by Pauldrach et al. (2004) discussed
above. For our analysis we use the NLTE code FASTWIND (Puls et al. 2005), which
includes the effects of NLTE metal line opacities, stellar winds, and spherical extension.
The strategy for the analysis is identical to Kudritzki et al. (1997) (see also Repolust
et al. 2004, for more recent work). Teff and helium abundance are obtained from a fit to
the He i and He ii lines, while the gravity is determined from the higher Balmer lines.
Hα as the strongest optical hydrogen line is formed in the stellar wind and, thus, used to
constrain the mass-loss rate. The terminal velocity follows from fits to the UV P-Cygni
lines.

While Hα is, in principle, a perfect tool to measure mass-loss rates (see Kudritzki and
Puls 2000, Kudritzki 2006, for discussion and references), the results might be affected
by stellar wind clumping. It has long been known that line driven winds are intrinsically
unstable (Owocki et al., 1988, 2004). This might lead to inhomogeneous, clumped winds
such as described by Owocki and Runacres (2002) with regions of enhanced density ρcl

and regions, where the density is much lower. In a very simple description, introducing
clumping factors fcl similar as in PN diagnostics, the relationship between the average
density of the stellar wind flow ρav and the density in the clumps is then given by
ρcl = ρavfcl. The same relationship holds for the occupation numbers ni of ions.
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Figure 2. Diagnostics of the stellar wind emission lines Hα (left) and He ii 4686 (right) of IC
418. In the top row fcl = 1 is adopted and in the bottom we use fcl = 50. Note that for Hα

nebular lines have been (imperfectly) subtracted.

Line opacities κ depend on density through κ ∝ ni ∝ ρx and for very small, optically
thin clumps the average optical line depth in the wind is given by τav ∝ nav

i ∝ ncl
i f−1 ∝

ρx
avfx−1. For a dominant ionization stage we have x = 1 and the clumping along the

line of sight cancels and does not affect the diagnostics. However, bound hydrogen is a
minor ionization stage in hot stars, depending on recombination from ionized hydrogen
with ni(H) ∝ nEnP ∝ ρ2. Thus, if fcl is significantly larger than one, the Hα mass-loss
rate diagnostic is systematically affected and we have Ṁ(Hα) = Ṁ(true)f1/2

cl , following
from the fact that Ṁ(true) ∝ ρav.

The spectral diagnostics of clumping in CSPNs is difficult. In principle, it requires
the comparison of lines with different exponents x in the density dependence of their
opacities. In WR-type CSPNs with very dense winds and very strong wind emission lines
(see these proceedings or Hamann et al. 2003) incoherent electron scattering produces
wide emission wings, the strength of which goes with x ∼ 1. Clumping factors of the
order of ten to twenty were found. This technique does not work for O-type CSPN, as
their winds have much lower density. Also the UV P-Cygni lines of dominant ions provide
usually little help, as these lines are mostly saturated and the ionization equlibria are
uncertain. However, in most recent work on massive O-stars using FUSE and Copernicus
spectra the P v resonance lines at 1118 and 1128 Å have been used as an indicator
of clumping. The advantage of P v is the low cosmic abundance, so that the line is
completely unsaturated even when in a dominant ionization stage. Substantial clumping
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Figure 3. Diagnostics of the stellar wind emission lines Hα (left) and He ii 4686 (right) of He
2-108. fcl = 1 is adopted for the fit. Same as Fig 2 for the nebular lines.

Table 1. Stellar parameters of CSPN analyzed

object Teff log g He ab. R/R� log L/L� M/M� d Ṁ v∞ fcl det.

103K cgs kpc log M�/yr km/s

He 2-131 32 3.2 .33 3.5 4.07 .71 3.3 -6.88 400 8 y
Tc 1 34 3.2 .09 3.8 4.23 .81 4.4 -7.46 900 10 n
He 2-108 34 3.4 .09 2.6 3.92 .63 5.8 -6.85 700 1 y
IC 418 36 3.2 .17 4.0 4.38 .92 2.7 -7.43 700 50 y
IC 4593 40 3.6 .09 2.2 4.05 .70 3.5 -7.36 900 4 n
NGC 2392 44 3.6 .23 2.4 4.30 .86 2.8 -7.32 400 1 n
NGC 6826 46 3.8 .09 1.8 4.11 .74 2.6 -7.10 1200 4 n
IC 4637 52 4.2 .09 1.0 3.85 .62 1.3 -7.91 1500 4 n
NGC 3242 75 4.8 .09 0.5 3.89 .63 1.8 -8.08 2300 4 n

was found (Hillier et al. 2003, Bouret et al. 2005, Fullerton et al. 2006). Unfortunately,
only a few useful FUSE spectra are available for our sample. We have, therefore, applied
a different technique to constrain clumping, at least for a subset of our objects.

For cool O-type CSPN with Teff � 37, 000 K He ii is a dominant ionization stage.
That means for objects with strong winds and He ii 4686 in emission and formed in the
wind this line should have a density dependence close to x = 1. Its strength relative to
Hα should allow one to constrain fcl.

In the following we present the results of this new work. For lack of space we do not
show typical examples of the fits of lines which constrain Teff , log g, and the helium
abundance and refer to Kudritzki et al. (1997). Fig. 2 demonstrates in our most extreme
case how fcl is constrained. fcl = 1 leads to far too strong emission of He ii 4686 relative
to Hα. A very large value of fcl = 50, however, improves the fit significantly. Fig. 3 gives
an example of the other extreme where a homogeneous wind with fcl = 1 results in a
very satisfactory fit. A summary of all results is given in Table 1. Note that the last
column indicates the three cases where we were able to constrain fcl. In the other cases,
either nebular emission did not allow for a determination (Tc 1) or the objects were too
hot for the method to be applicable.
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Figure 4. Left: Observed CSPN stellar wind momenta (this work) compared with those of
massive O-stars (Repolust et al., 2004, Markova et al., 2004). Right: Calculated stellar wind
momenta for the CSPN of this work and massive O-stars using the theory of line driven winds
as developed by Kudritzki (2002). Symbols refere to model calculations. The dashed lines are
the regression curves obtained from the observations of massive O-supergiants and dwarfs. The
solid line represents the theoretical approach by Vink et al. (2000).

5. Discussion and future work
Comparing our results to Pauldrach et al. (2004) we find reasonable agreement for

the effective temperatures for all cases (except He 2-108, which we find to be 17 percent
cooler). This is very satisfying given the fact that different spectroscopic techniques were
used for the determination of Teff . However, in all but one case (He 2-131) the gravities
obtained through our fitting of the Balmer lines are substantially lower. If one corrects
for the temperature dependence of the Balmer lines (see Fig. 1) and the slightly different
temperatures obtained, our gravities are on average 0.3 dex smaller. The reason is clearly
the completely different approach used to determine gravities, as explained in section 2.
Pauldrach et al. relied on the hydrodynamic simulation of stellar winds, whereas we have
have used the classical spectroscopic concept of Balmer line fitting. This will need further
investigation.

For the determination of masses, radii, luminosities, and distances we have used again
the classical approach of using the post-AGB core mass - luminosity relationship. Com-
pared to Kudritzki et al. (1997) our masses are generally smaller in agreement with
what we expect from section 3, however some of them (IC 418, NGC 2392) are still
uncomfortably high.

The mass loss rates determined are uncertain because of the effects of stellar wind
clumping. However, if we take into account that mass-loss rates determined with Hα

scale with the stellar radius adopted as Ṁ ∝ R3/2 (Kudritzki and Puls 2000) and com-
pare with Pauldrach et al. we find agreement within a factor of two except for IC 418.
Fig. 4 shows the CSPN wind momenta of our study compared to massive O-stars. There
are two ways to interpret this plot. One is that CSPN form a convincing extension of the
wind momentum - luminosity relationship of massive O-stars towards lower luminosities.
Another one is that within the luminosity range of CSPN alone there is no clear rela-
tionship between wind momentum and luminosity (see also Tinkler and Lamers, 2002).
Whether this is because of the uncertainties of mass-loss rate diagnostics or of the lumi-
nosity determinations, or both, will need further investigation.

It is interesting to compare this result with stellar wind models obtained with the the-
ory of line driven winds. This is also done in Fig. 4, where we use the method by Kudritzki
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(2002) to calculate wind momenta for the CSPN of Table 1. With a few exceptions the
theoretical momenta are in the right ballpark.

Several steps need to be undertaken for future work. The first is to extend the work
presented here and to re-analyse the UV-spectra of the sample and to compare in detail
to see whether or not the results obtained from the two spectral windows are compatible,
in this way addressing the original point made by Pauldrach et al. (2004). Taking into
account the effects of clumping through the diagnostics of the P v and similar lines will
be crucial.

A very important issue is the compatibility of stellar wind hydrodynamics with the
stellar parameters derived by our method. While the wind momenta seem to agree within
the observational errors, the terminal velocities calculated are too small in many cases for
the parameters obtained by us. Whether this is a deficiency of stellar wind hydrodynamics
or of the Balmer line diagnostics used, remains to be investigated. We note that one
modification to be made in the wind hydrodynamics is the inclusion of clumping factors.
It will be interesting to see whether this will help to resolve the discrepancy.
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