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ITÔ’S THEOREM AND MONOMIAL BRAUER
CHARACTERS II

XIAOYOU CHEN and MARK L. LEWIS�

(Received 27 July 2017; accepted 4 August 2017; first published online 4 October 2017)

Abstract

Let G be a finite solvable group and let p be a prime. We prove that the intersection of the kernels of
irreducible monomial p-Brauer characters of G with degrees divisible by p is p-closed.
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All groups are finite throughout this note. A group G is said to be p-closed for the
prime p if G has a normal Sylow p-subgroup. In [5], Pang and Lu proved that when G
is solvable and there is a prime p so that p does not divide the degree of any monomial
irreducible character, then G is p-closed. In our paper [1], we mistakenly stated that
they also proved the converse. When G is a nonabelian p-group, it is p-closed and has
at least one monomial irreducible character whose degree is divisible by p. Thus, not
only did Pang and Lu not prove the converse; in fact, the converse is not true. We note
that Pang and Lu’s theorem can be viewed as a generalisation of the normality part of
Itô’s theorem.

In [6, Theorem 1.1], Pang and Lu proved a further generalisation of Itô’s theorem.
In particular, when G is solvable and p is a prime, they defined M to be the intersection
of the kernels of the irreducible monomial characters of G with degrees divisible by
p. When no such character exists, M is defined to be G. By [6, Theorem 1.1], M is
p-closed. The example from the previous paragraph shows that the converse need not
be true.

For Brauer characters of p-solvable groups, Itô recovered the normality of Sylow
subgroups (see [3, Theorem 13.1(b) and (c)]). We generalised this result in [1] for
solvable groups by only using the monomial p-Brauer characters. Following the idea
of Pang and Lu, we now let IBrm,p(G) be the set of irreducible monomial p-Brauer
characters of G whose degrees are divisible by p and we defineM to be the intersection
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of the kernels of Brauer characters in IBrm,p(G). When IBrm,p(G) is an empty set, we
setM = G. The following is our main result.

Theorem 1. If G is a solvable group and p is a prime divisor of |G|, thenM is p-closed.

Proof. We work by induction on |G|. We may assume thatM > 1. Let N be a minimal
normal subgroup of G contained inM. Since⋂

ϕ∈IBrm,p(G/N)

kerϕ =M/N,

it follows by induction that M/N is p-closed. Let P be a Sylow p-subgroup of M.
Then PN/N is a normal Sylow p-subgroup ofM/N. If N is a p-group, then PN = P
and so P is normal inM. Thus, we may assume that N is an abelian q-group for some
prime q , p.

Write H = PN and observe that H is a normal subgroup of G. By the Frattini
argument,

G = HNG(P) = NPNG(P) = NNG(P).

Observe that N ∩ NG(P) is normal in NNG(P) = G. Applying the minimality of N,
either N ≤ NG(P) or N ∩ NG(P) = 1. If N ≤ NG(P), then G = NG(P) and P is normal
inM, as desired.

Now assume that N ∩NG(P) = 1. Let 1N , λ ∈ IBr(N) = Irr(N) and write T = IG(λ)
for the inertia group of λ in G. Since N is complemented in G, we see that N is
complemented in T . Using [2, Problem 6.18], it follows that λ extends to ν ∈ Irr(T ).
Let µ be the restriction of ν to the p-regular elements of T . We see that µ ∈ IBr(T )
and µN = λ. Applying the Clifford correspondence for Brauer characters [4, Theorem
8.9] gives ϕ = µG ∈ IBr(G). This implies that ϕ is monomial with degree |G : T |. If
p divides ϕ(1) = |G : T |, then N ≤ ker ϕ as ϕ ∈ IBrm,p(G) and so N ≤ ker µ as ϕ = µG.
This yields N ≤ ker(µN) = ker λ and we deduce that λ = 1N , which is a contradiction
to the choice of λ.

Consequently, p does not divide ϕ(1). Hence, there exists some Sylow p-subgroup
of G that is contained in T . Since P ∈ Sylp(H) and PN = H CG, we may, without
loss of generality, assume that P ≤ T . For all elements x ∈ P and n ∈ N, we have
λ(n) = λx(n) = λ(xnx−1). Since λ is linear, this yields λ(xnx−1n−1) = 1. Because λ is
arbitrary, it follows that

[P,N] ≤
⋂

λ∈IBr(N)

ker λ = 1.

We conclude that N centralises P. This implies that P is a characteristic subgroup of
H = PN and, therefore, P is normal inM, as desired. �

Now we obtain the main result of [1] as a corollary.

Corollary 2. Let G be a solvable group and p be a prime divisor of |G|. Then G is
p-closed if and only if p does not divide ϕ(1) for every monomial Brauer character
ϕ ∈ IBr(G).
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Proof. Note that if p does not divide the degree of every monomial irreducible
Brauer character, then IBrm,p(G) = ∅ and so M = G. By Theorem 1, G is p-closed.
Conversely, as we noted in [1], if G is p-closed, then p does not divide the degree of
any irreducible Brauer character. �

We also obtain a corollary in terms of the quotients of the group.

Corollary 3. Let G be a solvable group and p be a prime divisor of |G|. Then G is
p-closed if and only if G/ kerϕ is p-closed for every Brauer character ϕ ∈ IBrm,p(G).

Proof. Let P be a Sylow p-subgroup of G. Suppose first that G is p-closed. We see
that P is normal in G and P ⊆ kerϕ for every Brauer character ϕ ∈ IBr(G). Therefore,
G/ kerϕ is p-closed. (In this case, the Sylow p-subgroup of G/ kerϕ is trivial.)

Conversely, suppose that G/ ker ϕ is p-closed for every Brauer character ϕ in
IBrm,p(G). Let ϕ be any Brauer character in IBrm,p(G). By hypothesis, G/ ker ϕ is
p-closed, so we may assume that kerϕ > 1. Since G/ ker ϕ is p-closed, it follows that
P ker ϕ ⊆ ker ϕ and so P ⊆ ker ϕ. Therefore, P ⊆ M. By Theorem 1, P is a normal
subgroup ofM. We see that P is characteristic inM, which is normal in G, and we
conclude that P is normal in G, as desired. �
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