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The product of vector-valued measures

Charles Swartz

Let M (N) be a O-algebra of subsets of a set 5 (T) and

le t X, y be Banach spaces with < , > a continuous bi l inear

map from X x Y into the scalar f ie ld . If u : M -»• X

(v : W -»• X) i s a vector measure and X is the scalar measure

defined on the measurable rectangles A * B, A (. M, B € N , by

A(dxB) = <uU), v(B) > , i t is known that X is generally not

countably additive on the algebra generated by the measurable

rectangles and therefore has no countably additive extension to

the O-algebra generated by the measurable rectangles. If u

(v) is an indefinite Pet t i s integral u = fda V = gd&\ ,

i t i s shown that a necessary and sufficient condition that X

have a countable additive extension to the a-algebra generated

by the measurable rectangles is that the function

F : ( s , t) -+</(s) , g(t)) i s integrable with respect to a .x 3 •

Let (£, M) and (T, W) be measurable spaces and l e t H be a

Hilbert space. If u : M •*• H and V : N •+ H are vector measures ( [6 ] ,

IV.10), then for a measurable rectangle A x B, A € M, B € W , we may

define a scalar set function X by

(1) X(4xB) = (uU) , V(B)) ,

where ( , ) is the inner product in H . If A denotes the algebra of

subsets of S x y generated by the measurable rectangles, then X can be

extended to a finitely additive set function on A in the usual fashion.

P. Masani posed the question as to whether X is countably additive on

A . Of course, if X is countably additive on A , one would like to know
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if X has a countably additive extension to the O-algebra, Z , generated

by A . In [53 and [JO], examples are given that show A may fail to be

countably additive on A . In this note we consider the question as to

when X has a (finite) countably additive extension to the a-algebra Z .

In Theorems 1 and 3 we present necessary and sufficient conditions for an

inner product of certain types of vector measures (indefinite Pettis

integrals) to have such a countably additive extension. Our methods are

applicable to a more general situation than described above so the results

are considered in the more general setting.

Let X, Y be B-spaces and let < , > be a continuous bilinear map

from X x y into the scalar field, which we assume to be R for

convenience. (Strictly speaking, the inner product above does not f i t into

this setting if the Hilbert space is complex, but by introducing conjugates

in the appropriate places this can be taken care of with no difficulty.)

If y : M -*• X and v : W •+ Y are vector measures, we define a scalar set

function X on measurable rectangles A x B, A £ M, B £ N , by

(2) \(AXB) = <u(/4), v(B) > .

If A is again the algebra generated by the measurable rectangles, X has

a finitely additive extension to A . We consider the question as to when

X has a finite countably additive extension to Z , the 0-algebra

generated by A . The vector measures which we consider are vector

measures which are indefinite Pettis integrals (see [S] for a discussion of

the Pettis integral; in particular Theorem 3-7-2). A Hilbert space valued

measure can be realized as an indefinite Pettis integral if (and only if)

the measure has o-finite variation ([9], k.3) so Theorems 1 and 3 are

applicable to a large class of Hilbert space valued measures (as well as

Banach space valued measures). It should be noted that Theorems 1 and 2 of

[9] give necessary and sufficient conditions for a vector measure to be an

indefinite Pettis integral.

Henceforth, a (3) will denote a o-finite positive measure on M

(W) •

THEOREM 1 . Let f : S -> X (g : T ->• X) be strongly measurable and

Pettis integrable with respect to a (3) and set \i(E) = fda , E € M
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gd& , E i M\ . If A defined by (2) has a (finite) countably
>E

additive extension to £ , then the function F : SxT -*• R , defined by

, . E i I .F{s, t) = < / ( s ) , g(t)> , is in ^ ( a x g ) and \(E) = I
>E

Proof. Firs t we show A << axg . For this i t is enough to show

n
A « axg on A ( [ 6 ] , IV.9.13 and I I I . I t . 1 3 ) . Suppose E = U A .xB. € A ,

with {/4.xB.} pairwise d i s j o i n t , and axB(£) = 0 . Then a ( 4 . ) = 0 or

B ( B . ) = 0 for each i so t h a t \(E) = 0 .

Let h be the Radon-Nikodym d e r i v a t i v e of X with r e spec t t o

a*3 • Since F i s c l e a r l y measurable, i t su f f i ces t o show h = F ax-Q-

almost everywhere. F i r s t consider the case where both a and 3 are

f i n i t e . In t h i s case r e c a l l t h a t / ' (g) can be r e a l i z e d as an improper

Bochner i n t e g r a l , t h a t i s , t he r e i s a sequence {A } [{B }) of

M-measurable s e t s (M-measurable s e t s ) such t h a t A i S [B + T] and

I fda = lim Bochner I fda gd& = l i m I gd&\ ( [ 9 ] , k . l ) . Now
'A n 'AnA ^'B iBnB >

n n

F is axg integrable in each A x B since / and g are Bochner

integrable in A and B , respectively. Also if -4x5 is a measurable

rectangle contained in A x B ,

n n
(3) AUxB) = f Tzdaxg = {[ fda, [ gd&) = f (f(s), f g(t)d&(t))da(s)

>A*B >A >B ' >A x 'B '

s), g(t)W(t)da(s) = f
'A-x

[
A 'B

so that h = F axg-almost everywhere in A x B . Since A \ S and
n n n

B t T , h = F axg-almost everywhere in S * T .

If a and 3 are a-finite, write S = U S^ with a(S ) < «> and

n=i n

00

T = U T with 3(T ) < °° and apply the result above in each S x T
7 ^ 1
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to obtain F = h almost everywhere in 5 x 7 .

REMARK 2. Theorem 1 can be considered to be a vector analogue of

Theorem 21.29 of [ 7 ] , that i s , the Radon-Nikodym derivative of the product

measure A is the "product" of the Radon-Nikodym derivatives of p and

v , where "product" i s interpreted to be given by the bi l inear map

< , > . One obvious case when F is integrable is when both / and g

are Bochner integrable since \F{s, t)\ 2 c | | /(s) | | | |^(t) | | .

THEOREM 3. Let the notation be as in Theorem 1. If the function F

is ax-8-integrable, then X has a finite oountably additive extension to

Z .

Proof. Define a measure A' on £ by A1 (E) = Fdax$ . By the
>E

computation in (3), X' and X agree on any measurable rectangle and

therefore agree on A . Hence X' gives a countably additive extension of

A to £ .

The example presented in [5] can be considered in the context of

Theorems 1 and 3. For convenience let the measure space be the positive

integers N with every subset of N measurable. Let \§n\ ^ e a n

orthonormal sequence in I and set u(/l) = 7 m <f> for A c N .
m*A m

Then u is a vector measure which is the indefinite Pettis integral of the

function f{m) = m <J> with respect to the counting measure on N .

Similarly, le t {x } = {<(> /Iliji 11} be the normalized orthogonal sequence in

Proposition 2 of [5] and set v(A) = \ 2 X so that v is the

indefinite Pettis integral of the function g{m) = 2 X with respect

to the counting measure. Then the computation on page 8̂ 5 of [5] shows

that the function F = (f, g) is not integrable with respect to the

counting measure on N x N .

Also with the aid of Theorems 1 and 3 a Fubini-type theorem for

products of vector measures can be formulated. In particular, we can

easily obtain
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PROPOSITION 4 . Let B : S*T •*• R be bounded and I measurable. If

F (as in Theorem 1) is a.xQ>-integrable, then

(It) f Hd\ = f BFda*& = f (f H(s, t)f(s)da{s), g ( t ) W t ) .

Proof. For each t , His, t)f(s)du(s) exists as a Pettis
'S

i n t e g r a l ( [ 3 ] , Theorem It), and by F u b i n i ' s Theorem t h e funct ion

t •* j H(s, t)F(s, t)da(s) = U U(e, t)f(s)da(s), g(t)} i s B - i n t e g r a b l e

s s
with (It) holding.

REMARK 5. Of course, the restriction that B be bounded in

Proposition It is very undesirable. However, i t is difficult to give

conditions that insure that the integral B(s, t)f(s)da(8) exists as a

Pett is integral (see the remark preceding Theorem It in [3]) .

REMARK 6. The i terated integral in Ct) can also be considered in

another way. The "inside" integral H(s, t)f(s)da(s) is equal to
>S

H(s, t)dp(s) , where this integral is understood to be the vector-
' s

measure integral as in [6] , IV.10. Also if H is bounded by M > 0 ,

H{s, t)d\iis)l S M3emi-var(u)(S) , ( [6 ] , IV.10.8), and therefore if the

function tj> : t -*• \ His, t)d\iis) is measurable, the integral
>S

( His, t ) d u ( s ) , d v ( t ) > e x i s t s i n the sense of Bar t l e ( [ 2 ] , Theorem It)
>T 'S '

and is equal to Hd\ in (!t). Concerning the measurability of the

'SxT

function \\> i t is clear by Fubini's Theorem that for each x' € X' the

function x'ty is measurable. Therefore i t suffices to observe that tfi

has almost separable range ([6], III.6.11); for th is , i t is enough to

observe that the measure U is almost separably valued. There exists a

sequence of M-simple X-valued functions {S } such that S •* f a-
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almost everywhere and \\S i')\\ 5 ||/(")ll • For convenience, assume that

S •*• f everywhere, the a-null set being ignored. Then

converges weakly to I fda. = u(/l) for each A € M . Therefore i f X. i s
'A

the closed subspace spanned by the range of the {S } , \i(A) £ Xn for

each A € M ( [ 6 ] , V.2.1U). Thus y has almost separable range and the

measurability of 4> i s established.

REMARK 7. Of course, the integrals in (It) and Remark 6 can also be

evaluated as the i t e ra ted in tegra ls ,

(5) f Hd\ = f (f(s), f H(s, t)g(t)dBit))da(s)

= | (duis), | His, t)dvit)^ .

Under the additional restriction that the functions / and g in

Theorem 1 are Bochner integrable, the requirement that the function H in

Proposition h be bounded can be somewhat relaxed. That i s , we have

PROPOSITION 8. Suppose that the measures V and v in Theorem 1

are of bounded variation with variations vi\i) and v(v) (that is, f

and g are Bochner integrable). If H is integrable with respect to

vi\x) x u(v) , then H is integrable with respect to X and equations ik)

and (5) hold.

Proof. For A 6 M and B t N ,

vM(A*B) = f \F\d\ < f ||/||<fa f ||?||<2B = vi\i) x V(v)(/lxB)
'A*B 'A >B

([4], II.10.5). Thus vi\) 5 v(\i) x v(v) on A and hence on £ , and H

is integrable with respect to A . For each t £ T , #(", t) is

integrable with respect to u(p) and / is Bochner integrable with

respect to a so that H( •, t)f is a-integrable with

j His, t)f(s)dais) = I His, t)dy(s)
'S 'S

([4], II.10.U). Since
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H{a, t)/(a)da(s)| 5 J |fl(s, t) |

the function t •* |#(s, t) \ ||/"(s)||<iu(s) is v(v)-integrable, and the
>S

function (f> : t -»• I # ( s , t ) / ( s )da(s) i s measurable (by an argument as in
]S

Remark 6 ) , the function <|> is also v(v)-integrable. By [4 ] , II.10.1) the

the function t -* C<|)( t), g{ t) > is B-integrable and

(j fl(a, t)f(s)da(s),

= f (f H(s, t)dv(s), dv(t)) = [ HdX
>T 'S ' JSxT

Similarly, (5) can be established.

In closing it should also be remarked that [7] contains a version of

the Fubini Theorem for vector measures. The hypotheses of this theorem

are so lengthy that it may be difficult to use the theorem in practice.
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