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1. Introduction

By Lagrange’s theorem, every finite group G of order n has the property that g" =1
for every g € G. One could ask whether a similar theorem is true for a finite locally
free group scheme G of rank 7 over a base scheme X. Let [n]: G — G be the composite
of the diagonal and multiplication morphisms G — G" and G" — G.

QUESTION. Is G annihilated by n? In other words, does the morphism [r] factor as
G — X 5 G where e: X — G is the unit section of G?

P. Deligne showed in 1969 that the answer to the question is affirmative whenever G
is a commutative group scheme [8, p. 4] or [9, (3.8)]. His result holds for an arbitrary
base X. It is known that a non-commutative group scheme is annihilated by its rank
when X is the spectrum of a field or, more generally, when the base scheme X is
reduced [4, Exp. VII4 Prop. 8.5]. This is also an easy consequence of our Proposition
2.1. The general problem is still open [§, Remark p. 5] or [9, (3.8)]. “Il serait
intéressant de trouver une démonstration dans ce cas général”’, A. Grothendieck
writes in SGA 3 [4, Exp. VIII, Remarque 7.3.1].

In this paper we answer the question in a special case. To explain our result, we
note that it suffices to consider the case where the base scheme X is the spectrum
of a local ring R. Then G = Spec(4) where A4 is a finite free R-algebra of rank
n. The group scheme G is determined by the R-Hopf algebra structure of 4. Choosing
an R-basis for A, this structure can be specified by a finite number of matrices with
entries in R. Replacing R by the subring generated by these entries and localizing
once again, we may assume that G is a finite free or, equivalently, flat group scheme
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over a local Noetherian ring R. By Krull’s Theorem we may even assume that R is a
local Artin ring. This opens the possibility to proceed by induction with respect
to the length of R. When the length is one, R is a field and the answer to
Grothendieck’s question is affirmative.

In this paper we deal with Artin rings of length larger than 1. In particular, we
answer the question affirmatively for Artin rings the square of whose maximal ideal
is zero. Artin rings of length 2 are a special case. Our main result is the following.

THEOREM 1.1. Let R be a local Artin ring with maximal ideal m and residue field of
characteristic p > 0. Suppose that W’ = pm = 0. Then every finite flat group scheme
over R is annihilated by its rank.

COROLLARY 1.2. Let R be a local Artin ring with maximal ideal m satisfying
m? = 0. Then every finite flat group scheme over R is annihilated by its rank.

Indeed, if the characteristic of the residue field is positive, the result follows from
Theorem 1.1. On the other hand, if the characteristic of the residue field k& of R
is zero, the reduced group scheme G ® k, and hence G itself, is necessarily étale
[10, 11.4]. By ordinary group theory G ® k is annihilated by its rank. Therefore
so is G ® k. Since reduction modulo m induces an equivalence between the categories
of finite étale group schemes over R and k respectively [3, 1.6.1], it follows that G is
annihilated by its rank as well.

If the characteristic of the ring R itself is equal to p > 0, then Theorem 1.1 says the
following.

COROLLARY 1.3. Let Rbe alocal Artinring of characteristic p > 0. If the maximal
ideal m of R satisfies m? = 0, then every finite flat group scheme over R is annihilated
by its rank.

The proof of Theorem 1.1 is given in Section 4. The strategy is as follows. As is
explained in Section 4, it suffices to prove the theorem for local group schemes over
local Artin rings with algebraically closed residue field k& of characteristic p > 0.
The rank of such group schemes is a power of p. It is not difficult to see that
the theorem holds for local group schemes of rank p” that have the property that
their reductions over the residue field k are already annihilated by p"~!. Therefore
we study in Section 2 local group schemes over an algebraically closed field k& of
rank p" that are not annihilated by p”~!. The main result is Proposition 2.3. It is
the critical ingredient for the proof of Theorem 1.1. Proposition 2.3 implies that
there are only two types of exceptions. In Section 3 we show that the exceptional
group schemes only allow trivial flat deformations. Since group schemes over k
are annihilated by their ranks, this implies Theorem 1.1.

For the ring k[¢], ¢ = 0, a proof of Corollary 1.2 was obtained earlier, jointly
with Fabrizio Andreatta. I would like to thank Fabrizio Andreatta, Francesco
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Baldassarri, Cornelius Greither, Ben Moonen and the referee for their useful
remarks concerning this paper.

2. Group Schemes over Fields

In this section we consider finite group schemes over an algebraically closed field of
characteristic p > 0. The first proposition was explained to me by Bas Edixhoven.

PROPOSITION 2.1. Let G = Spec(A) be a finite free group scheme over aring R. Let
I C A denote the augmentation ideal of A. Let p be a prime and let [p]: A — A denote
the algebra morphism corresponding to the morphism [p]: G — G. Then
[pI(I) C pI +IP.

Proof. Since pI = pA NI we may replace R by the ring R/pR and show that
[pI(I) C I”. Let ¢ denote the rank of G. Consider the closed immersion of G into
the linear group GL, that is induced by the action of G on its Hopf algebra A
via left translations [10, 3.4]. Let B = R[Y11,..., Yig, ..., Y1, ..., Yy, 1/det(Yy)],
equipped with the obvious comultiplication morphism, be the Hopf algebra of the
group scheme GL, and let ¢: B — A be the surjective morphism of Hopf algebras
corresponding to the immersion G — GL,. Let ¢ be the g x g-matrix given by

Y - Yy

qu Ce qu

The entries of the matrix ¢ — id generate the augmentation ideal I’ of B and, hence,
the entries of o —id = (6 —id)y’ generate [p](I’). This means that [p](I") C I”.
Applying ¢ we find that [p](/) C I” as required.

The following well-known fact is an easy corollary:

COROLLARY 2.2. Finite group schemes over fields are annihilated by their ranks.
Proof. It suffices to show this when the ground field is algebraically closed. Then
there is for any finite group scheme G an exact sequence of group schemes

0> G- G— G*'— 0,

where G denotes the connected component of G and G its largest étale quotient. By
ordinary group theory, G is annihilated by its rank. Therefore it suffices to show
that any local group scheme G = Spec(A4) over an algebraically closed field k of
characteristic p > 0 is annihilated by its rank. By [10, 14.4], the Hopf algebra A
of such a group scheme is a local Artin k-algebra of dimension a power of p.
Let p" denote the rank of G. Then the augmentation ideal I of A4 satisfies
I"" = 0. Proposition 2.1 then implies that [p"](I) = 0. Therefore the morphism
[p"]: A — A] factors through A/I = k and so G is killed by p”, as required.
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In the remainder of this section we study finite /ocal group schemes of rank p” over
an algebraically closed field k& of characteristic p. By Corollary 2.2, such group
schemes are killed by p”. The next proposition determines all finite local group
schemes that are not annihilated by any smaller power of p.

PROPOSITION 2.3. Let k be an algebraically closed field of characteristic p.
Suppose G is a local group scheme over k of rank p" that is not annihilated by
P\ Then G is isomorphic to one of the following group schemes.

() W, its Hopf algebra being isomorphic to k[X]/(X 7"y,
(i1) the closed subgroup of GL, given by

1 X . D _ pn—l_ .
{(0 1+Y)'X_O and Y _O},

in this case there is an exact sequence

0—>0—>G— wp1 —0

and the Hopf algebra of G is isomorphic to k[X, Y]/(X?, Y”H).
Proof. Case: n = 1. The proposition is true, because, up to isomorphism, the only
local group schemes of order p over k are w, and w,.

Case: n = 2. We claim that G is an extension of one group scheme of order p by
another. Indeed, by [10, 14.4] the Hopf algebra of G is isomorphic to either
k[X ]/(sz) or k[X, Y]/(X?, Y?). In the first case the kernel of the Frobenius
morphism is a normal finite subgroup scheme of G of rank p. In the second case,
we consider the p-Lie algebra L corresponding to G. It has dimension 2. If L is
commutative, the operation xi—x® is p-linear. Therefore there is an eigenvector
and this eigenvector and this eigenvector generates a one-dimensional p-Lie ideal
of L. If L is not commutative, then we can choose a k-basis e;, e, of L so that
[e1, 2] = e;. In the notation of [4, Chap. VII4, 5], let e({’) = Je; + ue; for certain
A, 1 € k. Then

per = [er, dey + pex] = [er, €] = [er, e/]? = 0.

This shows that eﬁp) € ke and, hence, that e; generates a one-dimensional p-Lie ideal
of L. By [2, I1,7.4.3.¢] the one-dimensional p-Lie ideal corresponds in either case to a
normal subgroup scheme of G of order p.

It follows that G is an extension of one group scheme of rank p by another. Since k
is algebraically closed, the only local group schemes of rank p are, up to
isomorphism, w, and o,. We discuss all four possibilities:

D 0—pu,—>G—oa,—0,
(i) 0—u, > G— u,—0,
(i) 0 > oy > G— o, > 0,
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(iv) 0 —> o, - G— p, — 0.

Asin[2, ITI] we write Ex' (H, A) for the group of extensions of an fppf sheaf of groups
H by an fppf sheaf 4 of H-modules. We remark that any such extension is an
A-torsor over H. Therefore, if H and A are represented by group schemes and
H is affine, any such extension is represented by an a group scheme as well [2, I1I,
Prop. 4.1.9].

(1) Since the automorphism group of w, is étale, the group scheme a, acts trivially
on w,. By [2, Chap. III, 6.8.6], the extension group Ex (op, 1)) is isomorphic to
the additive group k/k? which is trivial because k is algebraically closed. We conclude
that every finite flat group scheme that is an extension of «, by u,, is necessarily a
direct product and hence killed by p.

(i) Since k is algebraically closed, any group scheme that admits a filtration
with normal subgroup schemes with successive quotients isomorphic to p,, is
commutative and is isomorphic to a direct product of group schemes of the form
tym, m = 1. See [2, Chap. III, 1.4.5 and 6.8.7] for this fact. Therefore, we have
G=p, X, or G=pwp.

(ii1) I{l tlhis case G is an extension of o, by a,. By [2, Chap. 111, 6.7.7], the extension
group Ex («,,,) is a k-vector space of dimension 2. The Hopf algebra of the
corresponding extensions are isomorphic to k[ X, Y]/(Y? — aX, X?) with group law

X, N+X,Y)=(X+X,Y+Y +bWX,X)), (abeck).
Here W(X, X’) € Z[X, X'] denotes the polynomial

X+ XY —X? - X"
p

WX, X') =

Since [m](X, Y) = (mX,mY) for each m € Z, each extension is annihilated by p.
(iv) Finally we consider extensions of u, by o,. It is just as easy and more
convenient to consider, more generally, extensions of p,» by «, for arbitrary
m>=1. We write o, = Spec(k[X]/(X?)) with the additive group law and
tm = Spec(k[Y]/(Y?")) with the group law given by the formula Y 4+ Y’ + YY"
The possible actions of p,. on «, correspond to the algebra homomorphisms
K[X]/(XP) — k[X, Y]/(XP, YP") given by Xi—(1 + Y)Y'X for some unique
A€ Z/p™Z. By [2, 111, 6.7.8] the extension group Ex (tym 0p) 1s trivial for any of
these actions. Therefore any extension G of w,. by o, has its Hopf algebra isomorphic

to k[X, Y]/(X?, YP") with group law
X, V+X, Y)=(XA+Y) ' +X, Y+ Y + YY),
for some unique A € Z/p™Z. Thus

e Y):( Phaioi| Yp’)

1+ Y)Y —1
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for any / > 1. So we have that

i

P"IX, Y) = T 7'X,0),

while [p"*+1](X, Y) = (0, 0). Here p' is the exact power of p dividing 4 and u is some
unit in the ring k[ Y]/(Y?"). Since p"+ — p' > p” when i > 1, we see that [p™] kills
G whenever p divides A. So, if we insist that p™ not kill G, we must take
A€ (Z/p"Z)*. All group schemes with A € (Z/p™Z)* are isomorphic, so we may take
A = 1. Finally, since

1 X 1 X' (1 X+X+XY
0 1+YJ\0 1+Y ) \0 1+Y+Y+7YY
we see that G is isomorphic to the matrix group scheme described in the statement of

the Proposition.
This proves the proposition for n = 2.

Case: n > 2. By [10, 14.4], there are exponents e; = e; = --- = ¢, > 1 so that the
Hopf algebra of G is isomorphic to k[X], ..., X,]/(X‘fu1 ,...,X”"). The rank of G
is p" with n=e +---4+e¢. If t=3 or if t=2 and e,e; =2, we have
Y (p% —1) < p"! — 1. This implies that every monomial of degree p"~! is zero
and hence that the p"~!-th power of the augmentation ideal I vanishes. By
Proposition 2.1 this implies that [p"~']J(I) C I”"" = 0. Therefore either =1 or
t =2 and one of ey, e; is equal to 1. This means that the Hopf algebra of G is
isomorphic to either A[X]/(X”") or k[X, Y]/(X?, Y7"").

In either case there exists a filtration

0=NyCN C---CN,=G

with finite closed subgroup schemes that are normal in G and with successive
quotients Ny, 1/Ny of rank p. To see this, we consider the subgroup schemes that
are defined by the kernels of the powers of the Frobenius morphism. These give
at once the required filtration when A4 is isomorphic to k[X]/(X?"). In the case
A=kX, Y]/(X?, YPH), however, the first step is the kernel of Frobenius and this
is a normal subgroup scheme H <G of rank p?. Its Hopf algebra is isomorphic
to k[X, Y]/(X?, YP). Since p"~! does not kill G, the group scheme H is not killed
by p. By the discussion of the case n = 2 above, this means that H is isomorphic
to the matrix group of order p? described in part (iv) of the proof for the case n = 2:

~ l X . o prz—l_
H:{(O 1+Y)'X_0 and Y _0}.

The subgroup scheme K of H given by the equation Y = 0 is isomorphic to a,. Itis a
normal subgroup scheme of H. Actually, somewhat more is true.

CLAIM. The group scheme K is normal in G.
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Proof. Let R be a finite local k-algebra and consider the exact sequence

0—Homz((K/H) ® R, G,,, ® R)
—Homg(H ® R, G,, ® R) - Homg(K ® R, G, @ R).

Here all tensor products are taken with respect to k. The map g is trivial. Indeed, let
1 H® R — G, ® R be a homomorphism and let (X, Y) be the corresponding unit
in the Hopf algebra R[X, Y]/(X?, Y?) of H® R. Then h(X, 0) € (R[X]/(X?))* is the
unit corresponding to g(y). We have that

10 \Y'/1 xX\/1 0\ (1 X1+Y)
(o 1+Y> (o 1)(0 1+Y>_<0 1 )

and, hence, since G,, is commutative,
MNX(1+Y),Y)=hX,Y), in R[X,Y]/(X?, YP).

Reducing this relation modulo Y? shows that the derivative of 4(X, 0) vanishes. This

implies that 4(X, 0) is a polynomial in X?. Therefore it is constant and hence 1.
This means that every homomorphism y: H ® R — G,, ® R factors through

(H/K)® R. Since H/K = p,, every such homomorphism is therefore given by

1 X ; .
b (0 1+ Y)|—>(1 +Y), forsomeie€Z/pZ.

The non-constant homomorphisms all have kernel K ® R. Since any automorphism
of H® R permutes the non-constant homomorphisms H ® R — G,, ® R, the
subgroup scheme K ® R is stable under automorphisms. Since this is so for every
finite local k-algebra R, the same is true for every finitely generated k-algebra R
and this means that K is normal in G. It follows that 0C K C HC---C G is a
filtration of G of the required form.

Therefore there exists in either case a filtration

0=NoCN C---CN, =G

with normal subgroup schemes Ny and with N, 1/N; of rank p. Since p"~! does not
annihilate G, no extension of any two successive steps in this filtration is annihilated
by p. By case (i) of the discussion of the case n = 2 above, we conclude that there is an
exact sequence

00— H —-G— H,— 0,

where H; can be filtered with o;)’s and H; can be filtered with w,’s. Moreover, by (iii)
above, the filtration of H; consists of at most one step. Therefore by (ii) above and [2,
IV.1.4.5], either H, is trivial and H; is isomorphic to p,, or Hy = oy, and Hy = i1
and G is isomorphic to the matrix group described in case (iv) above.

This proves the proposition.
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3. A Matrix Group Scheme

Let k& be a field of characteristic p > 0. In this section the field k needs not be
algebraically closed. We study a rather special matrix group scheme, or rather a
family of such group schemes. It shows up in the proof of Theorem 1.1. Let
m =1 and let Gy be the matrix group scheme over k given by

1 X v o
{(0 1+Y)'X_0 and Y _O}.

The Hopf algebra 4y of Gy is isomorphic to k[X, Y]/(X?, Y?"). This group scheme
occurs in Proposition 2.3(ii). We show that the group scheme Gy cannot be
non-trivially deformed. More precisely, we show that after a faithfully flat extension,
every deformation to a local Artin ring R is a base change of G itself. For m = 1, the
group scheme Gy has rank p? and is discussed in [7, Example —B]. Our Proposition
3.3 makes the statements there more precise. Moreover, for m = 1 our proof also
shows that the deformation of Gy to R itself is already trivial; it is not necessary
to make the faithfully flat extension.

The proof of Proposition 3.3 is based on the computation of the Hochschild
cohomology groups H'(Gy, V) of certain representations V of Go. To compute these,
we use the exact sequence

0 — o) = Go = pm — 0).

See [6, 4.14] or [2, 11.3.1.1] for the definition of the Hochschild cohomology groups.
We recall that for any Gy-representation V', the Hochschild cohomology groups
H'(x,, V) of the normal subgroup scheme «, are themselves representations of -

LEMMA 3.1. For each Gy-representation V' the restriction maps
H'(Go, V) — Hi(a, V)"

are isomorphisms for all i = 0.

Proof. Since w,» is diagonalizable, the required isomorphisms are provided by [6,
Cor.6.9]. Indeed, the isomorphisms there are the edge maps of the degenerating
Hochschild-Serre spectral sequence and by [6, Remark on p. 99] these coincide with
the restriction maps.

Next we compute certain Hochschild cohomology groups of two 2-dimensional
representations of Gy. We let V' denote the adjoint representation. This is a
2-dimensional representation, dual to the representation I/I>. Here I denotes the
augmentation ideal of the Hopf algebra of Gj.

One easily checks that, with respect to a suitable basis, the matrix ((1) . f Y) acts on
V as (“ *OY)" X“Jrly)’l . On the other hand, V® denotes the two-dimensional

representation for which the action is given by (' W ?)71. Finally, one checks that
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the action by conjugation on the normal subgroup scheme o, is by multiplication by
(1+v)™".

LEMMA 3.2. We have the following:

(i) H'(Go, V) =0;
(i) HY Gy, V)= H*Gy, V) = 0.

Proof. (i) The representation V'® is a sum of a 1-dimensional representation k with
trivial action and of k) which has a ‘twisted’ action. We show that both groups
H'(Gy, k) and H'(Gy, k) vanish.

The cohomology group H'(x,, k) is the k-vector space generated by the natural
inclusion o, <>G,. The action of w, on o, via conjugation is a morphism
tym % 0p = o, The corresponding k-algebra homomorphism  A[X]/(X?) —
KX, Y1/(X?, Y?") is given by Xi—X(1 + Y)'. The action of u,. on k and k%)
are morphisms p,,» x G, — G, with corresponding k-algebra homomorphisms
k[X] — k[X, Y]/(Y?") given by X 1— X and Xi—X(1 + Y?)~! respectively.

A 1-cocycle of o, with values in k or k¥) is invariant under the action of wm if and
only if it is compatible with the actions of Gy on @, and on k and k), respectively.
Since XY #0 and XY # XY? in the ring k[X, Y]/(X?, Y?") and since all
1-coboundaries are zero, we see that the generator of H'(x,, k) is not invariant
in either case. Part (i) now follows from Lemma 3.1.

(ii) For the proof of Proposition 3.3 we only use the fact that H*(Gy, V) vanishes.
Therefore we leave the easier proof that H'(Gy, V) =0 to the reader. We have
the following exact sequence of Gy-representations

0> kY >V > k—0.

Here k() denotes the one-dimensional representation of G with action G x G, — G,
corresponding to the morphism k[T — k[T, X, Y]/(X?, Y?") given by
T—(1+ Y)"'T. Using Lemma 3.1 and the long cohomology sequence of
Gy-cohomology groups, we obtain the following exact sequence

RN H2(ap’k(1))#pm — H*(Gy, V) — Hz(ocp,k)””'" N H3(ap,k(1))“”"’ ...

The cohomology group H?(a,, k) is a one-dimensional k-vector space generated by
the 2-cocycle o, x o, — G, given by (X, X')i— W(X, X") where W denotes the poly-
nomial introductedin Section 2. See [2, Chap. 11, 3.4.8]. The action of p,» on o, x o,
corresponds to  the  k-algebra  homomorphism  A[X, X']/(X?, X?) —
K[X, X', Y]/(X?, X", YP") given by (X, X)i— (1 + Y)'X, (1 + Y)"'X’). It maps
W(X,X") to (1+ Y?)"'W(X, X’). On the other hand, the action of s, on k" cor-
responds to the k-algebra homomorphism k[T]— k[T, Y]/(Y?") given by
T—(1+ Y)"'T. Since W(X,X)Y # W(X,X)Y? in Ho, kV) @ k[Y]/(Y""),
the actions are incompatible and H*(,, kV)"" = 0.
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Lym

Part (ii) would now follow if the group Hz(cxp, k)" were also zero. Since this is
only true for m > 2, we show below instead that the connecting homomorphism
dH?(ay, k) — H?3(op, kD) is injective. To see the effect of 9, let F(X, X”) be a 2-cocycle
in H?(a,, k) and lift it to the morphism

0
(F(X, X’))Z op = V.

Since the action of o, on V is via the matrix (é ¥ ), the 3-cocycle dF(X, X’) in
H3(ay, k1) is the first coordinate of

1 X 0 0 0
<0 1 )(F(X', X")) - (F(X+ X, X”)) * (F(X, pan X”))

0
- (F(Xc X”))

which is simply XF(X’, X”). Since H?(x,,k) is a one-dimensional vector space
generated by W (X, X’), the map 9 is injective if and only if dW # 0. Suppose there-
fore that 3W (X, X', X") = XW (X', X") = 0 in H*(%,, k'V). This means that for some
polynomial f we have that

XWX, X") = f(X'. X") = f(X + X, X") +f(X, X'+ X") = f(X, X')

in the ring k[ X, X', X"]/(X?, X7, X"?). We replace f by its homogenous degree p + 1
part. Since X? =X7 =0, this means that f=0 when p=2. Since
XWX, X") = XX'X" £ 0 we see that 9 is injective in this case. When p #£ 2, we
have that f(X,X')=a, | X?7'X?+ .-+ aX>X?"! for certain coefficients
a; € k. We differentiate the relation with respect to X and substitute X = 0. This
gives

WX, X") = (X', X") + (0, X' + X") — £(0, X")
and, hence, since

FXX)=(p = Day XP2X? 4 + 20, XX,
we find that

— WX, X" = (p— Da, 1 XP2X 4o 20, X X7,

But this is impossible since the X”~'X” term of W(X’, X”) is missing on the right
hand side. This shows that 1 £ 0 and hence that 9 is injective.
Lemma 3.1 now implies that H*(Gy, V) = 0 and part (ii) follows.

The main result of this section says that, after a finite faithfully flat extension, any

flat deformation of Gy is a base change of the k-group scheme Gjy. In particular, Gy
can only be deformed to rings of characteristic p.
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PROPOSITION 3.3. Let R be a local Artin ring with maximal ideal m and residue
field k of characteristic p. Let G = Spec(A) be a finite flat group scheme over R
for which G ®g k is isomorphic to the group scheme Gy. Then

(1) the characteristic of R is p;

(i) for some R-algebra S of the form R[T\,...,T,J/(TY — @y, ..., TP — ¢,) with
polynomials ¢; € R[Ty, ..., T,] having coefficients in m, the S-group scheme
G Qg S is isomorphic to Gy ®y, S.

Proof. We proceed by induction with respect to the length of R. If the length of Ris

1, we take S = R = k and everything is trivially true. Suppose the length is at least 2.

Then we can pick a non-zero element 7 € Ann(m). Applying the induction hypothesis

to R/nR we find that

(i) p =y=n for some y € R;

(i) there is an R/mR-algebra S’ = (R/aR)[T1, ..., T,1/(TV — ¢}, ..., TF — ¢.) with
polynomials ¢ that have their coefficients in m, for which the §’-group scheme
G ®g S’ is isomorphic to Gy ®; S

We lift the polynomials ¢; € (R/nR)/[T1, ..., T;] to polynomials ¢; € R[T1, ..., T}]

by lifting the coefficients to R. Let S be the R-algebra given by

S=R[T,...T,)/(TV — ¢y, ..., TP — ¢,). It is easy to see that S is a finite free local

R-algebra. By construction, S/nS =2 S’ and hence (4 ®r S)/n(A Qr S) =2 A Qr S'.

It follows by induction that

AQr S = S[X, Y|/(XP —af(X,Y), Y —ng(X,Y))

for certain X, Y € A ®g S that lift the variables X and Y in A4y and certain
polynomials £, g € (S/mS)[X, Y]. Since n*> = 0, we may assume that /' and g have
degree less than p in X and less that p” in Y. Moreover, the group law of
G ®r S is given by

X, N+X,Y)=X+X +XY +72(X,X,Y,Y),
Y+Y +YY +a(X,X,Y,Y))

for certain polynomials %y, hy € (S/mS)[X, Y, X', Y']/(XP, YP", X7, Y"P"). Since the
comultiplication is an R-algebra homomorphism and since p € (n) C Ann(m), we
find that

X+X +XYY-nf(X+X +XY,Y+Y +XY)=0,

Jn *
Y+Y+YYY —ngX+X +XY,Y+Y +YY)=0 )

in the ring 4 ®r A ®r S. We subtract the equations (X? — nf (X, Y))(1 + Y’ =0
and X? — nf(X’, Y') = 0 from the first equation. In this way we obtain a relation
all of whose coefficients are contained in nS. Dividing by = in the flat R-algebra
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S we find the following relation

WX + XY, X')
=X+ X + XY, Y+Y +YY)—f(X,Y) - (X, Y)— Y?f(X, Y)

mn

in the k-algebra (S/mS)[X, Y, X', Y']/(X?, Y?", X7, Y?"). Next weput ¥ = Y' =0
and we obtain the following relation in the ring (S/mS)[X, X']/(X?, XP):

WX, X)=f(X+X,0)—f(X,0)—f(X",0).

Since (X, 0) has degree at most p — 1, the term X’ X?~! does not occur on the right
hand side. since it occurs on the left with coefficient y, we conclude that y =0 in
S/mS and hence that p =yn =0 in S. Since S is free over R, this implies that
the characteristic of R is equal to p as well. This proves (i).

We now have

FX+X +XY, Y+Y +YY)=f(X,Y)+f(X,Y)+ YPf(X, Y),
gX+X +XY, Y+Y +YY)=g(X,Y)+g(X', Y,

in the k-algebra (S/mS)[X, Y, X', Y']/(X?, YP", X7, Y""). The first formula follows
from the fact that y=0. The second follows from (%) and the relation
(Y+Y +YYY =Y+ Y7 + YY" =ng(X,Y)+ng(X',Y'). These two
formulas express the fact that

-1
_(14+Y7 0 fX,Y)
FXY) = ( 0 1) <g(X, Y)
isa 1-cocycle Gy — V®, where V' denotes the rank 2 module of Lemma 3.2. By part
(i) of this Lemma, H'(Gy ® +kS/mS, V? ®, S/mS) = HY(G,, V) ®; S/mS = 0.
Therefore this cocycle is a coboundary. In other words, g(X,Y)=0 and

f(X,Y)=cY? for some ¢ € S/mS.
We conclude that

A®rS = S[X, Y]/(XP —crnY?, YI").

If m =1 we have that Y” = 0 and hence 4 ®z S = S[X, Y]/(X?, Y?). When m > 1,
we replace S by the faithfully flat S-algebra S[T]/(7? — cr). This algebra is of
the form described in condition (ii) and, replacing X by X — T'Y, we see that

A®rS = S[X, Y]/(X?, Y"") = 4y ® S.

Therefore, in either case the underlying scheme of G ®x .S is isomorphic to
Spec(4y Qx S).

By [4, III, Théoréme 3.5] with / =m and J = nR, the set of group scheme
structures on S ®; A9 modulo automorphisms that induce the identity modulo 7,
form a principal homogeneous space over H>(Gy, V) where V is the adjoint represen-
tation of Gy. By Lemma 3.2 (ii) this Hochschild cohomology group vanishes. This
shows that the group scheme G is isomorphic to the group scheme Gy ®y S.
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This proves the proposition.

Note that for m =1 we do not replace S by a faithfully flat extension in the
induction step. It follows that for m = 1 the Proposition is true with S = R. In other
words, G itself is already a trivial deformation of Gj.

Remark 3.4. By refining the proof of Proposition 3.3 one can obtain deformation
results for the k-subgroup schemes Gy of GL, given by

1 oy
G0:<0 ﬂpn>’ m,n>=1.

We mention the following result without proof.

THEOREM. Let R be an local Artin ring with maximal ideal m and residue field k of
characteristic p. Let G be a flat deformation of Gy to R. Then

(1) the characteristic of R is p;
(1) there is a faithfully flat finite local R-algebra S such that

1 N
GQrS = ,
or <O Ky >

where N is a flat deformation of wym. It is a closed flat subgroup scheme of G, given by
H(X)= X" + " Vb, XP =0 for certain b; € mS.

In particular, the group schemes Gy cannot be deformed to rings that do not have
characteristic p. Note that p,, acts on the subgroup scheme N of part (ii) and that
N = a,» whenever m < n. If m = n, the proof actually shows that one can take
R = S in (ii): in this case, the only deformation of Gy is G = Gy ®; R.

4. Proof of the Theorem

In this section we prove Theorem 1.1. Let G be a finite flat group scheme over a local
Artin ring R with residue class field k& of characteristic p and maximal ideal m
satisfying m” = pm = 0.

By [5, III, Ch. 0, 10.3.1] and [1, II, 3.2, Cor. 2] there exists a local faithfully flat
R-algebra whose maximal ideal is generated by m and whose residue field is
algebraically closed. In order to prove the theorem, we may replace R by this algebra
and hence we may assume that & is algebraically closed. Then R is strictly Henselian
and there is an exact sequence

056G —>G— G'—=0

where G denotes the connected component of G and G*' its largest étale quotient. By
ordinary group theory, G ® k is annihilate by its rank. Since reducing modulo m
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induces an equivalence of the categories of étale group schemes over k and over R
respectively [3, 1.6.1], we see that G*! itself is also annihilated by its rank. Since ranks
are multiplicative in exact sequences, we may assume that G is a local group scheme.

Let therefore G = Spec(A4) be a finite flat local group scheme of rank p” over R. Let
I denote the augmentation ideal of 4. We want to show that G is annihilated by its
rank. This amounts to showing that [p"]({) = 0. First we study the group scheme
G ®gr k. By Corollary 2.2. G ®g k is annihilated by p”. If it happens to be already
annihilated by p"~!, then [p""!] maps the augmentation ideal I of G into
mA NI = ml and Proposition 2.1 implies that

P"1(1) = "' N(p)ID) C [P WpI + I7) € pml + (mIY.

Since pm = m? = 0, this implies that p"” annihilates G over R and we are done.
Therefore we may assume that G ®z k is not annihilated by p"~!. Since k is
algebraically closed, there are by Proposition 2.3 only two possibilities for G ®g k:

Case 1. G ®gr k is isomorphic to .. This group scheme cannot be deformed
non-trivially. More precisely, by [4, Exp. X, Corollaries 2.3 and 2.4], the group
scheme G is a multiplicative iso-trivial group scheme over R. Since k is algebraically
closed, R is strictly Henselian and we see that G is actually diagonalizable. Therefore
G = w, over R. In particular, G is annihilated by p".

Case I1. G ®g k is isomorphic to the matrix group scheme over k of Proposition 2.3
(i) with Hopf algebra k[X, Y]/(X?, Y''™).

If n = 1, this is the group scheme a,. In this case G ®z k has rank p and so does G
over R. This implies that G is commutative [8, Lemma 1]. It follows then from
Deligne’s result [8, p. 4] that G is annihilated by p.

Suppose now that n > 1. In this case we apply Proposition 3.3 to Gp = G Qr k. It
follows that after a finite faithfully flat extension S of R, the group scheme G is
isomorphic to a base change of Gy. Since the k-group scheme Gy is annihilate by
its rank, the same is true for the S-group scheme Gy ®; S = G ®r S. By the faithful
flatness of the R-algebra S it follows that G is annihilated by its rank. This completes
the proof of Theorem 1.1.
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