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On the Existence of Asymptotic-lp

Structures in Banach Spaces

Adi Tcaciuc

Abstract. It is shown that if a Banach space is saturated with infinite dimensional subspaces in which

all “special” n-tuples of vectors are equivalent with constants independent of n-tuples and of n, then

the space contains asymptotic-lp subspaces for some 1 ≤ p ≤ ∞. This extends a result by Figiel,

Frankiewicz, Komorowski and Ryll-Nardzewski.

1 Introduction

In this note we address a problem concerning asymptotic structures of infinite-di-
mensional Banach spaces. These structures carry information on geometric prop-

erties which are present “everywhere” and “far enough” in the space. For example,
roughly speaking, in asymptotic-lp spaces these “far enough” geometric properties
resemble the ones found in classical lp spaces (more details and precise definitions
of concepts appearing in this Introduction will be given later). Strongly asympto-

tic-lp spaces have, in addition, an underlying unconditional structure. Asymptotic-lp

spaces appear in connection with many important developments in the theory of
infinite-dimensional Banach spaces. Tsirelson’s celebrated construction in the 1970’s
[T] of a Banach space not containing c0 or lp for any 1 ≤ p < ∞ is the first non-trivial

example of an asymptotic-l1 space. The approach behind Tsirelson’s construction was
revisited in the early 1990’s and the method gained prominence with Schlumprecht’s
construction [S] of an arbitrarily distortable Banach space and the solutions of the
unconditional basic sequence problem by Gowers and Maurey [GM] and the distor-

tion problem by Odell and Schlumprecht [OS].

Figiel, Frankiewicz, Komorowski and Ryll-Nardzewski [FFKR] gave necessary and
sufficient conditions for finding strongly asymptotic-lp subspaces in an arbitrary
Banach space. Roughly speaking, they showed that a Banach space X contains an
asymptotic-lp basic sequence (for some fixed 1 ≤ p ≤ ∞) if and only if X is satu-

rated with sequences of subspaces of the form Xn = Xn1 + Xn2 + · · · + Xnn having the
property that all n-tuples (x1, x2, . . . , xn), with xi ∈ Xni for 1 ≤ i ≤ n, are uniformly
equivalent to ln

p. Our result is of the same type; but with a much weaker hypothesis we
obtain the same conclusion. Namely, we consider similar decompositions for which

any two n-tuples as above are uniformly equivalent to each other (with the equiva-
lence constant independent of n). In a sense our theorem is an asymptotic version
of the well-known theorem of Zippin [Z] which states that a normalized basis of a
Banach space such that all normalized block bases are equivalent, must be equivalent

Received by the editors September 1, 2005.
AMS subject classification: Primary: 46B20; secondary: 46B40, 46B03.
c©Canadian Mathematical Society 2007.

619

https://doi.org/10.4153/CMB-2007-061-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-061-3


620 A. Tcaciuc

to the unit vector basis of c0 or lp for some 1 ≤ p < ∞. The proof of our result is
based on a general method of selecting basic sequences in Banach spaces satisfying

certain “stabilization” properties.
Let us briefly describe the organization of this paper. In Section 2 we recall several

basic concepts in Banach space theory as well as more specific results which will be
used later on. Section 3 contains a standard stabilization technique that was used, for

example, in [FFKR, M1, Pe]. In order to make the paper self contained we decided
to include the proofs. Our main result is presented in Section 4. The proof is rather
complicated, a joining of analytic and combinatorial methods, and it is divided into
several steps. The main argument takes root in Maurey’s proof of Gowers’ dichotomy

theorem for unconditional basic sequences in Banach spaces and techniques behind
Ramsey theorems. Section 5 contains an extension of the main result. We consider an
even weaker hypothesis and we still conclude the existence of strongly asymptotic-lp

subspaces. For the proof we also make essential use of a very recent result of Junge,

Kutzarova and Odell [JKO].

2 Preliminaries

We follow [LT] for standard notation and terminology in Banach space theory. In
the following, all spaces will be considered to be real, separable Banach spaces and
all subspaces will be closed. We shall denote by X,Y, . . . infinite dimensional Banach
spaces and by E, F, . . . finite dimensional Banach spaces. The sets of positive integers,

rational numbers and real numbers are denoted by N, Q and R, respectively.
Let X be a Banach space and let {xn}n be a non-zero sequence in X. We say that

{xn}n is a (Schauder) basis for X if, for each x ∈ X, there is a unique sequence of
scalars {an}n such that x =

∑∞

n=1 anxn, where the sum converges in the norm topol-

ogy. Clearly, a basis for X is linearly independent. We say that {xn}n is a basic sequence

if {xn}n is a basis for the closure of its linear span. If ‖xn‖ = 1 for any n, we say that
the basic sequence {xn} is normalized.

A basis {xn}n is said to be unconditional if for every x ∈ X its expansion
∑∞

n=1 anxn

converges unconditionally. Being unconditional is equivalent to the fact that there
exists a constant C > 0 such that for all scalars {an}n and signs εn = ±1, we have

∥

∥

∥

∑

n

εnanxn

∥

∥

∥
≤ C

∥

∥

∥

∑

n

anxn

∥

∥

∥
.

The smallest C is called the unconditional basis constant of {xn}n.
Two sequences {xn}n and {yn}n, possibly from different Banach spaces, are said

to be equivalent if we can find constants C1 and C2 such that for all scalars {an}n, we
have

(1)
1

C1

∥

∥

∥

∑

n

anxn

∥

∥

∥
≤

∥

∥

∥

∑

n

an yn

∥

∥

∥
≤ C2

∥

∥

∥

∑

n

anxn

∥

∥

∥
.

Let C = C1C2. The infimum of C satisfying (1) is called the equivalence constant

In this case we say that {xn}n and {yn}n are C-equivalent and sometimes we write

‖
∑

anxn‖
C
∼ ‖

∑

an yn‖.
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Let {xn}n be a basic sequence in a Banach space X. Given an increasing sequence
of positive integers p1 < p2 < p3 < · · · , let yk =

∑pk+1

i=pk+1 aixi be any non-zero

vector in the span of xpk+1, xpk+1, . . . , xpk+1
. We say that {yk}k is a block basic sequence

of {xn}n. When {xn}n is fixed, we will simply call {yk}k a block basic sequence, or

just a block basis.
A Banach space X with a basis (xi) is called asymptotic-lp [MT] if there exists

K > 0 and an increasing function f : N → N such that for all n, if (yi)
n
i=1 is a

normalized block basis of (xi)
∞
i= f (n), then (yi)

n
i=1 is K-equivalent to the unit vector

basis of ln
p. In this case (xi) is called an asymptotic-lp basis for X.

A Banach space X with a basis (xi) is called strongly asymptotic-lp [DFKO] if there
exists K > 0 and an increasing function f : N → N such that for all n, if (yi)

n
i=1 is

a sequence of disjointly supported vectors from span{xi , i ≥ f (n)}, then (yi)
n
i=1 is

K-equivalent to the unit vector basis of ln
p. Note that a strongly asymptotic-lp basis

is automatically unconditional. This follows immediately from the fact that for any
two disjointly supported vectors y and z that start after x f (2) we have

‖y ± z‖ ≈ (‖y‖p + ‖z‖p)1/p.

Johnson [J] constructed a so-called “modified” Tsirelson space TM , in which the
natural basis is strongly asymptotic-lp . Casazza and Odell proved that the two defini-
tions lead to equivalent norms [CO], hence Tsirelson’s space T is actually a strongly

asymptotic-l1 space, while T∗ is strongly asymptotic-l∞. A new class of strongly
asymptotic-lp spaces, the so-called “modified mixed Tsirelson spaces”, was intro-
duced in [ADKM].

3 Stabilization Techniques

Let X be an infinite dimensional Banach space. On the set of infinite dimensional
subspaces of X consider the following partial order

(2) Y 4 Z ⇐⇒ Y ⊆ Z + F for some finite dimensional space F.

Lemma 1 If {Yn}n is a sequence of infinite dimensional subspaces of X such that

Yn+1 4 Yn for each n, then there exists an infinite dimensional subspace Y of X such

that Y 4 Yn for any n.

Proof Define for any n,

(3) Zn =
⋂

1≤i≤n

Yi.

It follows easily that each Zn is infinite dimensional, thus we can build by induction
a linearly independent sequence (yn)n such that yn ∈ Zn for each n. Denote by
Y the closed linear span of (yn)n. Also note that since Zn+1 ⊆ Zn for any n, we

have that for any n and any k ≥ n, yk ∈ Zn. Then it follows that for any n, Y ⊆
span{y1, . . . , yn−1} + Zn and from Zn ⊆ Yn we have that Y 4 Yn.
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Lemma 2 Let ϕ be a function defined on the set of all infinite dimensional subspaces of

X, taking values in [0,∞]. If ϕ is monotone with respect to the partial order 4, then for

any Y infinite dimensional subspace of X there exists Z, an infinite dimensional subspace

of Y , such that for any infinite dimensional subspace Z ′ of Y with Z ′ 4 Z we have that

ϕ(Z ′) = ϕ(Z). In other words, the function ϕ can be stabilized by passing to a subspace.

Proof We can assume without loss of generality that the function ϕ is increasing

(otherwise consider ϕ ′
= 1/ϕ).

Fix an infinite dimensional subspace Y of X and assume the conclusion is false

for Y . By transfinite induction and diagonalization we shall construct {Zα}α<ω1
so

that

(4) β < α =⇒ Zα 4 Zβ and ϕ(Zα) < ϕ(Zβ).

Recall that the set {α < ω1} is uncountable and well ordered by “<” and note that

relation (4) establishes a bijective order preserving correspondence between {α <
ω1} and a subset of [0,∞] with the natural order on R. But this is a contradiction,
since [0,∞] cannot contain an uncountable subset which is well ordered with respect
to the natural order on R.

Suppose that for any subspace of Z of Y we can find another subspace Z ′ of Y such
that Z ′ 4 Z and ϕ(Z ′) < ϕ(Z). For α = 0, let Z0 = Y . Take α to be an ordinal

α < ω1, and assume we have defined Zβ for all β < α.

If α is of the form β + 1, then from the above we can find Zα subspace of Y such
that Zα 4 Zβ and ϕ(Zα) < ϕ(Zβ). Otherwise, α must be a limit ordinal and since
α < ω1, α is the limit of some increasing sequence of ordinal numbers {αn}n. From
the induction hypothesis we have that

· · · 4 Zαn
4 Zαn−1

4 · · · 4 Zα2
4 Zα1

and

· · · < ϕ(Zαn
) < ϕ(Zαn−1

) < · · · < ϕ(Zα2
) < ϕ(Zα1

).

From Lemma 1 it follows that there exists Zα infinite dimensional subspace of Y such
that Zα 4 Zαn

for any n. Since ϕ is increasing we have for any n that ϕ(Zα) ≤
ϕ(Zαn

) < ϕ(Zαn−1
), which ends the construction.

The next lemma establishes that a countable family of monotone functions can be
stabilized by passing to a subspace.

Lemma 3 Let {ϕn}n be a family of functions defined on the set of all infinite dimen-

sional subspaces of X taking values in [0,∞]. If each ϕn is monotone with respect to

the partial order 4 , then for any infinite dimensional subspace Y of X, there exists an

infinite dimensional subspace Z of Y such that for any infinite dimensional subspace Z ′

of Y with Z ′ 4 Z, we have that ϕn(Z ′) = ϕn(Z) for any n.
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Proof Fix an infinite dimensional subspace Y of X. By applying Lemma 2 to Y and
ϕ1, we obtain Z1 an infinite dimensional subspace of Y stabilizing for ϕ1. Now we

apply Lemma 2 to Z1 and ϕ2 to obtain Z2 stabilizing for ϕ2. Repeating this procedure,
we obtain an infinite sequence {Zn}n such that Zn+1 ⊂ Zn for any n. From Lemma 1
it follows that we can find an infinite dimensional subspace Z of Y such that for any
n, Z 4 Zn, and since Zn is stabilizing for ϕn we have that Z is stabilizing for ϕn. This

concludes the proof.

Note that the previous lemmas are also true for the family of all subspaces over Q .

4 The Main Result

In this section we prove our main structural result.

Theorem 4 Let X be a Banach space with the following property. For any infinite

dimensional subspace Y ⊆ X there exists a constant MY such that for any n there exist

infinite dimensional subspaces U1,U2, . . . ,Un of Y such that

(5)
1

MY

∥

∥

∥

n
∑

i=1

aixi

∥

∥

∥
≤

∥

∥

∥

n
∑

i=1

ai yi

∥

∥

∥
≤ MY

∥

∥

∥

n
∑

i=1

aixi

∥

∥

∥

for any collection of norm one vectors xi , yi in Ui , 1 ≤ i ≤ n, and any scalars (ai)
n
i=1.

Then there exists p ∈ [1,∞] such that X contains a strongly asymptotic-lp subspace.

As we have mentioned before, our result improves on the result from [FFKR].
While the finite sequences of vectors they consider are already equivalent to a basis in
a space with a norm fixed in advance (for example ln

p), we only require that any two
such sequences be equivalent.

Definition 5 A basic sequence {xn}n is said to have property (P) if there is a K < ∞
such that for every n the following holds: for every sequence (Ai)

n
i=1 of finite mutually

disjoint subsets of N such that min
⋃

i Ai ≥ n, if yi, zi ∈ span{x j : j ∈ Ai} for i =

1, 2, . . . , n are two finite sequences of norm one vectors, then {yi}
n
1 is K-equivalent

to {zi}
n
1 .

We shall prove a slightly different statement from which our result follows.

Theorem 6 Under the hypothesis of Theorem 4, the space X contains a basic sequence

with property (P).

We show first how to derive Theorem 4 from Theorem 6.

Lemma 7 Let {xn}n be a basic sequence with property (P). Then the closed span of

{xn}n is a strongly asymptotic-lp space, for some 1 ≤ p ≤ ∞.
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Proof Let {x j} j be a basic sequence that has property (P) with constant K and, for a
fixed (but arbitrary) n, let {yi}

n
i=1 be a sequence of disjointly supported vectors from

span{xi , i ≥ n}. From Krivine’s theorem [K] it follows that there exists 1 ≤ p ≤ ∞
such that for any n, we can find normalized blocks {wi}

n
i=1 of {x j} j that start as far as

we want, such that {wi}
n
i=1 is 2-equivalent to the standard unit vector basis of ln

p. For
our fixed n we choose the block sequence {wi}

n
i=1 such that it starts after xn and has

its support disjoint from {wi}
n
i=1, that is, for any i and j, supp yi ∩ supp w j = ∅. For

any i = 1, . . . , n, define Ai := { j ∈ N : x j ∈ supp yi ∪ supp wi}. Then (Ai)i satisfies
the conditions in the definition of property (P), so it follows that {yi}

n
i=1 and {wi}

n
i=1

are K-equivalent, therefore {yi}
n
i=1 is 2K-equivalent to the standard unit vector basis

of ln
p. Hence the closed span of {x j} j is a strongly asymptotic-lp space.

Theorem 4 follows easily now. From Theorem 6 we have that we can find a basic
sequence {xi}i with property (P) in X and from Lemma 7 we conclude that the closed
span of {xi}i is a strongly asymptotic-lp subspace of X.

Note that if a space X satisfies the hypothesis of Theorem 6, so does every infi-
nite dimensional subspace of X. Therefore it follows that every infinite dimensional
subspace contains a further stabilized asymptotic-lp subspace, possibly for different
p’s.

Now it remains to prove Theorem 6. First we introduce some new notations that
are convenient for the proof.

Let X be a Banach space. Denote by ∆ the set of all pairs of n-tuples of vectors
~x = (x1, . . . , xn), ~y = (y1, . . . , yn) with the property that ‖xi‖ = ‖yi‖ for any i ≤ n

and any n ≥ 1. If Z is a subspace of X, ∆(Z) will be the subset of ∆ consisting of
all pairs (~x,~y) of n-tuples of vectors from Z for any n ≥ 1. Given ~U = (U1, . . . ,Un)
where U1, . . . ,Un are infinite dimensional subspaces of X and ~u = (u1, . . . , un) an
n-tuple of vectors, we write~u ∈ ~U if ui ∈ Ui for 1 ≤ i ≤ n. Then set

∆(~U ) = {(~u,~v) ∈ ∆ : ~u ∈ ~U ,~v ∈ ~U}.

This notation makes possible a more compact formulation of the hypothesis of
Theorem 6, i.e., for any infinite dimensional subspace Y of X there exists a constant

MY such that for any n there exist infinite dimensional subspaces U1,U2, . . . ,Un of
Y such that

(6)
1

MY

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥
≤

∥

∥

∥

n
∑

i=1

yi

∥

∥

∥
≤ MY

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

for any (~x,~y) ∈ ∆(~U ), where ~U = (U1, . . . ,Un).

It is standard in this setting to pass to vector spaces over Q in order to use the
countable structure of such a vector space. Without loss of generality, we can assume

that the Banach space X has a basis {en}n. Let X0 denote the set of all vectors of the
form

∑n
i=1 aiei for n ∈ N, {ai}

n
i=1 ⊆ Q . Then X0 is a countable vector space over Q .

Moreover, since X0 is dense in X, it is enough to prove the conclusion of the theorem
in X0. Therefore, from this point onward, our argument will take place in X0.
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If Y is an infinite dimensional subspace of X0, then we denote by Σ(Y ) the set of
all infinite dimensional subspaces of Y and by Σ f (Y ) the set of all finite dimensional

subspaces of Y . By “4” we denote the partial order defined in (2) restricted to Σ(X0).
For any n ≥ 1 and ~E = (E1, E2, . . . , En) where E1, E2, . . . , En are finite dimen-

sional subspaces of X0 and for any Y ∈ Σ(X0), set ε~E,Y to be the supremum of all

ε for which we can find U1, . . . ,Un ∈ Σ(Y ) such that for any (u1, . . . , un) ∈ ~U ,
(v1, . . . , vn) ∈ ~U , (e1, . . . , en) ∈ ~E, and ( f1, . . . , fn) ∈ ~E with the property that

(~u +~e,~v + ~f ) ∈ ∆, we have that

(7) ε
∥

∥

∥

n
∑

i=1

(ui + ei)
∥

∥

∥
≤

∥

∥

∥

n
∑

i=1

(vi + fi)
∥

∥

∥
≤ (1/ε)

∥

∥

∥

n
∑

i=1

(ui + ei)
∥

∥

∥
.

Note that the condition (~u +~e,~v + ~f ) ∈ ∆ simply means that ‖ui + ei‖ = ‖vi + fi‖ for
any 1 ≤ i ≤ n. For any n, by~0n we understand the n-tuple ({0}, {0}, . . . , {0}), in

other words the n-tuple of finite dimensional subspaces of X0 in which each entry is
the trivial {0} subspace. For a fixed n, comparing (7) with (6) observe that (1/ε~0n,Y

)
is simply the “best” constant MY appearing in (6) for this particular n.

Next, using the stabilization techniques from the previous section, we will stabilize

the invariant ε~E,Y .

Since X0 is a countable vector space and ~E are finite tuples with entries from
Σ f (X0), we have that the family {ε~E,·} of functions on Σ(X0), indexed by ~E, is also
countable. Next we show that each ε~E,Y is increasing in Y with respect to the partial

order 4 on Σ(X0). To this end, fix ~E = (E1, E2, . . . , En) and let Y1 4 Y2. Pick any ε
that satisfies (7) for the definition of ε~E,Y1

. It follows that we can find U1, . . . ,Un ∈

Σ(Y1) such that for any (u1, . . . , un) ∈ ~U , (v1, . . . , vn) ∈ ~U , (e1, . . . , en) ∈ ~E, and

( f1, . . . , fn) ∈ ~E with the property that (~u +~e,~v + ~f ) ∈ ∆, relation (7) holds for ε.
For any 1 ≤ i ≤ n let U ′

i := Ui ∩Y2. Since Ui is a (infinite dimensional) subspace

of Y1 and Y1 4 Y2, we have that Ui 4 Y2, and it follows that U
′

i = Ui ∩Y2 is infinite
dimensional. Also note that for any 1 ≤ i ≤ n, U ′

i is an infinite dimensional subspace

of Y2. Let ~U ′ = (U ′
1 , . . . ,U ′

n). Therefore, we can find U ′
1 , . . . ,U ′

n ∈ Σ(Y2) such that

for any (u1, . . . , un) ∈ ~U ′, (v1, . . . , vn) ∈ ~U ′, (e1, . . . , en) ∈ ~E, and ( f1, . . . , fn) ∈ ~E

with the property that (~u +~e,~v + ~f ) ∈ ∆, relation (7) holds for ε. But this means
exactly that ε satisfies (7) for the definition of ε~E,Y2

. Taking the supremum over all
these ε, it follows that ε~E,Y1

≤ ε~E,Y2
, hence ε~E,Y is increasing in Y .

From Lemma 2 we have that there exists a subspace Z ∈ Σ(X) stabilizing for the

entire family {ε~E,·}. In other words, we have that there exists Z such that ε~E,Z ′ = ε~E,Z

for any infinite dimensional Z ′ subspace of Z and any ~E. From this moment on we
proceed with the argument inside this subspace Z. Since the subspace Z is stabilizing,
we can drop the subscript Z ′ in ε~E,Z ′ ; the argument will take place in Z so the notation
ε~E will be unambiguous.

From the hypothesis together with (6) and the definition of ε~0n
, it follows that

inf
n

ε~0n
≥

1

MZ

> 0

and ε~0n
≤ 1 for any n.
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Pick ε0 satisfying the following two conditions:

(i) 0 < ε0 < infn ε~0n
.

(ii) For any ~E, ε0 6= ε~E.

The following definition is very important in the logical structure of the argument.
Consider the subset A ⊂ ∆(Z) defined by

A :=
{

(~x,~y) ∈ ∆(Z) :

∥

∥

∑

i

xi

∥

∥ < ε0

∥

∥

∑

i

yi

∥

∥ , or
∥

∥

∑

i

xi

∥

∥ > (1/ε0)
∥

∥

∑

i

yi

∥

∥

}

.

(8)

In other words, A consist of all (~x,~y) ∈ ∆(Z) which are not (1/ε0)2- equivalent.

We shall use the following suggestive terminology, similar to that introduced by

Maurey [M2]. Let ~E = (E1, . . . , En), where Ei ∈ Σ f (Z) for 1 ≤ i ≤ n. We say that
~E accepts a subspace Y ∈ Σ(Z) if and only if for any U1, . . . ,Un ∈ Σ(Y ) we can find
(u1, . . . , un) ∈ ~U , (v1, . . . , vn) ∈ ~U , (e1, . . . , en) ∈ ~E, and ( f1, . . . , fn) ∈ ~E such that

(~u +~e,~v + ~f ) ∈ A. We say that ~E rejects Z if it does not accept any subspace Y of Z.
The following lemma clarifies the dichotomy between “accepts” and “rejects”.

Lemma 8 For any Y ∈ Σ(Z) we have that ~E accepts Y if and only if ε~E < ε0.

Proof Indeed, if ~E accepts Y , then for any U1, . . . ,Un ∈ Σ(Y ) we can find
(u1, . . . , un) ∈ ~U , (v1, . . . , vn) ∈ ~U , (e1, . . . , en) ∈ ~E, and ( f1, . . . , fn) ∈ ~E such
that

∥

∥

n
∑

i=1

(ui + ei)
∥

∥ < ε0

∥

∥

n
∑

i=1

(vi + fi)
∥

∥ or
∥

∥

n
∑

i=1

(ui + ei)
∥

∥ > (1/ε0)
∥

∥

n
∑

i=1

(vi + fi)
∥

∥ .

It follows that ε0 does not satisfy the condition described in (7), hence ε~E,Y ≤ ε0.
From stability and from the fact that ε0 6= ε~E, we have that ε~E = ε~E,Y < ε0.

Conversely, if ε0 > ε~E = ε~E,Y , then ε0 is not in the set of ε’s from the definition of

ε~E,Y . This means exactly that ~E accepts Y .

From Lemma 8 we derive the following important remark.

Remark 9 If~E does not accept Z, then it does not accept any subspace of Z, hence it

rejects Z. Therefore we may simply say accepts or rejects without creating confusion.

In the sequel we shall also use the following simple remarks.

Remark 10 For any n ≥ 1, if ~E = (E1, . . . , En) accepts (rejects), then so does
~Eπ := (Eπ(1), . . . , Eπ(n)) where π is any permutation on {1, 2, . . . , n}. Indeed, from
the definition of ε~E,Z we can easily show that ε~E = ε~Eπ

, and the conclusion follows
immediately from Lemma 9.
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Remark 11 For any n ≥ 1, if ~E = (E1, . . . , En) rejects, then for any

~e = (e1, . . . , en) ∈ ~E and ~f = ( f1, . . . , fn) ∈ ~E

with (~e, ~f ) ∈ ∆ we have that (~e, ~f ) /∈ A. Indeed, from the definition of “rejects” it
follows that we can find U1, . . . ,Un ∈ Σ(Z) such that for any ~u = (u1, . . . , un) ∈
~U , ~v = (v1, . . . , vn) ∈ ~U , ~e = (e1, . . . , en) ∈ ~E, and ~f = ( f1, . . . , fn) ∈ ~E with

(~u +~e,~v + ~f ) ∈ ∆ we have that

ε0

∥

∥

∥

n
∑

i=1

(ui + ei)
∥

∥

∥
≤

∥

∥

∥

n
∑

i=1

(vi + fi)
∥

∥

∥
≤ (1/ε0)

∥

∥

∥

n
∑

i=1

(ui + ei)
∥

∥

∥
.

Our claim follows by choosing~u and~v as the n-tuples of null vectors.

The connection between the terminology introduced above and property (P) be-
comes clear in view of the following simple observation which follows immediately
from the previous remark and the definition of property (P).

Remark 12 Suppose (x j) j is a basic sequence in Z. Fix n ≥ 1 and let (Ai)
n
i=1 be as

in Definition 5. Let Ei := span{x j : j ∈ Ai} for i = 1, 2, . . . , n. To say that property
(P) is satisfied with constant (1/ε0) is equivalent to saying that for any n ≥ 1 any
such ~E = (E1, . . . , En) rejects.

We shall build by induction a basic sequence {x j} j that satisfies the condition
equivalent to property (P), presented in Remark 12. But first we prove a key lemma

for the inductive step.

Lemma 13 Let n ≥ 2. If ~E = (E1, . . . , En) rejects, then for every infinite dimensional

subspace W of Z there exists an infinite dimensional subspace W ′ of W such that for

every w ′ ∈ W ′ we have that (E1 + span{w ′}, E2, . . . , En) rejects.

Proof Assume that the conclusion is false. Then by Remark 9 there exists W ∈ Σ(Z)

such that for any U ∈ Σ(W ), we can find u0 ∈ U such that if Fu0
:= E1 + span{u0},

then (Fu0
, E2, . . . , En) accepts. Thus, for any U2,U3, . . . ,Un ∈ Σ(W ) we can find

~u = (u, u2, u3, . . . , un) ∈ U ×U2 ×U3 × · · · ×Un,

~v = (v, v2, v3, . . . , vn) ∈ U ×U2 ×U3 × · · · ×Un

and

~e = (eu0
, e2, e3, . . . , en) ∈ Fu0

× E2 × E3 × · · · × En,

~f = ( fu0
, f2, f3, . . . , fn) ∈ Fu0

× E2 × E3 × · · · × En

such that (~u +~e,~v + ~f ) ∈ A.
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Since eu0
∈ Fu0

and fu0
∈ Fu0

, we can write eu0
= e1 + αu0 and fu0

= f1 + βu0 with
α, β ∈ Q and e1, f1 ∈ E1. Hence we have that for any (U ,U2, . . . ,Un) ∈ (Σ(W ))n

we can find

(u1, u2, . . . , un) ∈ U ×U2 × · · · ×Un,

(v1, v2, . . . , vn) ∈ U ×U2 × · · · ×Un,

(e1, e2, . . . , en) ∈ E1 × E2 × · · · × En,

( f1, f2, . . . , fn) ∈ E1 × E2 × · · · × En

such that

(9) ((u1, u2, . . . , un) + (e1, e2, . . . , en), (v1, v2, . . . , vn) + ( f1, f2, . . . , fn)) ∈ A.

Indeed, we can take (u2, u3, . . . , un), (v2, v3, . . . , vn), (e1, e2 . . . en), ( f1, f2 . . . fn) as

above and put u1 := u + αu0 and v1 = u + βu0. Then the pair in (9) is exactly

(~u +~e,~v + ~f ), and it belongs to A. This means that (E1, . . . , En) accepts. But this is a
contradiction since (E1, . . . , En) rejects W .

Proof of Theorem 6 We shall build inductively a basic sequence {x j} j having the
following property:

(∗) For any n > 1, and for any disjoint finite subsets A1, A2, . . . , An of {n−1, n, . . . },
if Ei := span{x j : j ∈ Ai} for i = 1, 2 . . . , n then (E1, E2, . . . , En) rejects.

By convention, span{∅} = {0}. Once we build such a sequence it follows from

Remark 12 that the sequence {x j} j has property (P), and this will conclude the proof.

To have a better intuitive understanding of the following proof, some more ex-
planations and clarifications are in order. First note that from Remark 10 we have
that it is sufficient to check (∗) assuming additionally that the sets {A j}

n
1 satisfy the

following two conditions: (i) if Ai = ∅, then A j = ∅ for all i < j ≤ n, and (ii)
if Ai 6= ∅ and A j 6= ∅ for i < j, then min Ai < min A j . Another important ob-
servation is the following: we can always assume that min

⋃

i≤n Ai = n − 1; indeed,
otherwise if min

⋃

i≤n Ai := k > n − 1, we add the empty sets An+1, . . . , Ak, Ak+1

to the existing sets A1, . . . , An. The new family {A j}
k+1
j=1 will satisfy the assumption,

and it is a “valid” family since min
⋃

i≤k+1 Ai ≥ k. To exemplify, instead of consider-

ing the family A1 = {4, 5} and A2 = {8, 11, 13} for n = 2, we consider the family
A1 = {4, 5}, A2 = {8, 11, 13}, A3 = A4 = A5 = ∅ for n = 5.

The fact that {xn}n will be a basic sequence follows from a standard argument. At
each step the choice of x j will be from an infinite dimensional subspace. Choosing the

vectors “far enough” along the basis {en}n and using the well-known gliding hump
argument (see [LT]), we can obtain that the sequence {xn}n is equivalent to a block
basis of {en}n, hence it will be itself a basic sequence. An important first remark is
that from the choice of ε0 we have that~0n rejects for any n.

Step 1: Since ~02 rejects, by Lemma 13 we get x1 ∈ Z such that (span{x1}, {0})
rejects.
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Step 2: Next, since~03 and the previous pair reject, we can find an infinite dimen-
sional subspace W0 of Z such that for any w ∈ W0 we have (span{x1, w}, {0}),

(span{x1}, span{w}) and (span{w}, {0}, {0}) reject (by applying Lemma 13 three
times). Take as x2 any such w, with the provision that x2 must be also chosen accord-
ing to the gliding hump procedure, as explained before. We now have that tuples

(span{x1}, {0}), (span{x1, x2}, {0}),

(span{x1}, span{x2}), (span{x2}, {0}, {0}),

all reject.

Step 3: Since all the previous tuples and~04 reject, we can find x3 such that by adding
x3 to any coordinate we obtain tuples ~E that reject. That is, in addition to the ones in

Step 2, the following tuples will reject.

(span{x1, x3}, {0}), (span{x1}, {x3}), (span{x1, x2, x3}, {0})

(span{x1, x2}, {x3}), (span{x1, x3}, span{x2}), (span{x1}, span{x2, x3}),

(span{x2, x3}, {0}, {0}), (span{x2}, {x3}, {0}), (span{x3}, {0}, {0}, {0}).

The inductive idea is clear now. Suppose we have picked x1, x2, . . . , xn such that

the inductive hypothesis holds. Let Sn−1 be the set of “acceptable” tuples ~E built in
Step n−1, from x1, x2, . . . , xn. We have that for any~E ∈ Sn−1,~E rejects. We shall find
a vector xn+1 such that any~E ∈ Sn rejects. For a vector y ∈ Z denote by Sn−1,y the set

obtained by adding y to every entry of every~E ∈ Sn−1. Since the set Sn−1 is finite and
~0n+1 rejects, by applying Lemma 13 repeatedly, we can find an infinite dimensional
subspace W such that for any w ∈ W we have that any ~E ∈ Sn−1,w rejects and the

(n+1)-tuple~F = (span{w}, {0}, {0}, . . . , {0}) rejects as well. Choose any xn+1 ∈ W

which is “good” in the gliding hump procedure. It is easy to see now that any tuple
~E ∈ Sn belongs either to Sn−1 or to Sn−1,xn+1

or is ~F, hence rejects. This concludes the
inductive step and the proof of Theorem 6.

5 The Case of Equal Coefficients

In this section we investigate a stronger version of Theorem 4 where the hypothesis

assumes equivalence of vectors with equal coefficients. More precisely, we prove the
following.

Theorem 14 Let X be a Banach space with the following property. For any infinite

dimensional subspace Y ⊆ X there exists a constant MY such that for any n there exist

infinite dimensional subspaces U1,U2, . . . ,Un of Y such that

(10)
1

MY

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥
≤

∥

∥

∥

n
∑

i=1

yi

∥

∥

∥
≤ MY

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

for any collection of norm one vectors xi, yi in Ui , 1 ≤ i ≤ n. Then there exists p ∈
[1,∞] such that X contains a strongly asymptotic-lp subspace.
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In the first version of this paper we obtained only asymptotic- lp subspaces. Pro-
fessor E. Odell then pointed out to us how to get strongly asymptotic-lp subspaces as

well.

The proof of Theorem 14 uses the same framework as the one for Theorem 4.
We start with a definition that is very similar to Definition 5 and reflects the slightly

different hypothesis we have for Theorem 14.

Definition 15 A basic sequence {xn}n is said to have property (P ′) if there is a
K < ∞ such that for every n the following holds. For every sequence (Ai)

n
i=1 of finite

mutually disjoint subsets of N such that min
⋃

i Ai ≥ n, if yi , zi ∈ span{x j : j ∈ Ai}
for i = 1, 2, . . . , n are two finite sequences of norm one vectors, then

∥

∥

∥

∑

yi

∥

∥

∥

K
∼

∥

∥

∥

∑

zi

∥

∥

∥
.

The first main step is the following theorem which is the counterpart of Theo-
rem 6.

Theorem 16 Under the hypothesis of Theorem 14, the space X contains a basic se-

quence with property (P ′).

The proof is almost identical to that of Theorem 6, all we need to change is the
definition of the set ∆. Instead of requiring the n-tuples of vectors~x = (x1, . . . , xn),
~y = (y1, . . . , yn) to satisfy ‖xi‖ = ‖yi‖ for any i ≤ n and any n ≥ 1, we now require

‖xi‖ = ‖yi‖ = 1 for any i ≤ n and any n ≥ 1.

Now the existence of asymptotic-lp subspaces in X follows directly by applying a
recent result of Junge, Kutzarova and Odell [JKO].

Theorem 17 ([JKO]) Let X be a Banach space with a basis {xn}n. Let 1 ≤ p ≤ ∞
and K < ∞. Assume that for all n, if {yi}

n
i=1 is a normalized block basis of {xi}

∞
i=n,

then ‖
∑n

i=1 yi‖
K
∼ n1/p ( ‖

∑n
i=1 yi‖

K
∼ 1 if p = ∞ ). Then every infinite dimensional

subspace of X contains an asymptotic-lp basic sequence.

Indeed, by Theorem 16 we can find in X a basic sequence {x j} j with property (P ′).
Using Krivine’s theorem, it can be easily shown (in a similar way as in Lemma 7)
that there exist 1 ≤ p ≤ ∞ such that for any n, if {yi}

n
i=1 is a normalized block

basis of {xi}
∞
i=n, then ‖

∑n
i=1 yi‖

2K
∼ n1/p ( ‖

∑n
i=1 yi‖

2K
∼ 1 if p = ∞ ). From the

above theorem it follows that every infinite dimensional subspace of the closed span
of {x j} j contains an asymptotic-lp basic sequence.

To obtain strongly asymptotic-lp subspaces we have to follow the argument from
[JKO] for disjointly supported rather than successive vectors. Note that the basic
sequence with property (P ′) we obtain from Theorem 16 actually satisfies a stronger

property than the sequence {xn}n in the above theorem. Namely, for all n, if {yi}
n
i=1 is

a normalized sequence of vectors disjointly supported on {xi}
∞
i=n, then ‖

∑n
i=1 yi‖

2K
∼

n1/p (‖
∑n

i=1 yi‖
2K
∼ 1 if p = ∞ ). Under this stronger hypothesis it can be shown by

an essentially identical argument as in [JKO] that every infinite dimensional subspace
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of X contains a strongly asymptotic-lp basic sequence. We leave the details of the
argument to the reader.
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