INTEGRAL p-adic NORMAL MATRICES SATISFYING
THE INCIDENCE EQUATION

j. K. GOLDHABER

1. Introduction. The problem of arranging v elements into v sets in such
a way that every set contains exactly % distinct elements and that every pair
of sets has exactly A = k(k — 1)/(v — 1) elements in common, where 0 < X <
k < v, is equivalent to finding a normal integral » by » matrix 4 such that
ATA = B, where B is the v by v matrix having % in every position on the
main diagonal and A in all other positions (10). Utilizing the fact that for
the existence of a A, k, v design it is necessary that I (the v by v identity matrix)
represent B rationally, (2) and (3) have proved the non-existence of certain
A, k, v designs. Neither of the proofs utilize the fact that it is necessary that 4
be normal. However, Albert (1) for the projective plane case and Hall and
Ryser (5) for the general design proved that if there exists a rational A such
that AT4 = B then there exists a normal rational matrix satisfying the same
equation. Thus the requirement of normality does not exclude any X\, k, v
which were not previously excluded.

It is evident that for the existence of a A, &, v design it is necessary that for
every prime p there exist an integral p-adic normal matrix 4 satisfying A74 =
B. Assuming that (k, &k — \) = 1, we prove in § 2 that if I represents B
rationally then this necessary condition is satisfied. Thus, once again, no
additional designs are excluded. It does follow, however, that if I represents
B rationally then I represents B without essential denominator and, further-
more, that there is a form in the genus of I which represents B integrally.

In § 3 we consider a modified incidence equation which is satisfied by every
incidence matrix and which, if I represents B rationally, has integral solutions.
Sufficient conditions for the existence of a A\, & v design in terms of these
integral solutions are given.

2. The incidence equation examined locally. We assume throughout
this paper that (k, & — X) = 1. Thus, since Av = k2 — (k — \) we have
\E)=(ONEkE—N = (v,k) = (v, —\) = 1. The matrices 7 and B are as
above. We prove

THEOREM 1. If I represents B rationally then for every prime p there exists a
matrix A with elements in the ring R(p) of p-adic integers such that ATA = 4AT
= B.
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We show first that there exists a matrix C (not necessarily normal) with
elements in R(p) such that CTC = B. It follows from well-known theorems on
quadratic forms (7) and the fact that I and B are both positive definite that
it is sufficient to show this for all primes p € P, where P is the set of all
prime divisors of 2-det B = 2k2(k — N)*. Let T be the v by v matrix

1 -1 -1 -1 -1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

Then

|0 0
TT_I:O I1+Sl:|

where I is the (v — 1) by (v — 1) identity matrix and S; is the (v — 1) by
(v — 1) matrix each of whose entries is 1. Also,

ror _ | B 0
I"BT = [0 (B — N1+ Sl)]'

Since (&, £ — A\) = 1, v is a p-adic unit for all odd p € P. v is also a 2-adic
unit in the case that v is odd. Hence, for odd p, X7X = B is solvable in
R(p), p € P, if and only if XT(I'"T)X = TTBT is solvable in R(p); and for
odd v, X7X = B is solvable in R(2) if and only if X7(TTT)X = T7BT is
solvable in R(2).

We first dispose of the case when v is even. Since I represents B rationally,
(B — \) is a square (3); whence, obviously 77T represents T7BT in R(p) for
all odd p € P. Furthermore, since v is even and (k, & — \) = 1 it follows that
k and & — X are both odd. Thus I and B are properly primitive forms (that
is, each has a 2-adic unit element on its main diagonal) with unit 2-adic
determinants which, since they are rationally congruent, are congruent over
the 2-adic field. Hence (7, Theorem 36) they are equivalent in R(2). Thus,
if v is even [ represents B in R(p) all p € P.

Suppose now that v is odd. It is clearly sufficient to show that I, + S;
represents (¢ — \)(I1 + S1) in R(p) for all p € P.

(1) I, + Si represents (b — \)([1 + S1) in R(2).

(a) Suppose (& — \) = 22 m where b > 0 and m is odd. We make use here,
and below, of the following known theorem (6):

Two improperly primitive forms (that is, each form has some 2-adic unit
element but no 2-adic unit element on its main diagonal) in the same number
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of variables and of odd determinants are equivalent in R(2) if and only if
their determinants are congruent mod 8.

From this it follows that I; + S1 and m([; + S1) are equivalent in R(2).
But then, obviously, I; + Si represents 22* m(I[; 4+ S1) in R(2).

(b) Suppose & — A = 22ty where m is odd. We shall show below that in
this case the assumption that [ represents B rationally implies that v = £ 1
mod 8.

If v =1 mod 8 then I; 4+ .S; and m([; + S1) are both equivalent to the
1(» — 1) fold direct sum of the matrix

0 1

1 0]
Call the direct sum matrix K. It is thus sufficient to show that K represents
220+1 K. Since v = 1 mod 8, 4|v — 1. Let L be the (v — 1) fold direct sum of

0 1 0 1
1 0 1 0
0 1 0 -1
1 0 -1 0

Then (2°L)T K(2°L) = 2" K as desired.
If v= — 1 mod 8 then I; + S; and m (I; + Si) are both equivalent in
R(2) to K; @ K.. Here @ denotes direct sum, K; is the 3(v — 7) fold direct

sum of
0 1
1 0l

and K, is the 6 by 6 matrix having each entry on its main diagonal equal to 2
and all other entries equal to 1. Note that 4|y — 7. Let L; be the (v — 7)
fold direct sum of the 4 by 4 matrix given in the preceding paragraph, and
let L, be the matrix

—1 0o -1 -1 -1 OT
1 0 0 0 1 1
-1 -1 -1 0 0 -1
0 0 1 1 0 1
0 1 1 0 1 0
1 1 0 1 0 0

Then [2°(L1 @ Ly)]" (K1 @ K3)[2°(L1 @ L»)] = 22K, @ K») ; whence, I, 4 5,
represents (B — N\)(I1 + S1) in R(2) as desired.

It remains to show that if I represents B rationally and if 2 — X\ = 220+,
m odd, then » = 4 1 mod 8. Since A\v = k2 — (k — \) we have

£52)- Q) -+
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where (a/b) is the Jacobi symbol. (Since (¢, — \) = 1, Nisodd.) We thus have

0)- Q>

We consider the cases b > 1, b = 0 separately.

If 5>1 then A = vmod 8. If v = 3 mod 8 then (—\/m) = — 1 but this is
impossible since I represents B rationally (3). The case v = 5 mod 8 is disposed
of similarly.

If 5 =0 then A\v = —1 or 3 mod 8 according as 2 — A = 2 or 6 mod 8.
If # — X = 2mod 8 and v = 3 mod 8 then (—\/m) = —1 which is impossible.
Similar easy computations exclude all possibilities other than » = 4 1 mod
8.

(it) I1 4 Sirepresents (B — N\)(I1 + S1) in R(p) for all odd p such that plk.

We make use here, and below, of the following known theorem (6, 11).

For odd p, two forms, f and g, in the same number of variables and of unit
determinants in R(p) are equivalent in R(p) if and only if

() - (28,

The desired result is an immediate consequence of this theorem. We actually
have somewhat more; namely, I; 4 S; represents (k— \) ([; 4+ S1) in R(p)
for all odd p such that p + ( — N)w.

(iii) I; + Si represents (B — \) (I1 + S1) in R(p) for all odd p such that
pl(k — N). Suppose (B — \) = p’m where (p, m) = 1 and b > 0. We consider
two cases: (¢) v = 1 mod 4, and (b) v = 3 mod 4.

(a) Since I represents B rationally we must have (v/p) = \\/p) = 1, (2).
Thus det (I; + .S1) = v and det [m([; + Si1)] = m* ' are both units and
perfect squares in R(p). Therefore, I, 4+ S: and m (I, 4+ S1) are both equiva-
lent in R(p) to I;. It is thus sufficient to show that I; represents p°I; in R(p).
If b is even, this is obvious. Suppose then that b = 2¢ 4+ 1. We use the device
employed in (3). There exist integers a;, © = 1, 2, 3, 4, such that Y i%a? = p.
Let L be the ¥(v — 1) fold direct sum of

a as as ay

¢ Qy —a1 —a4 as
P as ay —a1 —a:
ay —az Ay —ay

Then LTL = p2°H]; as desired.
(b) For v = 3 mod 4 we must have

()= G)- 0™

https://doi.org/10.4153/CJM-1960-011-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1960-011-9

130 J. K. GOLDHABER

(3). Thus I, + 51 and m(Il; + S1) are both equivalent to the (v — 1)
(v — 1) diagonal matrix [I, 1,...,1, (=1)?}] = J. We must show that
J represents p°J. For even b this is obvious and so we may take b = 2¢ + 1.
If p = 3 mod 4 then let L; be the (v — 3) fold direct sum of the 4 by 4 matrix
given in the previous paragraph and let

1
nerlf ]

where @ is a p-adic integer such that a? = 1 4+ p. Then [(Z, @ L2)]* J[(L1 @
Ly)] = p%J. If p = 1 mod 4 then there exist integers a; and a, such that a,* +
a2 = p. Let L be the 3(v — 1) fold direct sum of

¢ a1 (42
P [az —al]'
Then LTJL = p°J.

It follows from all the above that for every p there exists a matrix C with
elements in R(p) such that C*C = B. It remains to show that there exists a
normal matrix with the desired properties. If » 1 v this is clear. In fact, we
have seen above that for every p t v there exists a C; with elements in R(p)
such that Gi7 (I, +S) Ci = (B — NI+ S). Let 4 = T(k @ C) T-1.
Then A7 A = B and AS = kS, where S is the v by v matrix composed entirely
of ones; whence by (5, Theorem 3.1) 4 is normal. Since p 4 v, 4 has its
elements in R(p).

Suppose p|v. We know that there exists a matrix C = (¢;;) with elements in
R(p) such that CT C = B. Let « be the column vector [ry, 7o, ..., 7,] where
7y = 2 ¢y, and let B be the » by 1 column vector each of whose entries is k.
We will show that there exists an orthogonal matrix O with elements in R(p)
such that Oa = B. It will follow that 4 = OCissuch that A74 = B, A4S = kS;
and again by (5), 4 is normal as desired.

We use the following theorem (4, Satz 10.4). It is stated here more con-
cretely and in a less general form that in (4).

Let V be a v dimensional vector space of column vectors over the p-adic
field with a non-degenerate ground form given by the v by » symmetric matrix
G. Let -7 be a lattice in V and let Z be its different. If @ and 8 are primitive
vectors in Z such that a’Ga = B7GB and a — B8 € Z then there exists a v
by » matrix O with elements in R(p) such that O’GO = G and Oa = 8.

For our purposes we take G to be the identity matrix, -# as the lattice
which has as a basis the column vectors of the identity matrix 7, and « and 8
as above. We note that if p is odd then Z = Z and if p = 2 then Z is the
lattice which has as a basis the column vectors of 2/. From the fact that
CTC = B it follows easily (10) that >, ¢;; #; = k2 and >_ 72 = k. From the
first of the latter equations and the facts that plv, (k, v) = 1 it follows that «
and B are both primitive. From the second of these equations it follows that
aTa = B7B. Hence if p is odd the desired O exists.
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In order to complete the proof for p = 2 it is sufficient to show that 72 = 1
mod 2. Let #; be the inner product of the ith and jth rows of C. Again as in
(10) we have

kzt” = )\Tif'j ‘I‘ kz(k - >\) 3”.

If 2 = 0 mod 2 then ¢;; = 1 mod 2 and we would have
0=rl= Z cfjstiis 1 mod 2
7

which is clearly absurd.
This completes the proof of Theorem 1.

As immediate consequences we have

CoroLLARY 1. If I represents B over the rational field then I represents B
rationally without essential demominator, that is, for every positive integer m
there is a matrix D with rational elements whose demominators are prime to
m such that DTD = B.

COROLLARY 2. If I represents B rationally then there exists a form in the
genus of I which represents B integrally.

3. A modified incidence equation. Since the genus of the identity con-
tains more than one class for v > 8 (8) Corollary 2 does not yield any new
designs. It is natural, therefore, to examine a matric equation, akin to X7X =
B, which is still satisfied by every incidence matrix, has integral solutions,
and then to examine the relationship of these integral solutions to incidence
matrices.

THEOREM 2. Let t = a/b be a rational number greater than 1/v such that
(av — b)b is odd. Let S be the v by v matrix composed entirely of ones. If I repre-
sents B rationally then I —1iS represents B — tk%S integrally.

For by Theorem 1, bl — aS represents bB — ak%S in every R(p). (The
normality of 4 implies that SA = AS = &S and therefore 47(bI — aS) A =
bB — akS.) Hence there exists a form in the genus of 6/ — &S which represents
bB — akS integrally. Since the genus of an indefinite form of odd determinant
in v > 2 variables consists of exactly one class (9) Theorem 2 follows.

Let 7/ be the set of all rationals which have the properties stated in Theorem
2. Fort € < let A(t) = (ay(f)) denote an arbitrary but fixed integral solution
of X7(I — tS)X = B — tk2S. Let r,(t) = X5 a4(t), and s;(¢) = X, a4().

THEOREM 3: (i) If A(ty) is normal and to #= (k 4+ (B — M) /kv then A(ty) is
an incidence matrix or the negative of one.

() If for ti, s € &, 1 % ta we have ry(t) = ri(ts) (s5:(t) = si(ts)) for
1=1,2,3,...,0, then A(t) is an incidence matrix or the negative of one.

(iii) If there exists an M and a subset " of & containing sufficiently many
distinct elements (see below) such that |r,()| < M(|s;()| < M) for t € & and
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i=1,2,...,0then there exists a to € I such that A (to) is an incidence matrix
or the negative of one.

(iv) If ri(te) > 0 for i = 1,2,...,v and for t, > 1 then A(t) is an incidence
matrix.

(i) As in (10) the following relations may be established: For every ¢t € -

2 i) — t<Z n(t)>2 = k(1 — w)
B (1 — tv)(Z s%(t)> + (Bt — >\)<Z ri(t)>2 = k' (k — M.

Now the normality of A (¢,) implies that Y r2(to) = > s:2(fo). Since ¢ #= (B +
(k — \)%)/kv, the above equations imply that Y>72(fo) = k% and Y si(t) =
S ri(te) = == kv. Whence 7;(to) = si(to) = k or ri(t0) = s:(to) = — k for all 4.
But then 474 = 4AT = B and the result {ollows by (10, Theorem 2.1).

(i1) The proof of this result is analogous to the proof of (i).

(iii) The number of lattice points in v dimensional space over the reals with
components having absolute value less than M is finite. Hence if -#” contains
more elements than the number of such lattice points then there exist f,
tr € S, t 5% b, such that r,(t) = rt) for i = 1,2,...,v. The desired
result follows from (ii).

(iv) Once again as in (10) it may be shown that 7,(f) = 0 mod k. Since
ri(t) > 0 it follows that

(Z fi(t)>2 > (Z fzi(i)> + v — DE.
From the first of the equation given in (i) above it follows that
Eo(l — 1) < (1 —1) 2 ri(®).
Since ¢ > 1 we have Y_72(t) < k%. But also
B’ < (X (1) < o(X i),

Hence > 7:2(t) = k% and the proof may be completed as was the proof of (i).
We remark that if v > 2+ 1land ¢t > 1 then 7,(t) # 0 forz=1,2,..., .
Theorem 3 gives sufficient conditions for the existence of a A, k, v design in

terms of integral solutions, which by Theorem 2 are known to exist, of the

matric equation

XT(I — tS)X = B — tE*S.

The problem of determining the nature of these solutions appears to be ex-
tremely difficult. Also of interest, and possibly a more pliable problem, is the
determination of the integral automorphs of I — ¢S and B — t&2S.
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