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Abstract The Hecke algebra H of a Hecke pair (G, H) is studied using the Schlichting completion
(Ḡ, H̄), which is a Hecke pair whose Hecke algebra is isomorphic to H and which is topologized so that
H̄ is a compact open subgroup of Ḡ. In particular, the representation theory and C∗-completions of H
are addressed in terms of the projection p = χH̄ ∈ C∗(Ḡ) using both Fell’s and Rieffel’s imprimitivity
theorems and the identity H = pCc(Ḡ)p. An extended analysis of the case where H is contained in a
normal subgroup of G (and in particular the case where G is a semi-direct product) is carried out, and
several specific examples are analysed using this approach.
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1. Introduction

The notion of an abstract Hecke algebra was introduced by Shimura in the 1950s and
has its origins in Hecke’s earlier work on elliptic modular forms. A Hecke pair (G, H)
comprises a group G and a subgroup H for which every double coset is a finite union of
left cosets, and the associated Hecke algebra, generated by the characteristic functions of
double cosets, reduces to the group ∗-algebra of G/H when H is normal.

There is an extensive literature on Hecke algebras and Hecke subgroups, most com-
monly treating pairs of semi-simple groups such as (PSL(n, Q), PSL(n, Z)). Bost and
Connes [5] introduced Hecke algebras to operator algebraists with (among other things)
the realization that solvable groups give interesting number-theoretic examples of spon-
taneous symmetry breaking.

A number of authors, partly in an attempt to understand [5] (see Remark 7.2 for ref-
erences) have studied Hecke C∗-algebras as crossed products by semigroup actions. Here
we give a different construction, using what we call the Schlichting completion (Ḡ, H̄),
based in part upon recent work of Tzanev [33]. (A slight variation on this construction
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appears in [12].) The idea is that H̄ is a compact open subgroup of Ḡ such that the
Hecke algebra of (Ḡ, H̄) is naturally identified with the Hecke algebra H of (G, H). The
characteristic function p of H̄ is a projection in the group C∗-algebra A := C∗(Ḡ), and
H can be identified with pCc(Ḡ)p ⊆ A; thus, closure of H in A coincides with the corner
pAp, which is Morita–Rieffel equivalent to the ideal ApA. (This is Morita–Rieffel equiva-
lence in its most basic form: one of the motivating examples in [30] was that Godement’s
study of a group Ḡ with a ‘large’ compact subgroup H̄ can be explained by the fact
that pAp and ApA have the same representation theory. In this more general situation
H̄ need not be open, so p ∈ M(A).) We also require a variant of Rieffel’s theory due to
Fell, allowing us to relate representations of H to certain representations of G using a
bimodule which is not quite a ‘pre-imprimitivity bimodule’ in Rieffel’s sense. We shall
describe situations in which the ideal ApA can be identified using crossed products.

Our thesis is that Schlichting completions can be used to efficiently study the repre-
sentation theory of Hecke algebras, and we focus on the following phenomena:

(1) sometimes pAp is the enveloping C∗-algebra C∗(H) of the Hecke algebra H, and

(2) sometimes the projection p is full in A, making the C∗-completion pAp of H Morita–
Rieffel equivalent to the group C∗-algebra A.

Earlier approaches to these issues (see, for example, [5,14,20,21,23]) depend upon the
fact that the semigroup T := {t ∈ G | tHt−1 ⊇ H} in their cases satisfies G = T−1T ;
this is equivalent to the family {xHx−1 | x ∈ G} of conjugates of H being directed
downward, and we investigate this directedness condition in more detail. We also show
that in order to have C∗(H) = pAp it is sufficient that G have a normal subgroup which
contains H as a normal subgroup.

There are other aspects of Hecke algebras, not treated here, which we believe will be
best studied using our approach, such as the treatment of KMS states in [5,27], homology
and K-theory in [25,33] and the 2-prime analogue of the Bost–Connes algebra studied
in [24]. The generalized Hecke algebras in [9] can also be studied in a similar fashion.

We begin in § 2 by recording our conventions regarding Hecke algebras. In § 3 we
introduce Hecke groups of permutations; the central objects of interest are permutation
groups which are closed in the topology of pointwise convergence. This lays the foundation
for the study of Hecke pairs and their Schlichting completions in § 4. In § 4 we also give
three alternative descriptions of the Schlichting completion: as an inverse limit, as the
weak (equivalently, strong) closure of G in the quasi-regular representation on �2(G/H),
and as the spectrum of a certain commutative Hopf C∗-algebra.

In § 5 we give the main technical properties of the projection p = χH̄ . In § 6 we use the
imprimitivity theorems of Fell and Rieffel to relate positive representations of the Hecke
algebra H and smooth representations of G.

The semigroup T is studied in § 7 and is used in Theorems 7.4 and 7.5 to show that if
G = T−1T , then both phenomena (1) and (2) occur, recovering results of [14,23].

Section 8 concerns a special situation involving a semi-direct product, which appears
in many examples in the Hecke-C∗-algebra literature. In particular, we give a direct
proof that the Hecke C∗-algebra is isomorphic to a full corner in a transformation group

https://doi.org/10.1017/S0013091506001419 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506001419


Hecke C∗-algebras and Schlichting completions 659

C∗-algebra without using the theory of semigroup actions (as, for example, is done
in [21]); we also show that the existence of a directing semigroup T is not needed in
general. In addition we give an alternate analysis in terms of a certain transformation
groupoid studied in [2]. The full justification of the main result of § 8 is deferred until
§ 9, where it is given in a more general context involving the twisted crossed products of
Green [13].

The semigroup T is closely related to (and in some cases the same as) the one which
appears in the semigroup crossed products of some authors mentioned above, although
for us the semigroup crossed products play no role. In § 10 we show how our techniques
can be used to easily recover the dilation result of [23]. Finally, in § 11 we illustrate our
results with a number of examples. It turns out that even finite groups pose unanswered
questions. While the rational ‘ax + b’ group treated in [5] exhibits both phenomena (1)
and (2) above (namely C∗(H) = pAp and p is full in A), we shall see that the rational
Heisenberg group behaves quite differently.

2. Preliminaries

We mostly follow [17] for Hecke algebras; here we record our conventions. If H is a
subgroup of a group G and x ∈ G, we define

Hx := H ∩ xHx−1.

Note that the map hHx �→ hxH of H/Hx into HxH/H is a bijection.
If every double coset of H in G contains only finitely many left cosets, i.e. if

L(x) := |HxH/H| = [H : Hx] < ∞ for all x ∈ G,

then H is a Hecke subgroup of G and (G, H) is a Hecke pair. A compact open subgroup
of a topological group is obviously a Hecke subgroup, and Tzanev’s theorem (see [33,
Proposition 4.1] and also Proposition 4.6 and Theorem 4.8 below) shows that a Hecke
pair (G, H) can always be densely embedded in an essentially unique Hecke pair (Ḡ, H̄)
with H̄ a compact open subgroup of Ḡ. The subspace

H = H(G, H) := span{χHxH | x ∈ G}

of the vector space of complex functions on G becomes a ∗-algebra, called the Hecke
algebra of the pair (G, H), with operations defined by

f ∗ g(x) =
∑

yH∈G/H

f(y)g(y−1x)

f∗(x) = f(x−1)∆(x−1),

where ∆ is the ‘modular function’ of the pair: this is a homomorphism ∆ : G → Q+

defined by ∆(x) := L(x)/L(x−1). Warning: some authors do not include the factor of ∆
in the involution; for us it arises naturally when we embed H in a certain C∗-algebra.
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Also, we eschew the term ‘almost normal subgroup’ (used by some authors for ‘Hecke
subgroup’) since it already has at least one other meaning in the algebraic literature.

For some computations it is convenient to have formulae for the operations on the
generators:

χHxH ∗ χHyH =
∑

zH∈HxH/H,
wH∈HyH/H

χzwH =
∑

wH∈HyH/H

χHxwH
L(x)

L(xw)
,

χ∗
HxH = χHx−1H∆(x).

The formula for the adjoint is obvious. To verify the first formula for the convolution,
note that for u ∈ G we have

χHxH ∗ χHyH(u) =
∑

zH∈G/H

χHxH(z)χHyH(z−1u) =
∑

zH∈HxH/H

χHyH(z−1u)

=
∑

zH∈HxH/H

∑
wH∈HyH/H

χwH(z−1u) =
∑

zH∈HxH/H,
wH∈HyH/H

χzwH(u).

For the second convolution formula, consider the projection

Φ : cc(G/H) → cc(H \ G/H)

defined by

Φ(χxH) =
1

L(x)
χHxH

(where elements of both cc(G/H) and cc(H \ G/H) are identified with appropriately
invariant functions on G). We have

χHxH ∗ χHyH = Φ(χHxH ∗ χHyH) =
∑

zH∈HxH/H,
wH∈HyH/H

Φ(χzwH)

=
∑

zH∈HxH/H,
wH∈HyH/H

1
L(xw)

χHxwH

(because in choosing representatives z of cosets zH ∈ HxH/H we can take z ∈ Hx)

=
∑

wH∈HyH/H

L(x)
L(xw)

χHxwH .

χH is a unit for H, and it is easy to check that H becomes a normed ∗-algebra with
the ‘�1-norm’ defined by

‖f‖1 =
∑

xH∈G/H

|f(x)|. (2.1)

One reason for our definition of f∗ is that then ‖f∗‖1 = ‖f‖1. Note that ‖χHxH‖1 = L(x)
for all x ∈ G.

Remark 2.1. H can also be considered as the ∗-algebra of a hypergroup [4, Chapter 1],
so [5] gives an example of a discrete hypergroup having a non-trivial modular function.
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3. Hecke groups

In § 4 we will give a careful development of a certain completion (Ḡ, H̄) of a Hecke pair
(G, H), due largely to Tzanev [33], who built upon the work of Schlichting [31]. But it
seems to us that the proper place to begin is not with Hecke pairs, but rather in the
general context of permutation groups.

Let X be a set, and let MapX denote the set of maps from X to itself, equipped with
the product topology (that is, the topology of pointwise convergence) arising from the
discrete topology on X. Clearly, MapX is Hausdorff. Furthermore, let PerX be the set
of bijections of X onto itself, with the relative topology from MapX.

Lemma 3.1. MapX is a topological semigroup; Per X is a topological group.

Proof. Let φi → φ and ψi → ψ in MapX. Then, for each s ∈ X, ψi(s) = ψ(s)
eventually, so φiψi(s) = φψ(s) eventually. Thus, φiψi → φψ, so multiplication is con-
tinuous in MapX. If φi → φ in PerX, then, for each s ∈ X, eventually φiφ

−1(s) = s,
and hence φ−1

i (s) = φ−1(s). It follows that φ−1
i → φ−1, so the involution on PerX is also

continuous. �

Remark 3.2. Although we will not need this fact, PerX is complete with respect
to the two-sided uniformity. To see this, suppose that {φi} is a Cauchy net in the
two-sided uniformity. Then, for each s ∈ X, eventually φjφ

−1
i (s) = s = φ−1

i φj(s),
i.e. φi(s) = φj(s) and φ−1

i (s) = φ−1
j (s). So we can define two functions by φ(s) = limφi(s)

and ψ(s) = limφ−1
i (s). Then for large i we have ψφ(s) = φ−1

i φ(s) = φ−1
i φi(s) = s and,

similarly, φψ(s) = s. So φ = lim φi ∈ Per X.
Interestingly, PerX is in general not complete with respect to either one-sided unifor-

mity; see Example 3.4 for an illustration of this.

Recall that MapX, being a product, may be viewed as an inverse limit: let F
denote the family of finite subsets of X, and for each F ∈ F let Map(F, X) denote
the set of maps from F to X, with the product topology. For E ⊆ F , define πF

E :
Map(F, X) → Map(E, X) by restriction: that is, πF

E(φ) = φ|E . Then {Map(F, X), πF
E} is

an inverse system, and MapX is identified as a topological space with the inverse limit
lim←−F∈F Map(F, X), with the canonical projections πF : MapX → Map(F, X) being the
restriction maps: πF (φ) = φ|F .

It will be important for us to know that we can play the same game with any subset S of
MapX: for each F ∈ F put S|F = {φ|F | φ ∈ S}, and for E ⊆ F define πF

E : S|F → S|E
by restriction. Then again we have an inverse system, and we can identify the inverse
limit lim←−F∈F S|F with a subspace of lim←−F∈F Map(F, X), since S|F ⊆ Map(F, X) for each
F . To be precise, under the identification of lim←−F∈F Map(F, X) with MapX described
above, we have

lim←−
F∈F

S|F = {φ ∈ MapX | φ|F ∈ S|F for all F ∈ F}.

It follows from the definition of the product topology that this inverse limit is just the
closure S̄ of S in MapX. For convenient reference we formalize this as follows.
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Lemma 3.3. For any subset S of MapX, S̄ = lim←−F∈F S|F .

Now let Γ be a subgroup of PerX, and for each F ∈ F consider the open subgroup
ΓF of Γ defined by

ΓF = {φ ∈ Γ | φ|F = id}.

While the set Γ |F = {φ|F | φ ∈ Γ} of restrictions is not necessarily a group, it has a
transitive action of Γ on the left. From this we see that the map πF : Γ → Γ |F is constant
on each coset φΓF and therefore induces a Γ -equivariant homeomorphism between the
discrete spaces Γ/ΓF and Γ |F . With this identification, for E ⊆ F the bonding map
πF

E : Γ/ΓF → Γ/ΓE is given by πF
E(φΓF ) = φΓE . Thus, we get

Γ̄ = lim←−
F∈F

Γ/ΓF .

Of course, the subgroups ΓF are in general not normal in Γ ; the above inverse limit is
a purely topological one. In fact, in general Γ̄ will not be contained in PerX, because if
X is infinite, PerX is not closed in MapX.

Example 3.4. Let X = N and, for each n, define φn ∈ Per X by

φn(s) =

⎧⎪⎨
⎪⎩

s + 1 if s < n,

0 if s = n,

s if s > n.

Then φn → σ in MapX, where σ is the shift map s �→ s + 1. Since σ is not in PerX,
Per X is not closed in MapX. (This also shows that PerX is not complete with respect
to either one-sided uniformity, since {φn} is Cauchy for the left uniformity, and {φ−1

n } is
Cauchy for the right.)

The following definition introduces a condition on Γ which guarantees that Γ̄ ⊆ Per X.

Definition 3.5. A group Γ ⊆ Per X is called a Hecke group on X if for all s, t ∈ X

the orbit Γs(t) is finite, where

Γs = {φ ∈ Γ | φ(s) = s}

is the stability subgroup of Γ at s.

Observe that whenever r and s are in the same Γ -orbit, Γr will have finite orbits if
and only if Γs does, so it is enough to check that Γs(t) is finite for a single s from each
Γ -orbit in X. Also, the condition on Γs(t) is equivalent to Γs ∩ Γt having finite index
in Γs.

Also note that for any subgroup Γ of PerX, each stability subgroup Γs is by definition
open in Γ in the relative (product) topology.

Proposition 3.6. Let Γ be a Hecke group on X, and let Γ̄ be the closure of Γ in
MapX. Then Γ̄ is a locally compact, totally disconnected, closed subgroup of Per X. For
each s ∈ X, Γ s = (Γ̄ )s is compact and open in Γ̄ .
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Proof. We first show that Γ̄ ⊆ Per X. Fix φ ∈ Γ̄ . Then, for any r, s ∈ X with r �= s,
there exists ψ ∈ Γ such that ψ(t) = φ(t) for all t ∈ {r, s}. Since ψ is injective, we have
ψ(r) �= ψ(s), whence φ(r) �= φ(s), so φ is also injective.

Now fix s ∈ X. Choose γ ∈ Γ such that γ(s) = φ(s), and put

F = Γsγ
−1(s) ∪ {s},

a finite subset of X. Now choose ψ ∈ Γ such that ψ(t) = φ(t) for all t ∈ F . Then, in
particular, ψ(s) = φ(s) = γ(s), so ψ−1γ ∈ Γs. It follows that ψ−1(s) = ψ−1γγ−1(s) is in
F , so

φψ−1(s) = ψψ−1(s) = s.

Therefore, φ is onto.
To see that each Γ̄s is compact, note that Γs ⊆

∏
t∈X Γs(t), which is compact by the

Tychonoff theorem. For the openness, note that Maps X := {φ ∈ MapX | φ(s) = s} is a
closed and open subset of MapX, so

Γ̄s = Γ ∩ Maps X = Γ̄ ∩ Maps X = (Γ̄ )s

is evidently an open subset of Γ̄ .
Finally, since Γ̄ has a compact neighbourhood of the identity (namely any Γ s), it

is locally compact, and of course Γ̄ is totally disconnected because MapX is totally
disconnected. �

Definition 3.7. A group Γ ⊆ Per X is called a Schlichting group on X if every
stability subgroup of Γ is compact in Γ . If Γ is a Hecke group on X, the closure Γ̄ of Γ

in MapX is a Schlichting group on X, which we call the Schlichting completion of Γ .

Our motivation for choosing the name Schlichting comes from [31]. Every Schlichting
group Γ on X is a Hecke group on X. To see this, fix s, t ∈ X and, for each u ∈ Γs(t), let
Uu = {φ ∈ Γs | φ(t) = u}. Then the collection {Uu | u ∈ Γs(t)} is a disjoint open cover of
Γs, and hence must be finite. But the map u �→ Uu is injective, so the orbit Γs(t) must
be finite as well. Furthermore, every Schlichting group on X is locally compact (having
a compact neighbourhood of the identity), and hence complete, so is in particular closed
in MapX. Thus, every Schlichting group is its own Schlichting completion. In fact, the
Schlichting groups on X are precisely the Hecke groups on X which are closed in MapX.

For any Hecke group Γ , the Schlichting completion Γ̄ coincides with the usual comple-
tion of Γ as a topological group (since Γ is dense in Γ̄ and Γ̄ is complete). Thus, we have
the following abstract characterization of Γ̄ (cf. [6, Chapter 3, § 3.3, Proposition 5]).

Proposition 3.8. Let Γ be a Hecke group on X, and let Γ̄ be its Schlichting comple-
tion. Every continuous homomorphism σ of Γ into a complete Hausdorff group L has a
unique extension to a continuous homomorphism σ̄ of Γ̄ into L.

If σ is in fact a topological group isomorphism of Γ onto a dense subgroup of L, then
σ̄ will be a topological group isomorphism of Γ̄ onto L.

Interestingly, not every subgroup Γ of PerX which is closed in MapX is a Hecke group
on X, even when Γ acts transitively on X.
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Example 3.9. Let X = Z × Z2, and let Γ be the subgroup of PerX generated by the
permutations

φ(x, a) =

{
(x + 1, a) if a = 0,

(x, a) if a = 1,

η(x, a) =

{
(x, 1) if a = 0,

(x, 0) if a = 1.

Then Γ acts transitively on X, and Γ(0,0)(0, 1) = Z × {1}, so Γ is not a Hecke group
on X.

To see that Γ is closed in MapX, first note that any γ ∈ Γ is determined by its values
on F = {(0, 0), (0, 1)}. If (γn) is a sequence in Γ which converges to ξ in MapX, we can
choose N such that n � N implies γn = ξ on F ; but then γn = ξ = γN on all of X for
all such n, so the sequence is eventually constant. In particular, ξ = γN ∈ Γ .

4. Schlichting pairs

We now apply the permutation-group techniques of the preceding section to the study
of Hecke pairs, recovering Tzanev’s construction in [33]. The results imply in particular
that for every reduced Hecke pair (G, H) there is a pair (Ḡ, H̄) consisting of a locally
compact, totally disconnected group Ḡ and a compact open subgroup H̄ of Ḡ such that
G is dense in Ḡ, H is dense in H̄, and the Hecke algebra of (Ḡ, H̄) is isomorphic to the
Hecke algebra of (G, H).

Let G be a group, and let H be a subgroup of G. Define θ : G → Per G/H by

θ(x)(yH) = xyH for x ∈ G, yH ∈ G/H, (4.1)

and put Γ = θ(G). Note that θ−1(ΓxH) = xHx−1 for each xH ∈ G/H.

Lemma 4.1. With notation as above, (G, H) is a Hecke pair if and only if Γ is a
Hecke group on G/H.

Proof. The lemma follows immediately from the observation that

ΓxH(yH) = xHx−1(yH) = x(Hx−1yH)

for each x, y ∈ G. �

Note that ker θ =
⋂

x∈G xHx−1, so θ will be injective if and only if the pair (G, H)
is reduced in the sense that

⋂
x∈G xHx−1 = {e}. If (G, H) is not reduced, then the pair

(G/ ker θ, H/ ker θ) will be a reduced Hecke pair, which is called the reduction of (G, H).
Replacing a given Hecke pair by its reduction gives an isomorphic Hecke algebra, so it
does no harm to restrict our attention to reduced Hecke pairs.

Hypothesis 4.2. We assume from now on that our Hecke pairs are reduced.

https://doi.org/10.1017/S0013091506001419 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506001419


Hecke C∗-algebras and Schlichting completions 665

Since the family {ΓxH | xH ∈ G/H} is a neighbourhood sub-base at the identity of Γ ,
the inverse images {xHx−1 | x ∈ G} give a neighbourhood sub-base at the identity for a
group topology on G with respect to which θ is continuous.

Definition 4.3. The group topology on G generated by the collection {xHx−1 |
x ∈ G} is called the Hecke topology of the pair (G, H).

Because {e} =
⋂

x∈G xHx−1, the Hecke topology will be Hausdorff if and only if (G, H)
is reduced. A given group topology on G will be stronger than the Hecke topology if and
only if H is a member of the given topology.

Definition 4.4. A reduced Hecke pair (G, H) is called a Schlichting pair if H is
compact and open in the Hecke topology on G.

Note that a reduced Hecke pair (G, H) is a Schlichting pair if and only if Γ = θ(G) is a
Schlichting group on G/H: since (G, H) is reduced, θ : G → Γ will be a homeomorphism
which carries each conjugate xHx−1 to the stabilizer subgroup ΓxH .

Proposition 4.5. If G is a topological group and H is a compact open subgroup of
G such that ⋂

x∈G

xHx−1 = {e},

then the given topology on G coincides with the Hecke topology, so (G, H) is a Schlichting
pair.

Proof. Since H is open in the given topology on G, the identity map id : G → G is a
continuous bijection from the given topology to the Hecke topology. Since H is compact
in the given topology and the Hecke topology is Hausdorff, id |H is a homeomorphism;
and since H is open in both topologies, it follows that id is a homeomorphism. �

Proposition 4.6. If (G, H) is a Hecke pair, then (θ(G), θ(H)) is a Schlichting pair,
where θ is as defined in (4.1) and the closures are taken in MapG/H.

Proof. Set Γ = θ(G), which is a Hecke group on G/H by Lemma 4.1. Note that
ΓH = θ(H). Proposition 3.6 tells us that (Γ )H = ΓH is a compact open subgroup of Γ .
Thus, the transitive action of Γ on G/H is isomorphic to the canonical action on Γ/ΓH .
Since Γ acts faithfully on G/H, it does so also on Γ/ΓH , and this proves that the pair
(Γ , ΓH) is reduced. The result now follows from Proposition 4.5. �

Definition 4.7. For any Hecke pair (G, H), the pair (θ(G), θ(H)) is called the Schlicht-
ing completion of (G, H).

When (G, H) is reduced, we will suppress the map θ in the notation for the Schlichting
completion. Thus, Ḡ is a locally compact, totally disconnected group and H̄ is a compact
open subgroup.

The following uniqueness theorem, essentially due to Tzanev [33, Proposition 4.1],
gives an abstract characterization of the relation between a reduced Hecke pair and its
Schlichting completion. We now give a different proof from that in [33].
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Theorem 4.8. Let (G, H) be a reduced Hecke pair and let (Ḡ, H̄) be its Schlichting
completion. If (L, K) is a Schlichting pair and σ is a homomorphism of G into L such
that σ(G) is dense in L and σ(H) ⊆ K, there exists a unique continuous homomorphism
σ̄ of Ḡ into L such that σ̄ ◦ θ = σ.

If we further assume that H = σ−1(K), then σ̄ will be a topological group isomorphism
of Ḡ onto L and of H̄ onto K.

Proof. By Lemma 4.1, Γ = θ(G) is a Hecke group on G/H, and Ḡ = Γ̄ is its
Schlichting completion. L is a complete Hausdorff group because (L, K) is a Schlichting
pair. Thus, for the first part it suffices, by Proposition 3.8, to prove that σ is continuous
for the Hecke topologies of G and L, and for the second part it suffices to show that the
continuous extension σ̄ is also injective and open for the Hecke topologies of Ḡ and L.

So, first assume that σ(G) = L and σ(H) ⊆ K. A typical sub-basic open neighbourhood
of e in L is of the form xKx−1 for x ∈ L. Since σ(G) is dense in L and K is open in
L, there exists y ∈ G such that xK = σ(y)K; hence, xKx−1 = σ(y)Kσ(y)−1. Thus,
σ(yHy−1) ⊆ xKx−1, showing that σ is continuous.

For the other part, further assume that H = σ−1(K). We must show that the above
continuous extension σ̄ is injective and open.

We have σ(G) ∩ K = σ(H). Thus, since σ(G) is dense and K is open and closed, we
have

K = K ∩ σ(G) = K ∩ σ(G) = σ(H).

Since H̄ is compact, so is σ̄(H̄). Thus, σ(H) ⊂ σ̄(H̄). By continuity we have

σ̄(H̄) ⊂ σ̄(H) = σ(H).

It follows that σ̄(H̄) = K. Similarly, in the notation of the second paragraph of the proof
we have σ̄(yH̄y−1) = xKx−1. This shows that σ̄ is open.

To show σ̄ is injective, we need to know H̄ = σ̄−1(K). Since σ̄−1(K) is closed and
contains σ−1(K) = H, we have H̄ ⊂ σ̄−1(K). For the opposite inclusion, let x ∈ Ḡ, and
assume that σ̄(x) ∈ K. Choose y ∈ G such that xH̄ = yH̄. Then

K = σ̄(x)K = σ̄(x)σ̄(H̄) = σ̄(xH̄) = σ̄(yH̄) = σ(y)σ̄(H̄) = σ(y)K,

so y ∈ σ−1(K) = H; hence, xH̄ = H̄ and therefore x ∈ H̄.
Thus, we do have σ̄−1(K) = H̄, and so, because σ̄(Ḡ) = L and both

⋂
x∈Ḡ

xH̄x−1 and
⋂
y∈L

yKy−1

are trivial, it is easy to see that σ̄ must be injective. �

It follows from Theorem 4.8 that every Schlichting pair is (isomorphic to) its own
Schlichting completion.
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Proposition 4.9. Let (G, H) be a reduced Hecke pair, and let (Ḡ, H̄) be its Schlichting
completion. Then the following maps are bijections:

(i) xH �→ xH̄ : G/H → Ḡ/H̄,

(ii) xHx−1 �→ xH̄x−1 : {xHx−1 | x ∈ G} → {xH̄x−1 | x ∈ Ḡ},

(iii) HxH �→ H̄xH̄ : H \ G/H → H̄ \ Ḡ/H̄.

Moreover, the map in (i) is equivariant for the left G-actions.

Proof. Suppose that x ∈ G but x /∈ H. Then xH �= H, so {φ ∈ MapX | φ(H) = xH}
is an open neighbourhood of x which does not meet H; thus, x /∈ H̄. In other words,
G∩ H̄ = H, and it follows from this that the map in (i) is injective. For surjectivity, each
zH̄ is open in Ḡ, so there exists x ∈ G with x ∈ zH̄, whence xH̄ = zH̄. Equivariance is
obvious.

Surjectivity in (ii) follows from that of (i). For injectivity, if x ∈ G and xH̄x−1 = H̄,
we have

H = G ∩ H̄ = G ∩ xH̄x−1 = x(G ∩ H̄)x−1 = xHx−1.

Surjectivity in (iii) also follows from (i). For injectivity, suppose that x, y ∈ G such
that H̄xH̄ = H̄yH̄. Then xH̄y−1 ∩ H̄ is non-empty and open in Ḡ; by density, we can
choose h ∈ xH̄y−1 ∩ H, and it follows that xH = hyH, whence HxH = HyH. �

4.1. Schlichting completions as inverse limits

Suppose that (G, H) is a reduced Hecke pair, and let F ⊆ G/H be finite. Identifying
G with the associated Hecke group on G/H, we have

GF =
⋂

xH∈F

xHx−1

(as the notation implies, it is only necessary to choose one representative from each coset
in F ). Thus, each GF is just the intersection of finitely many conjugates of H. From the
discussion following Lemma 3.3 we have the following result.

Proposition 4.10. For any reduced Hecke pair (G, H), the Schlichting completion is
a topological inverse limit:

Ḡ = lim←−
F⊆G/H

finite

G/GF .

Remark 4.11. (i) Since the subgroups GF of G are in general non-normal, it is not
at all obvious from the above description that Ḡ is a group. But note that if F ⊆ G/H

is finite, then the set F ′ = HF ⊆ G/H is finite and H-invariant, so HF ′ is normal in
H; thus, H̄ = lim←−H/HF is an inverse limit of groups. It is a non-trivial exercise to work
out the formulae for the product and inverse in Ḡ using the standard notation of inverse
limits.

(ii) As remarked following Definition 3.7, the Schlichting completion Ḡ is just the
completion of G in the two-sided uniformity arising from the Hecke topology on G. But
again, some of the properties of Ḡ are not obvious from this description.
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4.2. Schlichting completions via Hopf algebras

The group structure on Ḡ = lim←−G/GF can also be obtained from a Hopf algebra
structure on

A := C0(Ḡ) = lim−→
F⊆G/H

finite

c0(G/GF ) =
⋃

F⊆G/H
finite

cc(G/GF ).

For this it is useful to consider the dense subalgebra of smooth functions with respect to
the Schlichting topology:

A0 = C∞
c (G) :=

⋃
F⊆G/H

finite

cc(G/GF ),

i.e. A0 is the set of all complex functions f on G with finite range and such that f(xs) =
f(x) for all s in some GF . The co-multiplication and antipode on A0 are given by the
maps

δ(f)(s, t) = f(st) and ν(f)(s) = f(s−1). (4.2)

Proposition 4.12. A0 is a multiplier Hopf algebra (as defined in [35]); i.e. for f, g ∈
A0 we have ν(f) ∈ A0, δ(f)(g ⊗ 1) ∈ A0 � A0 and functions of this form span A0 � A0.
The co-unit is given by ε(f) = f(e) and left Haar measure by µ(χxGF

) = [GF : H ∩GF ] ·
[H : H ∩ GF ]−1.

Here ‘�’ means the algebraic tensor product. The proof is somewhat technical, but
straightforward. A is the uniform closure of A0, so the maps δ and ν from (4.2) and ε

from Proposition 4.12 extend to A and we have the following result.

Theorem 4.13. (A, δ, ν) is a commutative Hopf C∗-algebra. The group structure on
spec(A) = lim←−G/GF is the same as in Proposition 4.10.

Here we leave the proof to the reader; one checks that the maps δ and ν on A satisfy [34,
Theorem 3.8], so spec(A) is a locally compact group, and one has to check that the
product is the same as the one coming from Per(G/H).

4.3. Schlichting completions via quasi-regular representations

Another approach is as follows: look at the quasi-regular representation x �→ λH(x)
of G on �2(G/H) and let Ḡ be the closure of λH(G) in the weak (or strong) operator
topology. The proof that this gives the same result as the other approaches is once again
left to the reader.

Remark 4.14. Although we have chosen the names ‘Hecke topology’, ‘Schlichting
completion’, etc., other names could also be appropriate, since similar constructions have
been studied by many people for a long time.
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5. The fundamental projection p

The Schlichting completion is useful because the Hecke algebra H of a Hecke pair (G, H)
can be identified with a ∗-subalgebra of the convolution ∗-algebra Cc(Ḡ) ⊆ C∗(Ḡ). In
fact, the characteristic function χH̄ turns out to be a projection in Cc(Ḡ) (see below),
and H is (identified with) the corresponding corner χH̄Cc(Ḡ)χH̄ (Corollary 5.4). This
brings a great deal of well-developed machinery into play which would not otherwise be
available, since, in general, χH /∈ C∗(G).

In this section we consider a reduced Hecke pair (G, H) and its Schlichting completion
(Ḡ, H̄). We normalize the left Haar measure µ on Ḡ so that µ(H̄) = 1, and we use this
to define the (usual) convolution and involution on Cc(Ḡ) ⊆ A:

f ∗ g(x) =
∫

Ḡ

f(t)g(t−1x) dt and f∗(x) = f(x−1)∆Ḡ(x−1),

where ∆Ḡ is the modular function on Ḡ. We make sense of expressions of the form xf

and fx for x ∈ Ḡ and f ∈ Cc(Ḡ) by identifying Ḡ with its image in the multiplier algebra
M(A) (and similarly for other groups), so that

(xf)(s) = f(x−1s) and (fx)(s) = f(sx−1)∆Ḡ(x−1)

for all s ∈ Ḡ.
Note that, since H̄ is compact, we have ∆Ḡ(h) = 1 for all h ∈ H̄, and it follows that

L(x)µ(H̄) = µ(H̄xH̄) = R(x)µ(H̄x) = L(x−1)µ(H̄x)

for each x ∈ Ḡ; thus, the somewhat mysterious modular function ∆ appearing in [5] (and
in § 2) is simply ∆Ḡ, and we will no longer differentiate the two in our notation.

We now define
p = χH̄ and A = C∗(Ḡ).

Thus, p is a projection (by which we mean p = p∗ = p2) in Cc(Ḡ), and hence in A. Rieffel’s
theory immediately tells us that Ap is an ApA − pAp imprimitivity bimodule. (Here and
elsewhere when we write ApA we mean the closed span of the products, yielding a closed
two-sided ideal of A.) But before pursuing this further, we must acquire a little expertise
with the projection p.

Lemma 5.1. For each x ∈ Ḡ,

(i) xp = χxH̄ ,

(ii) px = ∆(x)−1χH̄x, and

(iii) xpx−1 = ∆(x)χxH̄x−1 .

Moreover, there exist y, z ∈ G such that yp = xp, pz = px and ypy−1 = xpx−1.

Proof. Items (i)–(iii) follow from elementary calculations, and then the last statement
is immediate from Proposition 4.9. �
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Lemma 5.2.

(i) pCc(Ḡ) = spanx∈G px;

(ii) Cc(Ḡ)p = spanx∈G xp;

(iii) pCc(Ḡ)p = spanx∈G pxp;

(iv) Cc(Ḡ)pCc(Ḡ) = spanx,y∈G xpy.

In (iv) we intend for ‘Cc(Ḡ)pCc(Ḡ)’ to mean the linear span of the products.

Proof. By direct calculation, pf is constant on right cosets of H̄ for f ∈ Cc(Ḡ). Thus,

pCc(Ḡ) = span
x∈G

χH̄x = span
x∈G

px,

proving (i). Then (ii) follows by taking adjoints, and (i), (ii) imply (iii), (iv). �

Lemma 5.3. Let π be a (continuous unitary) representation of Ḡ on a Hilbert space
V , and suppose that ξ ∈ V has finite H̄-orbit. Let

H̄π,ξ := {h ∈ H̄ | π(h)ξ = ξ}. (5.1)

Then
π(p)ξ = [H̄ : H̄π,ξ]−1

∑
hH̄π,ξ∈H̄/H̄π,ξ

π(h)ξ.

Proof. We have µ(H̄π,ξ) = [H̄ : H̄π,ξ]−1, so

π(p)ξ =
∫

H̄

π(k)ξ dk

=
∑

hH̄π,ξ∈H̄/H̄π,ξ

∫
hH̄π,ξ

π(k)ξ dk

=
∑

hH̄π,ξ∈H̄/H̄π,ξ

∫
H̄π,ξ

π(hk)ξ dk

=
∑

hH̄π,ξ∈H̄/H̄π,ξ

π(h)
∫

H̄π,ξ

ξ dk

=
∑

hH̄π,ξ∈H̄/H̄π,ξ

µ(H̄π,ξ)π(h)ξ

= [H̄ : H̄π,ξ]−1
∑

hH̄π,ξ∈H̄/H̄π,ξ

π(h)ξ.

�

Recall that for x ∈ Ḡ we have defined H̄x to be H̄ ∩ xH̄x−1.
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Corollary 5.4. For all x ∈ Ḡ,

pxp =
1

L(x)

∑
hH̄x∈H̄/H̄x

hxp =
1

L(x)
χH̄xH̄ .

The ∗-algebras pCc(Ḡ)p and H(Ḡ, H̄) are identical, and (the restriction of) the L1-norm
on Cc(Ḡ) coincides with the �1-norm on H defined by (2.1). In particular, ‖pxp‖1 = 1
for each x ∈ Ḡ.

Proof. Let λ be the left regular representation of Ḡ, and view xp ∈ Cc(Ḡ) as an
element of L2(Ḡ). For h ∈ H̄ we have

λ(h)xp = xp ⇐⇒ χhxH̄ = χxH̄ ⇐⇒ h ∈ xH̄x−1.

Thus, H̄λ,xp = H̄x so the first assertion follows from Lemma 5.3 and the identity L(x) =
[H̄ : H̄x].

Lemmas 5.1 and 5.2 (iii) now give pCc(Ḡ)p = span{pxp | x ∈ G} = span{χH̄xH̄ |
x ∈ Ḡ} = H(Ḡ, H̄), and it is clear from their definitions that the involutions on both
∗-algebras agree. For the convolution, first note that, since H̄ is open, Ḡ/H̄ is discrete,
so ∫

Ḡ

f(t) dt =
∑

yH̄∈Ḡ/H̄

∫
H̄

f(yh) dh

for f ∈ Cc(Ḡ). Any f and g in H are left- and right-H̄-invariant, so, since µ(H̄) = 1, it
follows that, for any x ∈ Ḡ,∫

Ḡ

f(t)g(t−1x) dt =
∑

yH̄∈Ḡ/H̄

∫
H̄

f(yh)g(h−1y−1x) dh

=
∑

yH̄∈Ḡ/H̄

f(y)g(y−1x).

Similarly, for f ∈ H we have∫
Ḡ

|f(t)| dt =
∑

yH̄∈Ḡ/H̄

∫
H̄

|f(yh)| dh =
∑

yH̄∈Ḡ/H̄

|f(y)|.

�

Remark 5.5. Lemma 5.3 holds, with the same proof, for continuous representations
on complete locally convex topological vector spaces. Using the more general version
would let us avoid putting Cc(Ḡ) into L2(Ḡ) in the proof of Corollary 5.4.

6. C∗-completions

We begin this section with a streamlined summary of Fell’s abstract imprimitivity theo-
rem, which we then apply to our Hecke context.
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6.1. Fell’s version of Morita equivalence

Let E and D be ∗-algebras and let X be an E − D bimodule. Suppose we have inner
products in the sense of Fell:

E
L〈·,·〉←−−− X × X

〈·,·〉R−−−→ D,

which are appropriately sesquilinear (with respect to the one-sided module structures),
Hermitian in the sense that 〈f, g〉 = 〈g, f〉∗, and compatible in the sense that L〈f, g〉h =
f〈g, h〉R for f, g, h ∈ X.

Definition 6.1. X is an E − D imprimitivity bimodule if either

(i) span〈X, X〉R = D and span L〈X, X〉 = E, or

(ii) D and E are Banach ∗-algebras, span〈X, X〉R = D and span L〈X, X〉 = E.

Fell and Doran would call imprimitivity bimodules of type (i) above strict [10, Def-
inition XI.6.2] and those of type (ii) topologically strict [10, Definition XI.7.1]. We will
present the elementary theory of these two types in a unified fashion for convenience.

For our purposes the most important examples of imprimitivity bimodules arise from
a projection p in a ∗-algebra B, and we take D = pBp, X = Bp and E = BpB (or BpB if
B is a Banach ∗-algebra and we want a bimodule of type (ii)), with bimodule operations
given by multiplication within B and inner products

L〈f, g〉 = fg∗, 〈f, g〉R = f∗g.

In Fell’s theory, as opposed to Rieffel’s, it is important to note that there is no posi-
tivity condition on the inner products. Rather, positivity is a condition attributable to
individual representations.

Definition 6.2. Given an E − D imprimitivity bimodule X, a representation π of D

is 〈· , ·〉R-positive if

π(〈f, f〉R) � 0 for all f ∈ X,

and similarly for L〈· , ·〉 and representations of E.

Positive representations of D can be induced via X to positive representations of E in
direct analogy with Rieffel’s inducing process, and we have Fell’s abstract imprimitivity
theorem, below.

Theorem 6.3 (Fell and Doran [10, Theorems XI.6.15 and XI.7.2]). If X is
an E − D imprimitivity bimodule, then induction via X gives a category equivalence
between the L〈· , ·〉-positive representations of E and the 〈· , ·〉R-positive representations
of D.
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Definition 6.4. The inner product 〈· , ·〉R on an E − D imprimitivity bimodule X is
positive if one of the following properties holds:

(i) for each f ∈ X there exist g1, . . . , gn ∈ D such that

〈f, f〉R =
n∑
1

g∗
i gi;

(ii) D is a Banach ∗-algebra, and for each f ∈ X and ε > 0 there exist g1, . . . , gn ∈ D

such that ∥∥∥∥〈f, f〉R −
n∑
1

g∗
i gi

∥∥∥∥ < ε.

A similar definition applies to L〈· , ·〉.

Observe that in the case E = BpB, X = Bp, D = pBp mentioned above, the left inner
product L〈· , ·〉 is automatically positive since X ⊆ E.

Proposition 6.5. Let B and C be C∗-algebras and let Y be a C − B imprimitivity
bimodule with positive inner products. Suppose that EXD ⊆ CYB densely, and C =
C∗(E). Then

(i) a representation of D extends to B if and only if it is 〈· , ·〉R-positive,

(ii) B = C∗(D) if and only if every representation of D is 〈· , ·〉R-positive,

(iii) if 〈· , ·〉R is positive on X, then B = C∗(D).

Proof. It suffices to show (i), for then (ii) will follow immediately, and (iii) follows
from (ii) because if 〈· , ·〉R is positive on X, then every representation of D is 〈· , ·〉R-
positive (and similarly for L〈· , ·〉). Let π be a representation of D. First assume that π

is 〈· , ·〉R-positive. Induce π across the imprimitivity bimodule X to get a representation
ρ of E. Then ρ extends uniquely to a representation ρ̄ of C. Induce ρ̄ across Y to
get a representation τ of B. On the other hand, we can induce ρ back across X to get a
representation λ of D. Since X is dense in Y , we have τ |D = λ. Since X is an imprimitivity
bimodule, by Fell’s abstract imprimitivity theorem λ is unitarily equivalent to π. Thus,
since λ extends to a representation of B, so does π.

Conversely, assume that π extends to a representation π̄ of B. Then, since 〈· , ·〉R is
positive on Y and X ⊆ Y , we have π(〈f, f〉R) = π̄(〈f, f〉R) � 0 for all f ∈ X. Thus, π is
〈· , ·〉R-positive on X. �

6.2. Application to Hecke algebras

For the remainder of this section, we will let G be a locally compact group and let H

be a compact open subgroup of G such that (G, H) is a reduced Hecke pair. As usual,
the Haar measure on G is normalized so that p = χH is a projection in Cc(G), and the
Hecke algebra H of (G, H) is identified with pCc(G)p as in Corollary 5.4. Also recall from
§ 4 that every Hecke algebra arises from such a pair.
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For convenience, we let

Cc := Cc(G), L1 := L1(G) and A := C∗(G).

Thus, we have the following inclusions of imprimitivity bimodules:

CcpCc(Ccp)H ⊆ L1pL1(L1p)pL1p ⊆ ApA(Ap)pAp.

Remarks 6.6.

(i) L〈· , ·〉 is positive on all three bimodules, because in each case we have X ⊆ E.

(ii) 〈· , ·〉R is positive on ApA(Ap)pAp because A is a C∗-algebra.

(iii) By density, if 〈· , ·〉R is positive on Ccp, then it is also positive on L1p.

(iv) Similarly, if C∗(H) = pAp then also C∗(pL1p) = pAp, because H ⊆ pL1p ⊆ pAp.

Theorem 6.7. Let H be a compact open subgroup of a locally compact group G such
that (G, H) is a reduced Hecke pair. Then with the above notation we have

C∗(CcpCc) = C∗(L1pL1) = ApA.

In preparation for the proof of Theorem 6.7, we introduce a certain type of represen-
tation of G, as follows.

Definition 6.8. A representation π of G on a Hilbert space V is H-smooth if

spanπ(G)Vπ,H = V,

where Vπ,H = {ξ ∈ V | π(h)ξ = ξ for all h ∈ H}.

We pause to justify that our use of ‘smooth’ is consistent with the traditional one as,
for example, in [32]. If π is a bounded continuous representation of G on a Banach space
V , then every vector ξ ∈ spanπ(G)Vπ,H has the property that x �→ π(x)ξ is constant on
a compact, open subgroup of G, i.e. ξ is a smooth vector in the sense of [32]. Thus, if π

is H-smooth in our sense, the vectors that are smooth as in [32] are dense in V . (The
main objects in [32] are admissible representations, which means that Vπ,H also is finite
dimensional; this is a concept we will not need.)

Proposition 6.9. A continuous representation of G is H-smooth if and only if its
integrated form is non-degenerate on ApA.

Proof. Let π be a continuous representation of G on a Hilbert space V , and let π also
denote the integrated form. Since Vπ,H = π(p)V , the result follows from the computation

π(ApA)V = π(CcpCc)V

= spanπ(GpG)V

= spanπ(G)π(p)V

= spanπ(G)Vπ,H .

�
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Corollary 6.10. The projection p is full in A if and only if every continuous repre-
sentation of G is H-smooth.

Proof. By the preceding proposition, p is full if and only if every representation of A

is non-degenerate on the closed ideal ApA, equivalently, if and only if A = ApA, since A

is a C∗-algebra. �

Proof of Theorem 6.7. Since CcpCc ⊆ L1pL1 ⊆ ApA, it suffices to show that every
(non-degenerate) representation π of CcpCc on a Hilbert space V extends to ApA.

We claim that there is an H-smooth representation σ of G on V such that

σ(x)π(f)ξ = π(xf)ξ for all s ∈ G, f ∈ CcpCc, ξ ∈ V.

First we show that for fixed x ∈ G the above formula gives a well defined linear map σ(x)
on the dense subspace span π(CcpCc)V of V : let f1, . . . , fn ∈ CcpCc and ξ1, . . . , ξn ∈ V ,
and assume that

∑n
1 π(fi)ξi = 0. Then

∥∥∥∥
n∑
1

π(xfi)ξi

∥∥∥∥
2

=
〈 n∑

1

π(xfi)ξi,

n∑
1

π(xfj)ξj

〉

=
∑
i,j

〈π(f∗
i x−1xfj)ξi, ξj〉

=
∑
i,j

〈π(f∗
i fj)ξi, ξj〉

=
∥∥∥∥

n∑
1

π(fi)ξi

∥∥∥∥
2

= 0.

Thus, σ(x) is well defined, and then the above computation also shows that σ(x) is
isometric, and hence extends uniquely to an isometry on V . In fact σ(x) must be unitary
since the map σ : G → L(V ) is multiplicative and σ(e) = 1.

We still need to verify that σ is H-smooth. But from the definition of σ we see that
π(p)V ⊆ Vσ,H , so

spanσ(G)Vσ,H ⊇ spanσ(G)π(p)V = spanπ(Gp)V = spanπ(GpG)V

= π(CcpCc)V (by Lemma 5.2 (iv)),

which is dense in V .
We have thus verified the claim. By Proposition 6.9 the integrated form of σ, which we

also denote by σ, is non-degenerate on the ideal ApA of A. We show that σ|CcpCc = π.
Since CcpCc = spanx,y∈G xpy, it suffices to show that σ(p) = π(p): for f ∈ CcpCc and
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ξ ∈ V we have

σ(p)π(f)ξ =
∫

H

σ(h)π(f)ξ dh

=
∫

H

π(hf)ξ dh

=
∫

H

π(h)π(f)ξ dh = π(p)π(f)ξ,

which implies σ(p) = π(p) by linearity, continuity and density. �

Note that Theorem 6.7 allows us to translate Corollary 6.5 into the present context,
as follows.

Corollary 6.11.

(i) A representation of H or pL1p extends to pAp if and only if it is 〈· , ·〉R-positive.

(ii) For D = H or pL1p, we have C∗(D) = pAp if and only if every representation of
D is 〈· , ·〉R-positive.

(iii) For D = H or pL1p and X = Ccp or L1p respectively, if 〈· , ·〉R is positive on X,
then C∗(D) = pAp.

Together with Fell’s imprimitivity theorem, Theorem 6.7 also gives the following result.

Corollary 6.12. For D = H or pL1p, and X = Ccp or L1p respectively, induction
via X gives a category equivalence between the representations of ApA and the 〈· , ·〉R-
positive representations of D.

Theorem 6.13. Let H be a compact open subgroup of a locally compact group G

such that the Hecke pair (G, H) is reduced, and suppose that H is normal in some closed
normal subgroup N of G. Then 〈· , ·〉R is positive on Ccp, and hence C∗(H) = pAp.

Proof. We must show that if f =
∑n

1 cixip with ci ∈ C, xi ∈ G, then f∗f is of
the form

∑n
1 g∗

i gi with gi ∈ H. Note that {xipx−1
i }n

1 are commuting projections in A

(because H is compact, open, and normal in N); let q be their least upper bound in the
projections of A.

We will prove by induction on n that q is a sum of elements of the form gpg∗ with
g ∈ Cc. This is obvious for n = 1, so assume that n > 1 and the sup q′ of {xipx−1

i }n−1
1

has the desired form. Then so does

q = q′ + (1 − q′)xnpx−1
n = sup{q′, xnpx−1

n }.

For each i, since q � xipx−1
i , we have qxip = xip. Thus, qf = f , so

f∗f = f∗q∗qf = f∗qf

is a sum of elements of the form f∗g∗pgf with g ∈ Cc, and hence is a sum of elements of
the form h∗h with h ∈ H. �
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It is not true in general that C∗(H), when it exists, necessarily coincides with pAp;
thus, Theorem 4.2 (iii) of [33] is wrong. The problem in Tzanev’s proof (and in an earlier
version of the present paper) is that the equality C∗(pL1p) = pC∗(L1)p fails in general.
Tzanev has recently informed us of work (personal communication) showing that, for any
prime q, the pair (PSL(3,Qq), PSL(3,Zq)) provides a counterexample—more precisely,
in this example we do not know whether C∗(H) exists, but we do know that C∗(pL1p) �=
pC∗(L1)p.

However, the problem does not arise if G is Hermitian. Recall from [28] that a ∗-algebra
is Hermitian if every self-adjoint element has real spectrum, and G is called Hermitian
if L1(G) is.

Theorem 6.14. If G is Hermitian, then C∗(pL1p) = pAp.

We need a preparatory lemma.

Lemma 6.15. Let B be a Hermitian Banach ∗-algebra.

(i) If D is a Banach ∗-subalgebra of B, then the largest C∗-semi-norm on B restricts
to the largest C∗-semi-norm on D.

(ii) If p is a projection in B (i.e. if p = p∗ = p2), then

C∗(pBp) = pC∗(B)p,

where we identify p with its image in C∗(B).

Proof. (i) Since B is Hermitian and D is closed, by [28, Theorem 11.4.4] every rep-
resentation of D on a Hilbert space extends to a representation of B on a possibly larger
Hilbert space. The result follows.

(ii) It follows from (i) that the closure of the image of pBp in C∗(B), namely pC∗(B)p,
is an enveloping C∗-algebra for pBp. �

Proof of Theorem 6.14. This follows from the above lemma, since A = C∗(L1). �

Questions 6.16.

(i) When is C∗(pL1p) = pAp? Hermitianness of G is certainly unnecessary (see, for
example, Example 11.9).

(ii) If C∗(H) exists, must it be pAp? Whenever we have been able to show that C∗(H)
exists, we have in fact found that C∗(H) = pAp.

(iii) More generally, if C∗(H) exists, what can be said concerning the surjections

C∗(H) → C∗(pL1p) → pAp?

(iv) If p is full, must C∗(H) exist? It is easy to find examples, for instance, with finite
groups, where C∗(H) exists and p is not full.
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We now indicate how the above general theory can be used when (G, H) is the Schlicht-
ing completion of an arbitrary reduced Hecke pair (G0, H0). First of all, by the results
in § 5 we can compute with the imprimitivity bimodule CcpCc(Ccp)H completely in terms
of the uncompleted pair, since

CcpCc = spanG0pG0, Ccp = spanG0p and H = span pG0p.

Next, we can compute in pL1p in terms of the uncompleted pair. To see how, recall
that the double coset spaces H0 \G0/H0 and H \G/H can be canonically identified. Let
�1(H0 \ G0/H0) denote the completion of H in the �1-norm from (2.1):

‖f‖1 =
∑

xH0∈G0/H0

|f(x)|.

The L1-norm on Cc restricts on H to give exactly the �1-norm, so �1(H0 \ G0/H0) may
be identified with pL1p, as observed by Tzanev [33].

Finally, H0-smooth representations of G0 are defined just as in Definition 6.8 (but no
continuity is assumed), and we have the following.

Proposition 6.17. If (G, H) is the Schlichting completion of a reduced Hecke pair
(G0, H0), then a representation of G0 is H0-smooth if and only if it extends to a contin-
uous H-smooth representation of G.

Proof. Using density and continuity, it is easy to see that the restriction to G0 of every
H-smooth representation of G is H0-smooth. It remains to show that every H0-smooth
representation π of G0 on a Hilbert space V extends to an H-smooth representation of
G. For this it suffices to show that π is in fact continuous for the Hecke topology of the
pair (G0, H0) and the strong operator topology on the unitary group of V , for then π will
extend uniquely to a continuous representation of G, which will obviously be H-smooth.
Let x → e in the Hecke topology. We must show that π(x)ξ → ξ in norm for all ξ ∈ V .
Since π(G0) is bounded in the operator norm, by linearity and density it suffices to show
that if y ∈ G0 and ξ ∈ Vπ,H0 , then π(x)π(y)ξ → π(y)ξ. But in fact we eventually have
x ∈ yH0y

−1, and hence π(x)π(y)ξ = π(y)ξ, because yH0y
−1 is a neighbourhood of e in

the Hecke topology. �

Combining Proposition 6.17 with Corollary 6.10 and Proposition 6.9 gives the following
corollaries.

Corollary 6.18. If (G, H) is the Schlichting completion of a reduced Hecke pair
(G0, H0), then

(i) p is full in A if and only if every representation of G0 which is continuous in the
Hecke topology is H0-smooth, and

(ii) restriction from G to G0 gives a bijection between representations of ApA and
H0-smooth representations of G0.
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Corollary 6.19. If (G0, H0) is a reduced Hecke pair, then there is a category equiv-
alence between the H0-smooth representations of G0 and the 〈· , ·〉R-positive representa-
tions of H.

Proof. This follows from the above corollary and Corollary 6.12. �

We recover Hall’s equivalence [14, Theorem 3.25], as follows.

Corollary 6.20. If (G0, H0) is a reduced Hecke pair such that the H-valued inner
product on Ccp is positive, then there is a category equivalence between the H0-smooth
representations of G0 and the representations of H.

7. The directing semigroup

Let (G, H) be a reduced Hecke pair, with Schlichting completion (Ḡ, H̄). As usual, we
set A = C∗(Ḡ) and p = χH̄ ∈ A. In this section we give a condition, formulated in terms
of the following semigroup T , which ensures that C∗(H) = pAp and that p is full in A.

Definition 7.1. We say (G, H) is directed if G = T−1T , where

T := {t ∈ G | tHt−1 ⊇ H}.

Remark 7.2. In many papers (see, for example, [1,7,18–23]), a crossed product by a
certain action related to this semigroup T has been used in a crucial way to study Hecke
algebras. For us the semigroup crossed product plays no role (although we can easily
recover some of the main results of those papers); our interest in the semigroup T arises
from Theorems 7.4 and 7.5 below.

We chose the term ‘directed’ because of the following result.

Lemma 7.3. The following are equivalent:

(i) the pair (G, H) is directed;

(ii) G is directed upward by the pre-order x � y ⇐⇒ yx−1 ∈ T ;

(iii) the family {xHx−1 | x ∈ G} of conjugates of H is directed downward in the sense
that the intersection of any two of them contains a third.

Proof. The equivalence (i) ⇐⇒ (ii) is probably folklore (see, for example, Lemma 2.1
in [7], and also Theorem 1.2 in [18] for the forward implication); for the convenience of
the reader we give the outline of the argument: if (G, H) is directed, then for all x, y ∈ G

there exist s, t ∈ T such that s−1t = xy−1, and then x, y � sx = ty, while, conversely, if
G is directed upward by �, then for all x ∈ G there exist s, t ∈ T such that e, x � sx = t,
and then x = s−1t.

For (ii) ⇐⇒ (iii), just note that x � y if and only if x−1Hx ⊇ y−1Hy. �
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Note that if x = s−1t with s, t ∈ T , then x−1Hx ⊃ t−1Ht. Thus, the above lemma
implies that if (G, H) is directed, then the family {t−1Ht | t ∈ T} is also directed
downward.

We remark that our formulations of the Hecke ∗-algebra H, the H-valued inner product
on Cc(Ḡ) and directedness of (G, H) are slightly different from Hall’s (see [14, §§ 2.2,
3.4.1, 4.1]), so for the reader’s convenience we include the proof of the following, which
includes [14, Lemma 4.4 and Corollary 4.6] (for similar results, see also [19, Proposi-
tion 1.4] and [7, Proposition 2.8]).

Theorem 7.4. If the Hecke pair (G, H) is directed, then 〈· , ·〉R is positive on Cc(Ḡ)p,
and hence C∗(H) = pAp.

Proof. We only need to prove the positivity, for then the other part follows imme-
diately from the general theory of § 6. Let c1, . . . , cn ∈ C and x1, . . . , xn ∈ G, so that∑n

1 cixip is a typical element of Cc(Ḡ)p. By directedness we can choose a common upper
bound y for x−1

1 , . . . , x−1
n . Thus, for each i we have yxi ∈ T , so that yxip = pyxip. Then〈 n∑

i=1

cixip,

n∑
j=1

cjxjp

〉
=

∑
i,j

cicjpx−1
i xjp

=
∑
i,j

cicjpx−1
i y−1yxjp

=
∑
i,j

(cipyxip)∗cjpyxjp

=
( n∑

i=1

cipyxip

)∗ n∑
j=1

cjpyxjp,

so we are done since
∑n

1 cipyxip ∈ H. �

Theorem 7.5. If the Hecke pair (G, H) is directed, then p is full in A.

Proof. We first verify the following claims:

(i) (Ḡ, H̄) is also directed;

(ii) T̄ = {t ∈ Ḡ | tH̄t−1 ⊇ H̄};

(iii) T = G ∩ T̄ ;

(iv)
⋂

t∈T t−1H̄t = {e}.

For (i), given x ∈ Ḡ we can choose y ∈ G such that xH̄ = yH̄, and then

x ∈ yH̄ ⊆ T−1TH̄ ⊆ T̄−1T̄ .

For (ii), let R denote the right-hand side. We first show that T = G∩R: first let t ∈ T .
Then

t−1Ht ⊆ H ⊆ H̄,
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so t−1H̄t ⊆ H̄, and hence t ∈ R. Thus, T ⊆ G ∩ R. For the opposite containment, let
t ∈ G ∩ R. Then

t−1Ht ⊆ t−1H̄t ⊆ H̄,

so
t−1Ht ⊆ G ∩ H̄ = H,

and hence t ∈ T .
Now, since H̄ is closed, so is R. On the other hand, t ∈ R implies that tH̄ ⊆ R, so R

is a union of cosets of the open subgroup H̄, and is therefore open. Since G is dense in
Ḡ and R is open in Ḡ, G ∩ R is dense in R. Thus,

R = R̄ = G ∩ R = T̄ .

(iii) follows immediately from the above proof of (ii).

For (iv), first note that ⋂
t∈T̄

t−1H̄t ⊆
⋂

x∈Ḡ

x−1H̄x = {e},

since (Ḡ, H̄) is directed and reduced. Now, for each t ∈ T̄ there exists s ∈ G such that
s−1H̄s = t−1H̄t, and then s ∈ G ∩ T̄ = T . It follows that

{t−1H̄t | t ∈ T} = {t−1H̄t | t ∈ T̄},

and hence
⋂

t∈T t−1H̄t = {e}, as desired.

We have thus verified claims (i)–(iv). Now, we have

Cc(Ḡ)pCc(Ḡ) = span
x,y∈G

xpy ⊇ span
x∈G,t∈T

xt−1pt.

Since
⋂

t∈T t−1H̄t = {e}, the family {t−1H̄t | t ∈ T} is a neighbourhood sub-base at
e in Ḡ. Since (Ḡ, H̄) is also directed, this sub-base is actually a base, because it is
directed downward. Consequently, {t−1pt}t∈T is an approximate identity for Cc(Ḡ) in
the inductive-limit topology, and hence also for A. Therefore, ApA is dense in A, so the
theorem follows. �

Directedness is certainly not necessary for the conclusions of either of Theorems 7.4
or 7.5. For example, when G is finite, C∗(H) = pAp is automatic, directedness is impos-
sible (unless G is the trivial group) and fullness is possible (see Example 11.2). In fact,
we leave it to the conscientious reader to verify that when G is finite the projection p is
full if and only if

∑
x∈G xpx−1 is invertible. It seems an interesting problem to describe

the finite pairs (G, H) for which p is full.
The next corollary recovers [14, Corollary 4.5] and [12, Theorem 6.10] and (essentially)

includes [23, Theorem 3.1].

Corollary 7.6. If the Hecke pair (G, H) is directed, then there are category equiva-
lences among the continuous representations of Ḡ, the H-smooth representations of G,
and the representations of H.

Proof. Combine fullness of p with the general theory of § 6. �
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8. Semi-direct product

In this section we examine the C∗-algebra ApA in the special case that G = N � Q is a
semi-direct product and the normal subgroup N is abelian and contains H (with (G, H)
a reduced Hecke pair). We will defer part of the proof of the main result until the next
section, where we will handle a more general situation (assuming only that H ⊆ N � G).
The present section applies to Examples 11.2, 11.4, 11.5 and 11.6, some of which have
also been studied in [3,5,7,21,27].

Taking closures, N̄ is an abelian normal subgroup of Ḡ containing H̄. Since N̄ is open
in Ḡ and G is dense in Ḡ, the map xN �→ xN̄ gives an isomorphism G/N ∼= Ḡ/N̄ . Thus,
we may write Ḡ = N̄ � Q. One of the most elementary examples of the crossed product
construction is that

A = C∗(Ḡ) ∼= C∗(N̄) ×α Q,

where αx(n) = xnx−1 for x ∈ Q, n ∈ N̄ . The Fourier transform gives

A ∼= C0( ˆ̄N) ×β Q,

where

βx(g)(φ) = g(φ ◦ αx)

for g ∈ C0( ˆ̄N), φ ∈ ˆ̄N , x ∈ Q. Note that β corresponds to the natural action of Q by
homeomorphisms of ˆ̄N given by x · φ = φ ◦ αx−1 .

Let us look at this a little more closely. We make the convention that the Fourier
transform of a group element x is the function whose value at a character φ is φ(x).
Then the Fourier transform of χH̄ is χH̄⊥ . The open set

Ω =
⋃

x∈Q

(xHx−1)⊥

is the smallest Q-invariant subset of ˆ̄N containing the compact open subset H̄⊥ = H⊥.

Theorem 8.1. Let G = N � Q be a semi-direct product with N abelian, let H be a
Hecke subgroup of G contained in N and let β be the above action of Q on C0(Ω). Then

(i) ApA ∼= C0(Ω) ×β Q,

(ii) 〈· , ·〉R is positive on Cc(Ḡ)p, so C∗(H) = pAp is Morita equivalent to C0(Ω) ×β Q,

(iii) p is full in A if and only if Ω = ˆ̄N .

Proof. We defer the proof of (i) to the next section. Parts (ii) and (iii) follow imme-
diately from (i) and Theorem 6.13. �
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8.1. Comparison with the groupoid approach

We now show how this semi-direct product construction can be cast in the framework
of Arzumanian and Renault’s groupoid [2]. For this we regard the action of Q on Ω as a
transformation group. The associated transformation groupoid is

G = {(φ, x, ψ) ∈ Ω × Q × Ω | φ = x · ψ},

with multiplication
(φ, x, ψ)(ψ, y, ν) = (ψ, xy, ν).

Then the groupoid C∗-algebra is canonically a crossed product:

C∗(G) ∼= C0(Ω) ×β Q.

Let G(H⊥) denote the reduction of the groupoid G to the compact open subset H⊥ of
the unit space Ω:

G(H⊥) = {(φ, x, ψ) ∈ G | φ, ψ ∈ H⊥}.

Since H⊥ meets every orbit in Ω, i.e. Ω is the saturation of H⊥ in the unit space, [26,
Example 2.7] gives us a groupoid equivalence G ∼ G(H⊥), and hence a Morita–Rieffel
equivalence C∗(G) ∼ C∗(G(H⊥)).

Proposition 8.2. With the above notation, C∗(G(H⊥)) ∼= pAp.

Proof. We borrow from the next section the isomorphism θ : ApA → C0(Ω) ×β Q,
which appears in (9.1). Composing with the isomorphism C0(Ω) ×β Q ∼= C∗(G), we get
an isomorphism ζ : ApA → C∗(G), which we shall show takes pAp onto C∗(G(H⊥)). But
this is easy: we have ζ(p) = χH⊥ , and

χH⊥C∗(G)χH⊥ = C∗(G(H⊥)).

�

A special case of the above situation is worked out in [2, § 6], where Arzumanian
and Renault give a groupoid whose C∗-algebra is the Hecke C∗-algebra of Bost and
Connes [5]: it is the groupoid{(

x,
m

n
, y

)
∈ Z × Q∗

+ × Z
∣∣∣∣ mx = ny

}
,

where Z denotes the integers in the ring A of finite adeles, and Q∗
+ denotes the multi-

plicative group of positive rational numbers.
This groupoid is the restriction to the compact open subset Z of the unit space of

the transformation groupoid associated to the canonical action of Q∗
+ on A (cf. Exam-

ple 11.4), so that the Arzumanian–Renault result is ‘equivalent to’ our observation that
pAp is the enveloping C∗-algebra of H. To see this, assume (as is the case in the Bost–
Connes example) that Q = S−1S, where S = T/N , and use the identity

G(H⊥) = {(φ, s−1t, ψ) | φ, ψ ∈ H⊥; s, t ∈ S; s · φ = t · ψ}.
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9. Crossed products

In this section we give the full justification for Theorem 8.1 in the more general context
of a reduced Hecke pair (G, H) such that H is contained in some normal subgroup N

of G.
Taking closures in the Schlichting completion Ḡ, we have H̄ ⊆ N̄ � Ḡ. We continue to

let A = C∗(Ḡ) and p = χH̄ , and we introduce the notation

B := C∗(N̄).

The action of Ḡ on B, and all other actions arising from the action of Ḡ on N̄ by
conjugation, will be denoted Ad.

This action is twisted over N̄ in the sense of [13] (the twisting map is just the canonical
embedding of N̄ in M(C∗(N̄))) and the twisted crossed product B ×N̄ Ḡ is isomorphic
to A = C∗(Ḡ). This isomorphism θ : B ×N̄ Ḡ → A is determined by

θ(π(b)u(f)) = bf for b ∈ B, f ∈ Cc(Ḡ), (9.1)

where (π, u) is the canonical covariant homomorphism of (B, Ḡ) into M(B ×N̄ Ḡ) (see
[13, Corollary of Proposition 1]). Our next result shows that, under this isomorphism,
the ideal ApA of A corresponds to the twisted crossed product of an invariant ideal of B.

Theorem 9.1. Let (G, H) be a reduced Hecke pair, and suppose that N is a normal
subgroup of G which contains H. Then

I = span{xpx−1n | x ∈ G, n ∈ N} = span{xpx−1n | x ∈ Ḡ, n ∈ N̄}

is an Ad-invariant ideal of B such that I ×N̄ Ḡ ∼= ApA.

Proof. The equality of the two closed spans defining I follows from Lemma 5.1,
which implies that for each x ∈ Ḡ and n ∈ N̄ there exist y ∈ G and m ∈ N such that
ypy−1m = xpx−1n.

Now, since N̄ is normal in Ḡ, xpx−1n = ∆(x)χxH̄x−1n is in Cc(N̄) for each x ∈ Ḡ

and n ∈ N̄ , so I is in fact contained in B, and hence I is a closed subspace of B.
Moreover, since (xpx−1n)∗ = n−1xpx−1 = (n−1x)p(n−1x)−1n−1, we have I∗ = I. I is
clearly Ad-invariant, since for x, y ∈ Ḡ and n ∈ N̄ we have

Adx(ypy−1n) = (xy)p(xy)−1(xnx−1) ∈ I.

Clearly, if z ∈ I and m ∈ N , then zm ∈ I. Since I = I∗, we also have mz ∈ I. From
this it follows that I is an ideal in C∗(N).

Regarding I ×N̄ Ḡ as an ideal of B ×N̄ Ḡ in the usual way, we now claim that the
isomorphism θ defined in (9.1) takes I ×N̄ Ḡ onto ApA. With canonical maps (π, u) as
in (9.1), we have

θ(I ×N̄ Ḡ) = θ(span{π(xpx−1n)u(f) | x ∈ G, n ∈ N, f ∈ Cc(Ḡ)})

= span{xpx−1nf | x ∈ G, n ∈ N, f ∈ Cc(Ḡ)}.
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Temporarily fix x ∈ G. Then, for all n ∈ N, f ∈ Cc(Ḡ), Lemma 5.2 gives

xpx−1nf ∈ xpCc(Ḡ) = span
y∈G

xpy.

On the other hand, for all y ∈ G,

xpy = xpχH̄y = xpχH̄y∆(y)−1 ∈ xpCc(Ḡ) = xpx−1nCc(Ḡ).

Thus,
span{xpx−1nf | x ∈ G, n ∈ N, f ∈ Cc(Ḡ)} = span

x,y∈G
xpy = ApA,

and we are done. �

Via restriction to G ⊆ Ḡ, we get an action (I, G,Ad) which is twisted over N .

Theorem 9.2. With the hypotheses and notation of Theorem 9.1, we have I ×N G ∼=
ApA, and therefore the C∗-completion pAp of the Hecke algebra H is Morita–Rieffel
equivalent to the twisted crossed product I ×N G.

Proof. By Theorem 9.1, we need only show that I ×N G ∼= I ×N̄ Ḡ. Let (σ, v) :
(I, Ḡ) → M(I ×N̄ Ḡ) and (µ, w) : (I, G) → M(I ×N G) be the canonical covariant
homomorphisms. The crux of the matter is the following claim: w : G → M(I ×N G)
extends to a continuous homomorphism w̄ : Ḡ → M(I ×N G). Given the claim, we will
have homomorphisms

σ × v|G : I ×N G → M(I ×N̄ Ḡ),

µ × w̄ : I ×N̄ Ḡ → M(I ×N G),

which routine computations show are inverses of each other.
To establish the claim, by Proposition 6.17 (whose proof applies to representations on

Banach space as well as Hilbert space) it suffices to show that w : G → M(I ×N G) is
H-smooth. Note that

µ(p)w(G) ⊆ (I ×N G)H ,

since w|H = µ|H and hp = p for all h ∈ H. Because (µ, w) preserves the twist, we have

I ×N G = span{µ(xpx−1)w(y) | x, y ∈ G}.

Since
µ(xpx−1)w(y) = w(x)µ(p)w(x−1)w(y) = w(x)µ(p)w(x−1y),

and µ(p)w(x−1y) ∈ (I ×N G)H , we have

spanw(G)(I ×N G)H = I ×N G,

so w is H-smooth. �
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Note that if H is normal in N (in addition to the hypotheses of Theorem 9.2), then
C∗(H) = pAp by Theorem 6.13, and I is the closed G-invariant ideal of C∗(N̄) generated
by the central projection p.

Suppose, in the situation of Theorems 9.1 and 9.2, that N is abelian. Then C∗(N̄) ∼=
C0( ˆ̄N) via the Fourier transform, so we get an isomorphism C∗(N̄) ×N G ∼= C0( ˆ̄N) ×N G

of twisted crossed products. The open set

Ω =
⋃

x∈G

(xHx−1)⊥

is the smallest subset of ˆ̄N which contains H⊥ and is invariant under the induced action
of G on ˆ̄N .

Corollary 9.3. Let (G, H) be a reduced Hecke pair and let N be an abelian normal
subgroup of G which contains H. Then ApA ∼= C0(Ω) ×N G, and hence p is full if and
only if Ω = ˆ̄N .

Proof. By Theorem 9.2, we need only show that the Fourier transform Î of the ideal
I is C0(Ω). Now Î is an ideal of C0( ˆ̄N), and hence is of the form C0(M), where M is an
open subset of ˆ̄N . Since I is densely spanned by the functions xpx−1n = χxH̄x−1n∆(x)
for x ∈ G and n ∈ N , Î is densely spanned by the Fourier transforms n̂χ(xHx−1)⊥∆(x).
The support of such a function is the compact open subset (xHx−1)⊥ of ˆ̄N , and it follows
that M = Ω. �

To see how Theorem 8.1 (i) follows from Corollary 9.3, suppose that G = N � Q is
a semi-direct product, where N is abelian and contains H. Then the twisted crossed
product C0(Ω) ×N G becomes the ordinary crossed product C0(Ω) ×β Q, where

Ω =
⋃

x∈G

(xHx−1)⊥ =
⋃

x∈Q

(xHx−1)⊥

and β is as in § 8.

10. Semigroup action

In this section, even though we did not need semigroup actions for our main results, we
show how our techniques can be used to recover the dilation result of [23].

Keep the notation from the preceding sections: (G, H) is a reduced Hecke pair, T =
{t ∈ G | tHt−1 ⊇ H}, B = C∗(N̄), and H ⊆ N � G. But now impose the further
restriction that H be normal in N . Then the map nH �→ nH̄ = nH of N/H onto N̄/H̄

is an isomorphism. Since H̄ is normal in N̄ , the projection p is central in B, so pB � B.
Moreover, the map nH̄ �→ np extends to an isomorphism

ϕ : C∗(N̄/H̄)
∼=−→ pB ⊆ C∗(N̄).

(ϕ is obviously a homomorphism of C∗(N̄/H̄) onto pB, and the canonical map C∗(N̄) →
C∗(N̄/H̄) is a left inverse.) In what follows we implicitly use ϕ to identify C∗(N̄/H̄) with
pB ⊆ C∗(N̄).
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The following lemma is a special case of [19, Theorem 1.9]. Our techniques involving
the Schlichting completion make the proof significantly shorter, and hence perhaps of
independent interest.

Lemma 10.1. If t ∈ T , then the automorphism Ad t of C∗(N̄) maps C∗(N̄/H̄) into
itself, giving rise to a semigroup action

Ad : T → EndC∗(N̄/H̄).

Proof. For t ∈ T, n ∈ N we have

Ad t(χnH̄) = χtnH̄t−1∆(t).

Since tH̄t−1 ⊇ H̄, tnH̄t−1 is a finite union of left cosets in N̄/H̄. Thus,

χtnH̄n−1 =
∑

kH̄⊆tnH̄n−1

χkH̄ ∈ C∗(N̄/H̄).

�

Corollary 10.2. Let i : C∗(N/H)
∼=−→ C∗(N̄/H̄) be the C∗-isomorphism arising from

the group isomorphism N/H ∼= N̄/H̄. Then the identity

Ad t ◦ i = i ◦ βt for all t ∈ T

defines a semigroup action β : T → EndC∗(N/H) such that

βt(χnH) = χtnHt−1∆(t) for all n ∈ N and t ∈ T.

The following result includes [23, Theorem 2.5], although there the semigroup is (in
our notation) T/N and the minimal automorphic dilation is an action of G/N . In our
version, we have a group action (I, G,Ad), where, as in Theorem 9.1, I is the closed ideal
of C∗(N̄) generated by {xpx−1 | x ∈ G}.

Theorem 10.3. If (G, H) is a (reduced) directed Hecke pair such that H � N � G

for some N , then I = C∗(N̄). Moreover, the group action (C∗(N̄), G, Ad) is the minimal
automorphic dilation of the semigroup action (C∗(N/H), T, β) in the sense of [18].

Proof. We have

I ⊇ span
x∈G,n∈N

xpx−1n ⊇ span
t∈T,n∈N

t−1ptn = span
t∈T,n∈N

χt−1H̄tn.

By an argument similar to that of Theorem 7.5, the latter span is dense in C∗(N̄), proving
the first part.

For the other part, we have already observed (Corollary 10.2) that the embedding
i : C∗(N/H) → C∗(N̄/H̄) ⊆ C∗(N̄) satisfies Ad t ◦ i = i ◦ βt for all t ∈ T , so that Ad is
a dilation of β. By [18] it remains to show that

span
t∈T

(Ad t)−1(i(C∗(N/H))) = C∗(N̄).
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For t ∈ T, n ∈ N we have

Ad t−1(i(χnH)) = Ad t−1(χnH̄) = χt−1nH̄t∆(t)−1

and (again arguing as in Theorem 7.5) these elements have dense span in C∗(N̄). �

11. Examples

We shall here illustrate the different concepts with a number of examples. Even finite
groups give interesting insights. In other examples we have stuck to matrix groups over Q

and Z, but the same techniques apply to matrix groups over other fields, as for example
in [1,8,25]. Some arguments are only sketched, and we leave many details to the reader.

Example 11.1. We start with perhaps the simplest example (largely due to [33]) of
a Hecke pair having none of the good properties mentioned in Theorems 7.4 and 7.5. Let

G = Z � Z2 = 〈a, b | b2 = 1, bab = a−1〉

be the infinite dihedral group, and take H = 〈b〉 ∼= Z2. Note that, since H is finite, (G, H)
coincides with its Schlichting completion. A short calculation shows that the double coset
of a typical element anh of G (where n ∈ Z, h ∈ H) is

HanhH = HanH = anH ∪ a−nH.

So, letting

φn =

⎧⎨
⎩

χH if n = 0,

1
2χHanH if n > 0,

we get a linear basis for the Hecke algebra H satisfying ‖φn‖1 = 1 and

φm ∗ φn = 1
2 (φm+n + φm−n) for all m � n � 0.

Let c be a non-zero complex number. Then the maps πc : H → C defined on the generators
by

πc(φn) = 1
2 (cn + c−n)

are easily checked to give us all the characters on H. πc is self-adjoint if and only if c ∈ R

or |c| = 1, and πc is �1-bounded if and only if |c| = 1. Since ‖πc(φn)‖ → ∞ as c → ∞, H
does not have a greatest C∗-norm.

Moreover, the one-dimensional representation of G determined by a �→ 1 and b �→ −1
has no non-zero H-fixed vectors. Consequently, not all representations of G are H-smooth
so, by Corollary 6.10, p is not full in A.

Note that this example is very far from being directed since, if H is finite, the ‘direct-
ing semigroup’ reduces to T = H. Tzanev [33] has shown that in this example the
C∗-completion pC∗(G)p of the Hecke algebra H is isomorphic to C[−1, 1].

If |c| = 1, then πc extends to a character of pAp, so here we see directly that
C∗(pL1(G)p) = pAp; it also follows from Theorem 6.14, since G is Hermitian by [28, The-
orem 12.5.18a].
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Example 11.2. The following even simpler example shows that p being full does not
imply that (G, H) is directed. It belongs to § 8: take N = Z2 × Z2 and H = Z2 × {0},
and let Q = Z3 act so that the generator corresponds to the matrix ( 1 1

1 0 ). Then N̂ ∼=
Z2 × Z2 and H⊥ ∼= {0} × Z2 with the same action of Q. One may easily check that
Ω =

⋃
g gH⊥ = N̂ , so p is full, but (G, H) is not directed since H is finite. Note that G

is the symmetry group of the tetrahedron.

Remark 11.3. By taking direct products, other combinations of properties can be
exhibited, e.g. there are infinite groups G for which p is full, but (G, H) is not directed.

Example 11.4. Let us next look at the by-now-classical example studied in [5, Propo-
sition 3.6] and [3], which started much of recent work on Hecke algebras. It is the rational
‘ax + b’-group so, in the notation of § 8, N = (Q, +) and Q = (Q×, ·) acts by multiplica-
tion:

(x, k) �→ xk for x ∈ Q×, k ∈ Q.

As the Hecke subgroup we take H = Z ⊆ N . We may identify these groups as

G =

{(
a b

0 1

) ∣∣∣∣∣ a ∈ Q×, b ∈ Q

}
,

N =

{(
1 b

0 1

) ∣∣∣∣∣ b ∈ Q

}
,

H =

{(
1 m

0 1

) ∣∣∣∣∣ m ∈ Z

}
.

So with obvious identifications we have for x ∈ Q× that xHx−1 = xZ ⊆ Q. Therefore,
the subgroups {xZ | x ∈ Q×} are both upward and directed downward (in particular,
the pair (G, H) is directed): given x, y ∈ Q×, there are s, t ∈ Q× such that

xZ ∩ yZ = sZ and xZ + yZ = tZ.

From this and Proposition 4.10 it follows that

N̄ = lim←−
x∈Q+

Q/xZ = A and H̄ = lim←−
x∈Q+

Z/xZ = Z.

These are the finite adeles A and the integer adeles Z, respectively, with Q× acting by
multiplication. From this or Theorem 4.8 we have

Ḡ =

{(
a b

0 1

) ∣∣∣∣∣ a ∈ Q×, b ∈ A
}

.

(Note that the Hecke topology is the same as the one coming from (Q+,A); so (G, H) is
a Schlichting pair, H̄ ∩ G = H, and G is dense in Ḡ.)

We get H̄⊥ = Z⊥ ∼= Z inside Â ∼= A, and we see directly that Ω =
⋃

x∈Q+ xZ = A,
so Theorem 8.1 (iii) tells us the projection p is full in C∗(Ḡ); however, this also follows
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from Theorem 7.5. Thus, we obtain the result of [21] that the C∗-completion C∗(H) =
pC∗(Ḡ)p of this Hecke algebra is Morita–Rieffel equivalent to C∗(Ḡ). Our approach here
shows that this can be obtained directly without the theory of semigroup actions and
dilations. The ideal structure of this C∗-algebra was determined in [21] (see also [5,27]).

As to the other properties studied in §§ 6 and 7, since (G, H) is directed and H � N �
G we also see that 〈· , ·〉R is positive on Cc(Ḡ)p by Theorem 6.13, and there are category
equivalences among the continuous representations of Ḡ, the H-smooth representations
of G, and the representations of H by Corollary 7.6. Jenkins showed in [15] that the
discrete group G contains a free semigroup, so G is not Hermitian. We do not know
whether Ḡ is Hermitian.

Example 11.5. We shall look briefly at the generalization of Example 11.4 obtained
by Brenken in [7]. Here N = Qn, H = Zn and Q is a subgroup of GL(n, Q) with the
usual action on Qn. (Brenken assumes that Q is abelian, but this is not important in the
following.) It is usually straightforward to check whether H is a Hecke subgroup of G =
N � Q. We assume that

⋂
x∈Q xHx−1 = {0} to make the pair (G, H) reduced. Section 8

applies, so the inner product 〈· , ·〉R is positive on Cc(Ḡ)p, and hence C∗(H) = pAp. One
can check whether or not (G, H) is directed from the equality Q ∩ T−1 = Q ∩ GL(n, Z).
The topology defined by {xHx−1 | x ∈ Q} is quite often the same as the one determined
by {x1Z×· · ·×xnZ | xi ∈ Q+}, in which case N̄ = An and H̄ = Zn with the same action
of Q. The set Ω is also easily determined, and one can then check whether p is full. If
Q is the group GL(n, Q)+ of matrices with positive determinant, then p is full, and we
recover [19, Proposition 2.4].

Example 11.6. Brenken’s examples are motivated by Galois theory, i.e. one is looking
at Example 11.4, but replacing Q by other number fields. We illustrate this by looking
at quadratic number fields, so let d be a square-free integer. As in Example 11.4 we get

G =

{(
a b

0 1

) ∣∣∣∣∣ a, b ∈ Q(
√

d), a �= 0

}
,

N =

{(
1 b

0 1

) ∣∣∣∣∣ b ∈ Q(
√

d)

}
,

H =

{(
1 m

0 1

) ∣∣∣∣∣ m ∈ Z[
√

d]

}
.

We leave it to the reader to check that here we get the similar result:

Ḡ =

{(
a b

0 1

) ∣∣∣∣∣ a ∈ Q(
√

d), a �= 0, b ∈ A[
√

d]

}
.

One checks that (G, H) is directed, so again the projection p is full in A = C∗(Ḡ) and
the completion C∗(H) = pAp of the Hecke algebra is Morita–Rieffel equivalent to A.
Example 2.1 of [19] can be treated similarly.
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Example 11.7. We shall illustrate the results of § 9, where H ⊆ N � G, but G is
not necessarily a semi-direct product, in the special case of abelian N . In this example,
C∗(H) = pAp but the projection p is not full in A; the same phenomenon can be obtained
from Example 11.5 by letting Q be a nilpotent subgroup of GL(n, Q).

To save space we introduce the notation

[u, v, w] :=

⎛
⎜⎝1 v w

0 1 u

0 0 1

⎞
⎟⎠ .

We would like to take G to be the rational Heisenberg group (i.e. the group of all
matrices as above with u, v, w ∈ Q) and H as the integer subgroup with u, v, w ∈ Z.
But then the pair (G, H) would not be reduced, so we instead take the quotient by⋂

g gHg−1 = {[0, 0, w] | w ∈ Z} and therefore look at

G = {[u, v, w] | u, v ∈ Q, w ∈ Q/Z};

just remember that when multiplying two such matrices everything in the third compo-
nent from Q is mapped into Q/Z. We then take

H = {[u, v, 0] | u, v ∈ Z},

and from the formula

[x, y, z][u, v, w][x, y, z]−1 = [u, v, w + yu − xv] (11.1)

it is easy to see that H is a Hecke subgroup. In fact, with g = [x, y, z] we have

H ∩ gHg−1 ⊇ Hx,y := {[u, v, 0] | u ∈ Z ∩ y−1Z, v ∈ Z ∩ x−1Z}.

The sets {Hx,y | x, y ∈ Z \ {0}} will be a neighbourhood base at e in the Hecke topology,
so the completion is given by

Ḡ = lim←−G/Hx,y

= lim←−{[u, v, w] | u ∈ Q/yZ, v ∈ Q/xZ, w ∈ Q/Z}
= {[u, v, w] | u, v ∈ A, w ∈ Q/Z}.

The product is still given by matrix multiplication; just remember that this time anything
in the third component from A is mapped into A/Z ∼= Q/Z. We see that

H̄ = {[u, v, 0] | u, v ∈ Z}.

We shall take as N take the normalizer of H in G:

N = {[u, v, w] | u, v ∈ Z, w ∈ Q/Z}.
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This is an abelian normal subgroup of G, and

N̄ = {[u, v, w] | u, v ∈ Z, w ∈ Q/Z}.

We have

ˆ̄N = {(p, q, r) | p, q ∈ Q/Z, r ∈ Z} and H̄⊥ = {(0, 0, r) | r ∈ Z}.

The action of G on N by (g, n) �→ gng−1 (see (11.1)) defines a transpose action on ˆ̄N
given by

[x, y, z] · (p, q, r) = (p + yr, q − xr, r). (11.2)

From all this it follows that

Ω =
⋃
g∈G

gH̄⊥ = {(yr, −xr, r) | x, y ∈ Q, r ∈ Z}.

This is a proper subset of ˆ̄N , so by Corollary 9.3 p is not full; hence, (G, H) is not
directed. In fact, T = N , so here the pair (G, H) is as far as possible from being directed.
By studying the orbits of the action of G on Ω, one can again determine the structure of
the crossed product using the techniques of [21]. We have C∗(H) = pAp by Theorem 6.13,
and also by Theorem 6.14, since Ḡ is Hermitian by [28, Theorem 12.5.17].

Example 11.8. The classical Hecke pair is given by G = PSL(2, Q) and H =
PSL(2, Z). There is a vast literature of Hecke algebras related to this and other semi-
simple groups, and we shall briefly describe how this relates to our presentation. To make
things a little simpler we look at the q-adic version with G = PSL(2, Z[1/q]) for some
prime number q and H = PSL(2, Z). Similar computations as in earlier examples show
that for x ∈ G there is n ∈ Z such that

H ∩ xHx−1 ⊇ PSL(2, qnZ) := {a ∈ PSL(2, Z) | a ≡ I mod qn}.

From this it follows that H̄ = lim←− PSL(2, Z)/ PSL(2, qnZ) = PSL(2,Zq) and, from The-
orem 4.8, that Ḡ = PSL(2,Qq). Here Qq = lim←−n

Z[1/q]/qnZ is the q-adic completion of
Q and Zq = lim←−n

Z/qnZ is the q-adic integers. Note that (PSL(2,Qq), PSL(2,Zq)) is a
Schlichting pair and that the Hecke topology is the same as the one coming from Qq.

The projection p = χH̄ ∈ C∗(Ḡ) is not full because there are representations T in
the principal (continuous) series of PSL(2,Qq) (cf. [11, Chapter 2.3, pp. 157 ff.]) with
T (p) = 0.

The structure of the Hecke algebra is well documented; we will do a quick review.
Taking

xn =

(
qn 0
0 q−n

)
,

one has Ḡ =
⋃

n�0 H̄xnH̄, and with φn = pxnp = L(xn)−1χHxnH we have

φn ∗ φ1 =
q

q + 1
φn+1 +

q − 1
q(q + 1)

φn +
1

q(q + 1)
φn−1. (11.3)
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Hall [14] has shown that the characters of H are given by

πz(φm) =
1 − qz

(q + 1)(1 − z)

(
z

q

)m

+
q − z

(q + 1)(1 − z)

(
1
qz

)m

(11.4)

for z �= 1, and

π1(φm) =
2m(q − 1) + q + 1

(q + 1)qm
. (11.5)

Note that Hall worked with the pair (SL(2, Q), SL(2, Z)), of which PSL is the reduction,
and that z and 1/z give the same character. From this it follows that H is isomorphic to
the polynomial ring C[z+1/z] (and therefore also to the Hecke algebra of Example 11.1),
so H has no universal C∗-completion. πz is self-adjoint if and only if z ∈ R or z ∈ T, and
πz is L1-bounded if and only if 1/q � |z| � q. So pL1(Ḡ)p has non-self-adjoint characters
and is therefore not Hermitian (a different proof of this can be found in [16]); hence, Ḡ

is non-Hermitian.
Here pAp is a commutative C∗-algebra, and the situation is quite the opposite of

the other examples: pAp is an algebra which is easy to describe (determined by its
Gel’fand spectrum) and we can use this information to describe ApA. For instance, ApA

is continuous trace with trivial Dixmier–Douady invariant (see, for example, [29]); in
particular, it is liminal.

We do not quite know whether C∗(pL1(Ḡ)p) = pAp in this case. Since pL1(Ḡ)p is
commutative, to show C∗(pL1(Ḡ)p) = pAp it would suffice to prove that for every self-
adjoint character πz of pL1(Ḡ)p there is an irreducible representation T of PSL(2,Qq)
such that

T (pxmp) = πz(φm)T (p).

If z ∈ T, it follows from [11, Chapter 2.3, pp. 174 ff.] that this is obtained with T a
representation from the principal series. If 1/q � z � q, similar (though much longer
and boring) computations show that this can be obtained with T a representation from
the supplementary series. We have not settled the case −q � z � −1/q; it seems that in
this case there are no irreducible representations T of PSL(2,Qq) such that T (pxmp) =
πz(φm)T (p) �= 0. If this is true, it will follow that C∗(pL1(Ḡ)p) �= pAp. (As a test, one
could check the case z = −q.)

For the similar case of PSL(3,Qq), we have already remarked in § 6 that C∗(pL1(Ḡ)p) �=
pAp.

Example 11.9. Let us finish with another example of Hall [14]: take G = PSL(2,Qq),
and consider the Iwahori subgroup

H =

{(
a b

c d

)
∈ PSL(2,Zq)

∣∣∣∣∣ c ∈ qZq

}
.

Hall has shown [14, Theorem 6.10] that 〈· , ·〉R on Cc(Ḡ)p is positive in this case, but
(G, H) is not directed, thus showing that the converse of Theorem 7.4 fails.
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