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1. Introduction

The purpose of this paper is to extend to locally convex spaces and to un-
countable systems several well-known results concerning infinite series, bi-
orthogonal sequences, and Schauder bases. Section 2 gives three extensions of
the theorem of Orlicz (10) and Pettis (11) and some lemmas that will be needed
later. The third section introduces the notions of a summability basis and a
summability basis of subspaces, and two main theorems are proved, including a
simplification of Retherford and McArthur's proof (12) of a theorem of
Nikol'skil (9). Section 4 investigates the positive cone of an uncountable bi-
orthogonal system, particularly conditions equivalent to the regularity of this
cone.

Throughout this paper, we adopt the following notation: E will denote a
topological vector space and E' its topological dual. A locally convex space
will be assumed Hausdorff. Let A denote an arbitrary index set and & denote
the set of all nonempty finite subsets of A.

2. Summability and the Orlicz-Pettis Theorem

Let (xa)xeA be an indexed family in E. The series, denoted by T.axa, is
summable {unconditionally Cauchy) provided the net (J-XBaxx)asSF converges (is
Cauchy) in E where SF is directed by set inclusion. We write I,axa = x if
x = limfl Ea6aJt,«. For countable families A, summability of the series T,,xa is
equivalent to unordered or unconditional convergence of the series. We shall
need the following:

Lemma 1. In a topological vector space, the series I.xxa is unconditonally
Cauchy if and only if for every countable sub-family {aucc2,...}ofA,the series
H°= i*«, is Cauchy.

Proof. Suppose that l,xxx is not unconditionally Cauchy. We now construct
a non-Cauchy countable series. Let U be a neighbourhood of 9 such that for
every a e SF, there exists b e ^ with anb = 0 and l^xsbxx $ U. Let as !F,
and choose br e 3F such that ac\b± = 0 and 2oe61xa $ U. Now choose
i 2 e ^ such that blr\b2 — 0 and Zxeb2

xa $ U. Similarly choose bne^ such
that bnr\(\J\-lb) = 0 and I,xeb xx $ U. Clearly, B = {jfbn is countable and
"LxeBxx is not Cauchy. The converse is obvious.

E.M.S.—19/1—A

https://doi.org/10.1017/S0013091500015285 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500015285


2 HARRY F. JOINER, II

The following lemma is due to Robertson (13, see his remark on p. 152
concerning Theorem 1).

Lemma 2. In a topological vector space, a series Eaxa is Cauchy if and only
if the set {£ae<r*«: a e !F) is precompact. Hence, the set of finite partial sums is
bounded.

For locally convex spaces, we have the following extension by adapting
Me Arthur's argument (8, Lemma 4):

Lemma 3. If 'Z<xxa is a Cauchy series in a locally convex space E, then for
each bounded set B of the Banach space mA of bounded scalar-valued functions
on A with supremum norm, the set

S{B) = {ZB „&«*« = b = Cba)eB and a e ^ }
is precompact.

The following remarkable theorem was first proved in Banach spaces by
Orlicz (10) and Pettis (11) and extended to the following form by Grothendieck
(2), Me Arthur (6) and Robertson (13):

Theorem. (Orlicz-Pettis) In a locally convex space E, each subseries of a
{countable) series converges with respect to the initial topology on E if and only
if each subseries of the series converges with respect to the o(E, £") topology.

For countable series, subseries convergence implies unconditional conver-
gence (summability), and for sequentially complete spaces, the two notions are
equivalent.

Theorem 1. If E is a complete locally convex space, then E ^ is summable
whenever every countable subseries £"= \Xai is a(E, E')-convergent.

Proof. This is immediate from the completeness since Robertson's proof
(13) of the Orlicz-Pettis Theorem implies the series is unconditionally Cauchy,
although not necessarily summable as the following example illustrates.

Let E be the subspace of all countably nonzero elements in an uncountable
product Ilae/1R of reals with the product topology. Let ea be the element of E
with 1 as the a coordinate and 0 elsewhere. Then every countable subfamily
(ea,)r= I sums to the element with 1 at at(i = 1, 2, ...) and 0 elsewhere, but the
whole family sums to the element of UaeAli with 1 in every coordinate, which,
of course, is not in E.

Theorem 2. If E is a a(E, E')-sequentially complete locally convex space
then Eaxa is strongly summable if and only ifL^cx is a{E, E')-summable.

Proof. It is necessary only to show that I,*, is strongly summable when it is
a(E, is")-summable. If Zaxa is a(E, 2f')-summable to x, then every countable
subseries £?L 1x(t( is a{E, £")-Cauchy by Lemma 1. The sequential complete-
ness of E implies that J£?L txXl o(E, E')-converges, and hence strongly converges
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by the Orlicz-Pettis Theorem. From Lemma 1, we conclude that the series
I,xxa is Cauchy in the original topology of E. Since S ^ is a{E, £")-summable
to x and strongly Cauchy, Taxa is strongly summable to x.

A third variation is

Theorem 3. Let E be a locally convex space. If T.axa is a(E, E')-summable
and every countable subseries £j°= jXa/ a(E, E')-converges, then 2,axx is strongly
summable.

The proof is straightforward and will be omitted.

Remark. For uncountable index sets, the Orlicz-Pettis Theorem may be
proved by applying Theorem 3 (which requires only the countable form of the
Orlicz-Pettis Theorem in its proof).

In a locally convex space, every subseries of a series is summable if and only
if every subseries is a(E, E')-summable.

3. Summability bases

In this section we shall state and prove the theorems in very general terms and
restate them in more useful and concrete terms as corollaries. The following
definitions are extensions of the well-known concepts for Banach spaces of a
Schauder basis and a Schauder basis of subspaces (because of summability we
must restrict our attention essentially to unconditional bases). The system
(xa; f x ) x e A is bi-orthogonal provided {xx: <xeA}<=E and {fx: aeA}cE' and
fx(xp) — <5*0> the Kronecker symbol. An (unconditional) Schauder basis for
E is a countable bi-orthogonal system (xn; /„) such that £™_ 1fn(x)xn (uncon-
ditionally) converges to x for every x e E. A bi-orthogonal system (xx; f x ) x e A

is a summability basis for E provided 'Zxfa(x)xx is summable to x for each x e £
(For countable systems, a summability basis is an unconditional Schauder
basis and vice versa.) For a bi-orthogonal system (xx; f x ) x e A , define

for each x e E and each a e f . Then Sa is the a-partial sum operator of (xx; fa).
A summability basis (xx; fa) is equicontinuous if {Sa: ae &F} is an equicontinuous
family of operators on E. Summability bases have received recent attention
by Knowles (4) and Marti (5).

Let (,Ex)xeA be a family of subspaces of E such that there is a unique family
(Pa)X£A of continuous projections on E with PX(E) = Ea and PaPfi = 0 for
a ¥= P and H^PJ^x) is summable to x for each xe E. Then (Ea; P J is a sum-
mability basis of subspaces for E. The a-partial sum operator for (Ea; PJ is
Sx = 2,xeaPa for each a e J 5 ' . The basis (Ea; Px)xeA

 1S equicontinuous if
{Sa: a e tF} is an equicontinuous family of operators on E. Every summability
basis (xa; f x ) x s A corresponds obviously to the summability basis of subspaces
(Ea; Pa)X£A where Ex = span (xx) and Px(x) = fx{x)xx for each x and each a.
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Remark. A summability basis in a barrelled space is necessarily equi-
continuous (by Lemma 2 and (14, Theorem 3, p. 69)).

We shall use the following lemma whose proof is indicated since we could
find no direct reference.

Lemma 4. Let E and F be topological vector spaces with F complete. Let S
be a family of continuous linear functions from E into F and let S* denote the
family of continuous extensions of the functions in S to the completion E* of E.
Then S is equicontinuous if and only ifS* is equicontinuous.

Proof. This is clear since the closed neighbourhoods of E* are exactly the
closures (in E*) of neighbourhoods in £"(1, p. 62) and the closed neighbourhoods
of F form a neighbourhood base.

One common example of a summability basis of subspaces occurs in the
product E of the spaces {Ex: a e A); for, if Pa is the canonical projection of E
on to Ea and if E has the product topology, then (Ea; Pa)aeA is a summability
basis of subspaces. This will be an equicontinuous basis when the spaces
Ex(a e A) are barrelled since E will be barrelled (14, p. 94).

The equicontinuity condition is important because it allows us to extend the
basis, if necessary, to the completion.

Theorem 4. Let E be a Hausdorff topological vector space and let
be a family of complete subspaces with M = span (uaeAE^) and M', the closure
of M in E. If there exist a family of continuous projections (Px)xsA on M such that
(Ea; Pa)lzeA is an equicontinuous summability basis of subspaces for M, and if
P'a(aeA) is the continuous extension of Pa to M' and S'a = I.IsaP'J<ae@r), then
(Ea; P'J is an equicontinuous summability basis for M'.

Proof. Clearly, the image of P'a is £„; P'a is a continuous projection; and
P'xP'p = 0 for a i= /?. Let x e M'. We complete the proof by showing that

lima S'.(x) = x.

Let V be a neighbourhood of 8 in M'. There is a balanced neighbourhood U of
6 such that U+ U+ Ucz V. Since {S'a: ae J5"} is equicontinuous by Lemma 4,
there is a balanced neighbourhood W of 9 such that S'a(W)<= U for all a e F .
Now there is y e M such that y—xe WnU. Hence,

for every a e ^ . Since (£"„, /*„) is a summability basis for M, there exists ae IF
such that

for every b e 8F with a<=.b. Let a c i e SF. Then

x-S'b(x) = (x- v) + (y-S'b(y)) + (S'b(y)-S'b(x))
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Thus, lima S'a(x) = x. for every x e M'.
We have the following obvious corollaries:

Corollary 4.1. Let E be a Hausdorff topological vector space and let
(xx; f x ) x e A be a bi-orthogonal system which is a summability basis for the span M
of (xJ.aA. If Sa(x) = ZxeJx(x)xx for xeE andasSF and if {Sa: ae 3?} is
equicontinuous, then {xx; fx) is a summability basis for M', the closure of M.

Corollary 4.2. Let E be a Hausdorff topological vector space and let (xn; fn)
be an equicontinuous Schauder basis for the span M of(xn). Then (xn; fn) is an
equicontinuous Schauder basis for M-closure.

The following theorem (7, Theorem 1) is due to McArthur and is stated here
for the sake of completeness.

Theorem (McArthur). Let {£,•};<=/ be a family of linear functions from a
vector space E into a topological vector space {F, ST) and suppose that

{S,(x): 16 /}

is bounded for each x e E. Then there exists a weakest vector topology 9~' for
E such that {St},- el is ST' — 3~ equicontinuous. If$~ is locally convex, then so is!F'.
If(F, 3T) is Hausdorff, then (E, ST') is Hausdorff if and only ifS^x) = 0 for all
ie I implies x = 6. If(F, 2T} is locally convex and ST is generated by a family
F = {/?} of seminorms then ST' is generated by the family T' = {/>'} of seminorms
where for each peT, p'{x) = supi£//?(5,(A:)).

The topology S~' defined in McArthur's Theorem is called the projective
equicontinuous topology on E.

The following extends the theorem of Nikol'skil (9).

Theorem 5. Let (E, 9~) be a locally convex space and let (,Ea)xeA be a family
of complete subspaces of E such that the span of uaeAEx is dense in E and
ExnEp = {9} for all a # /?. Let T be a family of seminorms generating the
topology 3~. If for each p e F, there exist q e F and a positive constant K = K(p)
such that

pCLaeaxx)^Kq(i:xebxx) (1)

for arbitrary a, b e SP with acb and arbitrary xaeEx (aefc), then (Ea) is a
summability basis of subspaces for E.

Proof. Let M be the span of vaEa. If 'Zaxa = 0 and xa e Ea, then for p e F
and fixed a0 e A, we have p(xx<) ^ 2Kq(Zxeaxa) for all a e J5" with a0 e a.
Since E is Hausdorff and the right-hand side converges to 0 on !F, we have
xXo = 9. Define Px(x) = xa for x e M and a e A. For a e J , let Sa = SaeaPo.
Let ST' be the projective equicontinuous topology on M defined as above using
the family {Sa: ae SF} and the topology ST on E. Then {Sa{x)\ ae^} and
finite, and hence bounded, for each x e M; and we may apply McArthur's
Theorem. Thus, ST' is defined by the family F' = {p': per} of seminorms
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where p'{x) = supaepp(T,aeaxa) for each x e M and p e T; and {Sa: aeJ5 '}
is 9~' — 9" equicontinuous. It is easy to see that (1) implies p'(x) g Kq{x), and
of course, p{x) ^ p'(x) for all x e M and /? e I\ Hence, ^"' is equivalent to
the topology induced on M by 3~ and {Sa} is equicontinuous for ^ \ Thus
(Ea; PJ is an equicontinuous summability basis for M. By Theorem 4,
(£„; P^) is an equicontinuous summability basis for E, the closure of M.

Corollary 5.1. Let (E, ^") be a locally convex space and let (xa)aeA be a
family in E with xa # 0 and the span of (xj dense in E. Let T be a family of
seminorms generating the topology ST. If for each p sT, there exist qeT and a
positive constant K = K(p) such that

for arbitrary scalars Aa(oc e b) and for arbitrary a,be!F with aczb, then
is a summability basis for E.

The next corollary removes the completeness requirement in the theorem
(12, Theorem 3.1) of Retherford and McArthur for locally convex spaces.

Corollary 5.2. Let (£", ^") be a locally convex space and let (*„)"= t be a
sequence in E with xn # 9 for all n and the span of(xn) dense in E. Let T be a
family of seminorms generating the topology 3~. If for each peF, there exist
q £ F and a positive constant K = K(p) such that

for arbitrary scalars (An) and positive integers k and m, then (xn) is a Schauder
basis for E.

Proof. Note that the basis in this case may be a conditional Schauder basis.
The above proof is modified by using the family {Sn} of operators defined by

n

£ AjX;, for n^k,
i = 1

k
Y, ^iXt, for k<n,

(.1 = 1

instead of the unordered partial sums {Sa}.
A corresponding result for a basis of complete subspaces also holds.
Since condition (1) of Theorem 5 is essentially the equicontinuity of the

finite partial sum operators, we have the following partial converse which in-
cludes all Banach, Frechet, and reflexive spaces:

Theorem 6. If E is barrelled and has a summability basis (of subspaces), then
condition (1) holds.
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4. Positive cones of bi-orthogonal systems

Let E be a real vector space. A set K in E is a cone provided:

(i) K+K^K,

(ii) XKcK for all X ̂  0, and

(iii) K n ( - K ) = {0}.

A set satisfying (i) and (ii) is called a wedge. A cone AT in E induces a partial
ordering ^ on £ by x ^ j if and only if y—x e K. If £ is ordered in this way
by a cone, we call E an ordered vector space. Clearly, K = {x: 6 ^ x}.

Let (xa; fx)XEA be a bi-orthogonal system on E. Let

iC = {xeE: fa(x) g 0 for all aeA}.

Clearly, A" is a wedge in E and K will be a cone if and only if {fx: aeA} is total
over E, i.e.fa(x) = 0 for a e /4 implies x = 0. We call A" the positive cone of the
bi-orthogonal system (xa; fj (when {fa} is total).

Let E be ordered by the cone K, and let [x, y] denote the order interval

{z: x^z^y} = (x+K)n(y-K).

Then K is regular {sequentially regular) provided every increasing net (sequence)
in K which is contained in an order interval converges to an element of K. The
following is an extension to general bi-orthogonal systems of a recent theorem of
McArthur (8).

Theorem 7. Let E be a locally convex space and (xa; f x ) a e A a bi-orthogonal
system on E with {/„} total over E. Let E be ordered by the positive cone K of
(*«; fa)- The following statements are equivalent:

(i) For each x e K and each bounded non-negative real-valued function
(4)«e^. the series 'LllXlJa{x)xa is summable,

(ii) [9, x] is compact for each xe K,

(iii) [9, x] is weakly compact for each xe K,

(iv) K is weakly regular,

(v) K is regular,

(vi) [9, x] is complete, a(E, E')-sequentially complete and bounded for each
xeK.

The above conditions imply the following condition and are equivalent to it if
Xafx(x)xa converges for every xe K:

(vii) The supremum of each order bounded subset ofK exists and is an element

ofK.

If K is complete, then (i)-(vi) are also equivalent to the following statements:

(viii) K is sequentially regular,

(ix) K is weakly sequentially regular.
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Proof. With obvious modifications, based on Lemma 3 for (i)=>(ii)
McArthur's proof extends for the following implications:

(i)=>(ii)=>(iii)=*(iv)=>(ix)<t>(viii) and (ii)=>(v)=>(i)=>(vii) and (v)=>(iv), and
clearly, ((ii) and (iii))=>(vi). Thus, to complete the proof we need only show that
(iv)=>(i), (vi)=>(i), (viii)=>(i) (if K is complete) and (vii)=s>(i) (if "LJJtfx^ is
summable for x e K). Let (Xx)aeA be a bounded non-negative real-valued
function on A and x e K. In each case we must show that I,aXafa(x)xa is
summable.

Suppose (iv) holds. If X = supa Xa, then 6 g ^xsa^afa{x)xx ^ Xx for all
a e / . In addition, if a c i and a,be&, then £ae A/a(*)*a ^ ^•ll6bXJ'll{x)xa.
Hence, Y.xXIfa(x)xa and every subseries of it are a{E, £")-summable by (iv). By
Theorem 3,1,aXJ'a(x)xa is strongly summable.

Assume (vi) holds. Then {£ae<A/«(*)*<x: as^} is bounded since it is a
subset of [9, Xx], which is bounded. Hence, for each

feE',la\XaUx)f(xa)\< + co.

It follows that each countable subseries is o{E, £')-Cauchy and by hypothesis,
a{E, 2?')-convergent. Hence, as in the proof of Theorem 2, T,aX<zfa(x)xa is
strongly Cauchy and by the assumed completeness of [6, Xx], is summable.

Next, assume K is complete and sequentially regular. Then every countable
subseries £?L iXaifat(x)xai is increasing and bounded above by Xx, and hence
convergent. Now by Lemma 1, the series SaAa/,(x)jca is Cauchy and by the
completeness of K, is summable.

We conclude the proof of the theorem by noting that McArthur's proof
for (vii)=>(i) (our numbers) requires the added hypothesis that £„/,(*)*„ con-
verge for all x e K (even in the countable case) and that this is sufficient by the
extension of (8, Lemma 5). Consider the space m of bounded sequences with
the bi-orthogonal sequence (en; /„) where en is the sequence with 1 in the nth
coordinate and 0 elsewhere. Then K is the usual positive cone of m which has

( \property (vii). The sequence I £ en I (determined by (1) e K) does not
Vn = 1 A

converge in m (contradicting (i)).
The order interval [9, x] will be metrisable if and only if {a; fa(x) =£ 0} is

countable (3).

Corollary 7.1. Let E be a locally convex space, (xa; f a ) a e A a bi-orthogonal
system on E with {/a} total over E, and K the positive cone of (xa; fx). If K is
regular and E = K— K, then (xa; fa) is a summability basis for E. If K is
complete, the converse is true.

Proof. For the first part, we need only show that '£<zfa(x)xa is summable to x
for every x e E. Since E = K— K, if suffices to consider only xe K. Let x e K.
By (i) in Theorem 7,1,afa(x)xa is summable. By the bi-orthogonality and totality
of {/„}, the sum must be x. Conversely, suppose that ATis complete and (xx; f^)
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is a summability basis. Let x e K and (,^asA be a bounded non-negative real-
valued function on A. Now ^,afa(x)xa is summable, and thus, by Lemma 3,
{EaetJ-afa(x)xa'- a e IF) is precompact. Lemma 2 and the completeness of K
imply that HatXxfa(x)xa is summable. Hence, condition (i) of Theorem 7 is
satisfied and K is regular. Now let xeE. Let B = {a 6 A: fa(x) ^ 0} and
C = {a e A: fx(x)<0}. By condition (i) also, Sae&/"«(*)*„ is summable to, say,
j> and ?,aeCfx(x)xa is summable to, say, —z. Clearly, .ye/sT and zeK and
x = j - z . Hence, K-K = E.

We now consider two examples. Let A be uncountable and consider the
product T\a.AR of reals with the product topology. Let E be the countably
non-zero elements and (ea; f a ) a s A the " unit vector " basis mentioned earlier.
The positive cone of {ea; fx) is not complete but is regular (by condition (i) of
Theorem 7). Let F represent the countable nonconstant elements of the product.
The system (ea; fx) is again a summability basis, but the positive cone is not
complete and not regular (because condition (i) fails), but is sequentially regular
(since the coordinatewise supremum is in F and is clearly the limit of an in-
creasing sequence).
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