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Abstract

In this paper, we study the discreteness criteria for nonelementary subgroups of U(1, n;C) acting
on complex hyperbolic space. Several discreteness criteria are obtained. As applications, we obtain
a classification of nonelementary subgroups of U(1, n;C) and show that any dense subgroup of
SU(1, n;C) contains a dense subgroup generated by at most n elements when n ≥ 2. We also obtain
a necessary and sufficient condition for the normalizer of a discrete and nonelementary subgroup in
SU(1, n;C) to be discrete.
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1. Introduction

The discreteness of Möbius groups is a fundamental problem which has been
extensively studied. In 1976, by using the so-called Jørgensen inequality, Jørgensen [9]
established the following well-known result.

THEOREM J. A nonelementary subgroup G of SL(2,C) is discrete if and only if all
its two-generator subgroups are discrete.

Martin [14] generalized Theorem J to the n-dimensional Möbius group M(n).

THEOREM M. A nonelementary and finitely generated subgroup G of M(n) is
discrete if and only if all its two-generator subgroups are discrete.

See, for example, [18, 19] for further generalizations of Theorems J and M in M(n).
It follows from a result of Sullivan (see [17, p. 246]) that a nonelementary and

nondiscrete subgroup G of SL(2,C) is either conjugate to a dense subgroup of
SL(2,R), or dense in SL(2,C). Wang generalized the above result to the case
of M(n). Using this generalized result, Wang showed that any dense subgroup of
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M(n) contains a dense subgroup which is generated by at most n elements if n ≥ 2
and, if n = 1, by two elements. See [18] for details.

Let G be a discrete and nonelementary subgroup of M(n) andN (G) the normalizer
of G in M(n), that is,

N (G)= {g ∈ M(n) | gGg−1
= G}.

Katok (see [11, p. 36]) and Maskit (see [13, p. 98]) proved that G and N (G) share
discreteness for n = 1 and n = 2, respectively. Ratcliffe [16] proved this for a finitely
generated nonelementary group G ∈ M(n) with the property that the hull of its limit
set has full dimension. Wang [20] proved the following result.

THEOREM W. Let G be a nonelementary subgroup of M(n). Then N (G) is discrete
if and only if both G and W (N (G)) are discrete.

Here

W (G)=
⋂

f ∈h(G)

Gfix( f ),

where h(G) is the set of all loxodromic elements in G and Gfix( f ) = {g ∈ G | fix( f )
⊂ fix(g)}.

Because of the closed connection between real and complex hyperbolic geometry,
the roadmap of analogy frequently points the way toward potentially interesting
questions. The complex hyperbolic space is more complicated than the real hyperbolic
space. For example, it has variable negative curvature, it is a Kähler manifold with
biholomorphic automorphisms and its boundary has a natural contact structure which
is locally modelled on Heisenberg geometry (see [1, 12]). It is interesting to investigate
analogous results of real hyperbolic space in the setting of complex hyperbolic space.

There has been much research in this area; see, for example, [2, 5, 8, 15]. Our
purpose in this paper is to find analogous results mentioned above in the setting of
complex hyperbolic space. In order to state our main results, we first recall some
notation and facts about complex hyperbolic space.

The complex hyperbolic n-space Hn
C may be identified with the unit ball in Cn with

the Bergman metric. The group of its holomorphic isometries is the group U(1, n;C)
acting on Hn

C and on its boundary ∂Hn
C. A nontrivial element g of U(1, n;C) is said

to be elliptic if it has a fixed point in Hn
C, parabolic if it has exactly one fixed point and

this lies on ∂Hn
C, and loxodromic if it has exactly two fixed points and they lie on ∂Hn

C.
The limit set L(G) of the subgroup G ⊂U (1, n;C) is defined as

L(G)= G(p) ∩ ∂Hn
C, p ∈ Hn

C.

A subgroup G of U(1, n;C) is called nonelementary if it contains two nonelliptic
elements of infinite order with distinct fixed points; otherwise G is called elementary.
We refer to [7, 8] for more details of these concepts and some of their properties.
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Using the same notation as in [7], for any totally geodesic submanifold M ⊂ Hn
C,

we denote by I (M) the subgroup of U(1, n;C) which leaves M invariant and by
K (M) the subgroup of I (M) which leaves M pointwise fixed. Then there exists a Lie
subgroup U(M)⊂ I (M) such that

I (M)= K (M)U (M) with K (M) ∩U (M) finite.

In particular, if M = Hm
C is viewed as an embedding totally geodesic submanifold of

Hn
C, then

K (M)= ωIm+1 ×U (n − m;C), U (M)= SU(1, m;C)× In−m, (1)

where ω is a complex number with norm 1, Ik is the k × k unit matrix, and
SU(1, m;C) consists of matrices in U(1, m;C) with determinant 1.

The smallest totally geodesic submanifold M(G), invariant under G, coincides with
the smallest totally geodesic submanifold whose boundary contains L(G) when the
cardinality of the limit set L(G) is at least 1. If f ∈ G fixes L(G) pointwise, then
f fixes M(G) pointwise. Let ∂M(G)= M(G) ∩ ∂Hn

C. Then L(G)⊂ ∂M(G) and
G ⊂ I (M(G)).

From the group theory point of view, we can study the group G ∩ K (M(G)) and
its coset spaces in G to reveal some properties of G. It is expedient to introduce the
following map φ to realize its coset spaces. Let φ(g) be the restriction of g to M(G)
and let φ(G) consist of φ(g) for all g ∈ G, that is,

φ(g)= g|M(G), φ(G)= {g|M(G) : g ∈ G}. (2)

Then φ is a homomorphism from G onto φ(G) and the kernel ker(φ) of φ consists
of the elements of G whose restriction g|M(G) is identity, that is, ker(φ)= G ∩
K (M(G)). Sometimes we denote the φ by φG to emphasize the dependence of φ
on G. Since φ(G) and G have the same orbits in M(G),

L(φ(G))= L(G) (3)

and G is nonelementary if and only if φ(G) is nonelementary.
We denote by U(1, M(G)) the restriction of U(1, n;C) on M(G) which leaves

M(G) invariant. We mention that the elements of φ(G)⊂U (1, M(G)) can be
represented by suitable matrices in the general linear group GL(d + 1,C), where
d = dim(M(G)). For instance, we can view U(1, Hm

C ) as U(1, m;C) and φG1(g)
and φG(g) may not be of the same size as matrices for g ∈ G1 ⊂ G. It is obvious that
we can always conjugate U(1, M(G)) to U(1, d;C) in U(1, n;C).

For a nonelementary subgroup G ⊂U (1, n;C), let

H(G)= { f ∈ G | f is loxodromic},

and if G contains some parabolic element, then let

P(G)= { f ∈ G | f is parabolic}.
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For f ∈H(G), or P(G) if P(G) 6= ∅, let

G f = {g ∈ G | g is conjugate to f and 〈 f, g〉 is nonelementary}.

Our main results concerning discreteness are the following theorems.

THEOREM 1.1. Let G ⊂U (1, n;C) be nonelementary and φ(G) be as in (2). Then
φ(G) is discrete if and only if for every two-generator, nonelementary Gβ of φ(G),
φ(Gβ) is discrete.

THEOREM 1.2. Let G ⊂U (1, n;C) be nonelementary. Then G is discrete if and only
if ker(φ) is discrete and each nonelementary subgroup generated by two elements of
φ(G) f is discrete, where f ∈H(φ(G)).

THEOREM 1.3. Let G ⊂U (1, n;C) be nonelementary. If P(φ(G)) 6= ∅, then G is
discrete if and only if ker(φ) is discrete and every nonelementary subgroup generated
by two elements of φ(G) f is discrete, where f ∈ P(φ(G)).

THEOREM 1.4. Let G ⊂U (1, n;C) be nonelementary and satisfy Condition C. If G
contains an elliptic element of order at least 3, then G is discrete if and only if ker(φ)
is discrete and every nonelementary subgroup generated by two elliptic elements of G
is discrete.

Here we say that a subgroup G of U(1, n;C) satisfies Condition C if G contains no
sequence { fi } such that each fi is parabolic and fi → In+1 as i→∞.

REMARK 1.5. Theorem 1.1 is a generalization of Theorem 2.1 in [18] to the setting
of U(1, n,C). Theorems 1.2 and 1.3 are the generalizations of [8, Theorem 3.2] and
[5, Theorem 1.1]. Theorems 1.2–1.4 are the counterparts in the complex unitary group
category of the main results in [19] in M(n).

As applications, by following the line of arguments in [18], we are able to prove the
following two theorems concerning the classification of nonelementary subgroups of
U(1, n,C) and the generated system on dense subgroups of SU(1, n;C).

THEOREM 1.6. Let G be a nonelementary subgroup of U(1, n,C). Then either:

(1) G is discrete; or
(2) ker(φ) is not discrete but φ(G) is discrete; or
(3) φ(G) is dense in SU(1, M(G)).

Here SU(1, M(G)) consists of matrices in U(1, M(G)) with determinant 1.

THEOREM 1.7. Any dense subgroup of SU(1, n;C) contains a dense subgroup which
is generated by at most n elements if n ≥ 2 and, if n = 1, by two elements.

Furthermore, we shall show the following theorem.

THEOREM 1.8. For a nonelementary discrete subgroup G of SU(1, n,C), N (G) is
discrete if and only if M(G)= Hn

C.
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HereN (G) is the normalizer of G ⊂ SU(1, n;C) in SU(1, n;C), that is,

N (G)= {g ∈ SU(1, n;C) | gGg−1
= G}.

REMARK 1.9. Theorems 1.6 and 1.7 are the generalizations of [18, Theorems 3.1
and 4.2] to the setting of U(1, n,C). Theorem 1.8 is a generalization of [20,
Theorem 1.1] to the setting of SU(1, n,C).

This paper is arranged as follows. Section 2 contains some lemmas which are
used in Section 3 in the proof of Theorems 1.1–1.4. Section 4 contains the proof
of Theorems 1.6 and 1.7. Section 5 contains the proof of Theorem 1.8 and a simple
example showing that G can be discrete butN (G) is not.

2. Several lemmas

In order to prove the theorems concerning discreteness of subgroups in U(1, n;C),
we need the following lemmas.

By the definition of φ, we have the following lemma.

LEMMA 2.1. Let φ be stated as in (2). Then G is discrete if and only if ker(φ) is finite
and φ(G) is discrete.

The following lemma is crucial; see [8].

LEMMA 2.2. Suppose that f and g ∈U (1, n;C) generate a discrete and
nonelementary group. Then:

(1) if f is parabolic or loxodromic,

max{N ( f ), N ([ f, g])} ≥ 2−
√

3,

where [ f, g] = f g f −1g−1 is the commutator of f and g, N ( f )= ‖ f − In+1‖;
(2) if f is elliptic,

max{N ( f ), N ([ f, gi
]) | i = 1, 2, . . . , n + 1} ≥ 2−

√
3.

LEMMA 2.3 (see [4]). If g is a loxodromic element in U(1, n;C) and f ∈U (1, n;C)
does not interchange the two fixed points of g, then for all large enough j , the elements
g j f or g− j f are loxodromic.

The following lemma is a classification of elementary subgroups of U(1, n;C).

LEMMA 2.4. (1) If G contains a parabolic element but no loxodromic element, then
G is elementary if and only if it fixes a point in ∂Hn

C.
(2) If G contains a loxodromic element, then G is elementary if and only if it fixes a

point in ∂Hn
C or a point-pair {x, y} ⊂ ∂Hn

C.
(3) If G is purely elliptic, that is, each nontrivial element of G is elliptic, then G is

elementary and fixes a point in Hn
C.
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PROOF. The proof of part (1) is obvious.
For part (2), let h ∈ G be loxodromic with fixed points x and y. It suffices to

show that each element of G fixes {x, y} setwise if G does not fix a point in ∂Hn
C.

This is obvious by noting that the fixed point set of loxodromic element f h f −1 is
{ f (x), f (y)} for f ∈ G and the definition of elementariness.

For part (3), we claim that the limit set L(G) contains at most one point if G is
purely elliptic.

We suppose for the purpose of contradiction that L(G)= {x, y}. Then there exists
a subgroup G1 of G with index 2 fixing {x, y} pointwise. Therefore each element
of G1 fixes every point on the geodesic connecting x and y, which implies that
L(G1)= L(G)= ∅. This is a contradiction. If L(G) contains more than two points,
then we can find a sequence gm of distinct elements of G such that gm(z) converges
uniformly to x on compact subsets of Hn

C\{y}, where x and y are distinct points in
L(G). Thus for large m, gm are loxodromic, which is a contradiction.

The cases L(G)= ∅ and L(G)= {x} imply that G has a fixed point in Hn
C and

∂Hn
C, respectively, by [7, Lemma 4.3.5] and the G-invariance of the limit set. The

proof is complete. 2

LEMMA 2.5. Let G ⊂U (1, n;C) be nonelementary. If each nonelementary subgroup
of G generated by two elements of G f is discrete, where f ∈H(G), then G contains
no sequence { fi } such that each fi is not elliptic and

fi → In+1 as i→∞.

PROOF. Suppose for the purposes of contradiction that G does contain such a
sequence. Then for large i , we may assume that fi (x0) 6= y0 and fi (y0) 6= x0, where
fix( f )= {x0, y0}.

Let gi = fi f f −1
i . Then gi f −1

→ In+1. We infer that, for large enough i , the
two-generator subgroup 〈 f, gi 〉 = 〈 f, gi f −1

〉 is elementary by Lemma 2.2 and the
inequality

N (gi f −1)+

n+1∑
k=1

N ([gi f −1, f k
]) < 2−

√
3.

It follows from 〈 f, gi f −1
〉 = 〈 f, gi 〉 being elementary that fix( f )= fix(gi ), which

implies that

fix( f )⊂ fix( fi ).

Let h ∈ G be loxodromic such that

fix( f ) ∩ h[fix( f )] = ∅.

By replacing f by h f h−1 in the above discussions, we know that there exists a positive
number M1 such that for all i ≥ M1,
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h[fix( f )] ⊂ fix( fi ).

This shows that fi has at least four fixed points. This is the desired contradiction. 2

LEMMA 2.6. Let G ⊂U (1, n;C) be nonelementary and contain a parabolic element.
If each nonelementary subgroup of G generated by two elements of G f is discrete,
where f ∈ P(G), then G contains no sequence { fi } such that each fi is not elliptic
and

fi → In+1 as i→∞.

PROOF. Suppose for the purposes of contradiction that G does contain such a
sequence { fi }. Let gi = fi f f −1

i where f ∈ P(G). As in the proof of Lemma 2.5,
〈 f, gi 〉 is elementary, which implies that fix( f )= fix(gi ), and thus

fix( f )⊂ fix( fi ).

Since G is nonelementary, h j ∈ G ( j = 1, 2) is loxodromic such that

fix( f ) ∩ h j [fix( f )] = ∅ and h1[fix( f )] ∩ h2[fix( f )] = ∅.

By replacing f by h j f h−1
j in the above discussions, we know that there exists a

positive number M1 such that for j = 1, 2 and all i ≥ M1,

h j [fix( f )] ⊂ fix( fi ).

This shows that fi has at least three fixed points. This is the desired contradiction. 2

LEMMA 2.7. Let G be nonelementary. If each nonelementary subgroup of G
generated by two elliptic elements is discrete and ker(φ) is discrete, then G contains
no sequence { fi } such that each fi is elliptic and

fi → In+1 as i→∞.

PROOF. Suppose for the purposes of contradiction that G contains a sequence { fi }

with each fi being elliptic and

fi → In+1 as i→∞.

Without loss of generality, we may assume that the smallest totally geodesic
submanifold M(G) is H k

C, which is a k-dimensional complex ball with S2k−1 as its
ideal boundary. Then the set of fixed points of all loxodromic elements lies on S2k−1.

Choose x j ∈ L(G) and accordingly open balls U j in H k
C ( j = 1, 2, . . . , 2k + 1) such

that x j ∈U j , U j ∩Us = ∅ whenever j 6= s and, for any a j ∈U j , there exists only one
(2k − 1)-dimensional sphere S(a1, . . . , a2k+1) containing a1, a2, . . . , a2k+1; see [6].
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Let h j ( j = 1, 2, . . . , 2k + 1) be loxodromic elements of G such that

fix(h1)⊂U1,

and the attractive fixed point of h j lies in U j and the other one lies in U1, where
j = 2, 3, . . . , 2k + 1.

Since W (G) is discrete, after relabelling U j , j = 1, 2, . . . , 2k + 1, if necessary,
we can choose an elliptic element f ∈ G of order at least 3 such that

U1 ∩ fix( f 2)= ∅.

Then there is an integer t such that

fix(ht
j f 2h−t

j )= ht
j (fix( f 2))⊂U j ( j = 1, 2, . . . , 2k + 1). (4)

For large enough i and each j ,

N ( fi )+

n+1∑
k=1

N ([ fi , (ht, j )
k
]) < 2−

√
3,

where ht, j = ht
j f h−t

j .
Combining Lemma 2.2, the above inequality and our assumption yields that

〈 fi , ht, j 〉

is elementary.
By Lemma 2.4, 〈 fi , ht, j 〉 either fixes a point of Hn

C or a point-pair {x, y} of ∂Hn
C

setwise. In both cases, the subgroup 〈 f 2
i , h2

t, j 〉 of 〈 fi , ht, j 〉 has a fixed point in

Hn
C by virtue of the fact that fix(ht, j )⊂ fix(h2

t, j )= fix(ht
j f 2h−t

j )⊂U j . Thus it is

always the case that fix( f 2
i ) ∩U j 6= ∅. By our choice of U j , f 2

i ∈ ker(φ). This is the
desired contradiction. 2

3. Proof of theorems concerning discreteness

PROOF OF THEOREM 1.1. If φ(G) is discrete, then each two-generator,
nonelementary subgroup Gβ of φ(G) is discrete. By Lemma 2.1, φ(Gβ) is discrete.

For the converse, suppose the contrary. Let k = dim(M(G)). Then there is a
sequence of distinct elements fi of φ(G) \ Ik+1 such that

fi → Ik+1 as i→∞.

Pass to a subsequence so that fix( fi ) have the Hausdorff limit X . Then X is a proper
subset of M(G). By our choice of sequence, there is a point of L(G)= L(φ(G))
outside X . Hence, there is a loxodromic element h ∈ φ(G) such that fix(h) ∩ X = ∅.
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We may assume that for large enough i , fi does not interchange the fixed points of
h since fi → Ik+1 as i→∞. By Lemma 2.3, h j fi is loxodromic for large enough j .
Thus h and h j fi are two loxodromic elements with distinct fixed points and the two-
generator group Hi = 〈h, fi 〉 is nonelementary in φ(G). By the definition of the map
φ, φHi (h) and φHi (h

j fi ) are two loxodromic elements in φ(Hi )⊂U (1, M(Hi )) with
distinct fixed points. Hence, φ(Hi ) is nonelementary and discrete by our assumption.
Let m = dim(M(φ(Hi ))). Applying Lemma 2.2 to φ(Hi )= 〈φHi (h), φHi (h

j fi )〉 =

〈φHi (h), φHi ( fi )〉, we obtain

max{N (φHi ( fi )), N ([φHi ( fi ), φHi (h)
l
]) | l = 1, 2, . . . , m + 1} ≥ 2−

√
3.

The above inequality contradicts the fact that φHi ( fi )→ Im+1 as i→∞. This
concludes the proof. 2

PROOF OF THEOREM 1.2. The necessity is obvious. For the converse, suppose for
the contrary that G is not discrete. Then, by Lemma 2.5, G contains a sequence { fi }

such that each fi is elliptic and

fi → In+1 as i→∞.

We shall show that for large enough i , each fi belongs to ker(φ). This is equivalent to
showing that φG( fi ) is identity in M(G) for large enough i .

Let x ∈ L(φ(G)) and Ux be a small neighbourhood of x in M(G). Then there is a
loxodromic element h ∈ φ(G) such that

fix(h)⊂Ux and ht
[fix( f )] ⊂Ux

for all large t > 0, where f ∈H(φ(G)). For such a loxodromic element h, let
gt = ht f h−t . Then, for large enough i ,

N (φ( fi )gtφ( fi )
−1g−1

t )+

n+1∑
k=1

N ([φ( fi )gtφ( fi )
−1g−1

t , gk
t ]) < 2−

√
3.

It follows from Lemma 2.2 and the above inequality that

〈gt , φ( fi )gtφ( fi )
−1g−1

t 〉 = 〈h
t f h−t , φ( fi )(h

t f h−t )φ( fi )
−1
〉

is elementary. This yields

fix(ht f h−t )⊂ fix(φ( fi ))

for large enough i , that is,

ht
[fix( f )] ⊂ fix(φ( fi )).

Hence, for any x ∈ L(G), there exists Mx > 0 such that for all i > Mx ,

fix(φ( fi )) ∩Ux 6= ∅.
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As in the proof of Lemma 2.7, we choose 2k + 1 distinct loxodromic fixed points
x j such that x j ∈U j , U j ∩Us = ∅ whenever j 6= s and, for any a j ∈U j , there exists
only one (2k − 1)-sphere S(a1, . . . , a2k+1) containing a1, a2, . . . , a2k+1.

Applying to each x j the above process, we obtain fix(φ( fi )) ∩Ux j 6= ∅ for i large
enough. Since the set of fixed points of an elliptic transformation is either a single
point or a totally geodesic submanifold by [7, Proposition 3.2.2], there exists M > 0
such that for all i ≥ M , the restriction of fi in M(G) is identity, that is, fi ∈ ker(φ).
This contradicts our assumption that ker(φ) is discrete.

PROOF OF THEOREM 1.3. The proof of Theorem 1.3 follows from Lemma 2.6 and
the similar arguments to those in the proof of Theorem 1.2. 2

PROOF OF THEOREM 1.4. Suppose that each nonelementary subgroup of G
generated by two elliptic elements is discrete and ker(φ) is finite, but G is not discrete.
Then G contains a sequence { fi } such that

fi → In+1 as i→∞.

We may assume that all fi are not elliptic by Lemma 2.7. Pass to a subsequence
if necessary so that fix( fi ) tends in the Hausdorff metric toward a subset of ∂Hn

C
containing at most two points. After conjugating the sequence fi by a loxodromic
element of G if necessary, we can find an elliptic element g ∈ G of order at least 3
such that

fix(g2) ∩ fix( fi )= ∅

for each i .
Let gi = fi g f −1

i . Then gi g−1
→ In+1. We infer that, for large enough i , the two-

generator subgroup 〈g, fi g f −1
i 〉 = 〈g, gi 〉 = 〈g, gi g−1

〉 is elementary by Lemma 2.2
and the inequality

N (gi g
−1)+

n+1∑
k=1

N ([gi g
−1, gk

]) < 2−
√

3.

By Lemma 2.4, 〈g, fi g f −1
i 〉 fixes either a point of Hn

C or a point-pair {x, y} of ∂Hn
C.

If 〈g, fi g f −1
i 〉 has a unique fixed point of ∂Hn

C then {[g, fi g f −1
i ]} is a sequence

of G converging to identity with each [g, fi g f −1
i ] being either elliptic or parabolic

by [10, Proposition 1.11]. By our assumption, this is a sequence of elliptic elements
of G converging to identity. This is a contradiction by Lemma 2.7.

Suppose that 〈g, fi g f −1
i 〉 fixes either a point of Hn

C or a point-pair {x, y} of ∂Hn
C.

Note that fix(g)⊂ fix(g2). For both cases, the subgroup 〈g2, fi g2 fi 〉 of 〈g, fi g f −1
i 〉

has a fixed point in Hn
C. Thus fi g2 f −1

i g−2 is a sequence of elliptic elements of
G converging to identity by noting that fi g2 f −1

i g−2
6= In+1 for all i . This is a

contradiction by Lemma 2.7. The proof is complete. 2
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4. Applications of discreteness criteria

PROOF OF THEOREM 1.6. By Lemma 2.1, it suffices to prove that the nondiscrete
subgroup φ(G) ∈U (1, M(G)) is dense in SU(1, M(G)). By the definition of φ and
the fact that G is nonelementary, we know that there is no point of M(G) and no proper
totally geodesic submanifold in M(G) which is invariant under φ(G). It follows
from [7, Theorem 4.5.1 or Theorem 4.4.2] that φ(G) is dense in SU(1, M(G)). 2

By Theorems 1.1 and 1.6, the following corollary holds.

COROLLARY 4.1. Let G be a dense subgroup of U(1, n;C). Then G contains a two-
generator nonelementary subgroup F such that φF (F) is dense in SU(1, M(F)).

PROOF OF THEOREM 1.7. Let G be a dense subgroup of SU(1, n;C). If n = 1,
the result is obvious by [18] and the fact SU(1, 1;C) being a subgroup of SL(2,C)
(see [3, 7] for details). By this corresponding, we know the correctness in the case
n = 1.

We assume that n ≥ 2 in what follows. By Corollary 4.1, we know that there is a
two-generator subgroup F such that φF (F) is a dense subgroup in SU(1, M(F)).

Since F is nonelementary, the cardinality of the limit set L(F) of f is greater than
3 and thus dim(M(F)) > 1. We mention that, in contrast to the real hyperbolic space,
the convex hull of three (generic) points in the complex hyperbolic space may have
dimension 4.

We pick a loxodromic g ∈ G whose fixed points are outside M(F). Let F1 be three-
generator subgroup generated by F and g. Then M(F) is a proper subset of M(F1)

and φ(F1) is dense in SU(1, M(F1)) by Theorem 1.6. We know that dim(M(F1)) is
at least 3.

By repeating the above reasoning a finite number of times, we get a subgroup H
of G which is generated by at most n elements and is dense in SU(1, n;C). This
completes the proof. 2

5. Discreteness of the normalizer of G

We first mention that each eiθ In+1 (θ ∈R) belongs to the normalizer of G ∈
U (1, n;C) in U(1, n;C), which implies the nondiscreteness of the normalizer of
G in U(1, n;C). Therefore we restrict our discussions to SU(1, n;C). Before
proving Theorem 1.8, we give a simple example to show that G can be discrete but
N (G) is not.

EXAMPLE 5.1. Let G1 be any discrete nonelementary subgroup of SU(1, n;C) and

G =

{
h =

(
g

1

)∣∣∣∣ g ∈ G1

}
⊂ SU(1, n + 1;C). (5)
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Then G is a discrete and nonelementary subgroup of SU(1, n + 1;C) and the set

D(G) =

{
h =

(
e−iθ/(n+1) f

eiθ

)∣∣∣∣ f ∈ N (G1), ∀θ ∈R
}

⊂N (G)⊂ SU(1, n + 1;C).

It is clear that D(G) is not discrete.

In particular, for a purely loxodromic subgroup G1 of SU(1, n;C), D(G)=N (G)
in the above example. In fact let

f =

(
A α

β d

)
∈N (G),

where A is an (n + 1)× (n + 1) complex matrix, α is an (n + 1)× 1 complex matrix
and β is a 1× (n + 1) complex matrix. Then there exist two elements g1, g2 ∈ G1
such that

f h1 = h2 f, (6)

where h1 = diag(g1, 1) and h2 = diag(g2, 1) are two elements of G. Thus we have
that

Ag1 = g2 A, g2α = α, βg1 = β. (7)

Since each nontrivial element of G1 does not have 1 as its eigenvalue, α = 0 and β = 0,
which implies that D(G)=N (G) in this case.

We mention that f = diag(e−iθ/(n+1) In+1, eiθ ) ∈ ker(φN (G)), which implies that
ker(φN (G)) is not discrete in the above case.

The above observation motivates the following proposition.

PROPOSITION 5.2. For a nonelementary subgroup G of SU(1, n,C), N (G) is
discrete if and only if both G and ker(φN (G)) are discrete.

PROOF. The necessity is obvious. For the converse, suppose that both G and
ker(φN (G)) are discrete butN (G) is not discrete. Then there exists a distinct sequence
{ f j } ofN (G) such that

fi → In+1 as i→∞.

Note the discreteness of G and the commutator [ fi , g] := fi g f −1
i g−1

∈ G for any
g ∈ G,

[ fi , g] = In+1

for large enough i . Hence fix(g)= fi (fix(g)), which implies that if g is loxodromic
then

fix(g)⊂ fix( fi )

for large enough i .
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Since G is a normal subgroup of N (G) and N (G) does not have a common
fixed point in ∂Hn

C, L(G)= L(N (G)) by [7, Lemma 4.3.4]. This implies that
fi ∈ ker(φN (G)) for large enough i . This contradicts the fact that ker(φN (G)) is
discrete. The proof is complete. 2

PROOF OF THEOREM 1.8. If M(G) 6= Hn
C, we may assume without loss of generality

that M(G)= H k
C with 2≤ k ≤ n − 1. Then G is of the form

G =

{
g =

(
g1

A

)}
⊂ SU(1, n;C), (8)

where g1 ∈U (1, k + 1;C), A ∈U (n − k), the set of all (n − k)× (n − k) unitary
matrices. Note that for each θ ∈R,

f =

(
exp(−i(n − k)θ/(k + 1))Ik+1

eiθ In−k

)
∈ ker(φN (G)).

This implies that ker(φN (G)) is not discrete. Thus N (G) is not discrete by
Proposition 5.2.

If M(G)= Hn
C then ker(φG)= ker(φN (G))= {In+1}, which implies that N (G) is

discrete by Proposition 5.2. The proof is complete. 2
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[14] G. J. Martin, ‘On discrete Möbius groups in all dimensions’, Acta Math. 163(1) (1989), 253–289.
[15] J. R. Parker, ‘Uniform discreteness and Heisenberg translations’, Math. Z. 225(3) (1997), 485–505.

https://doi.org/10.1017/S0004972708000622 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000622


224 W. Cao [14]

[16] J. Ratcliffe, ‘On the isometry groups of hyperbolic manifolds’, Contemp. Math. 169 (1994), 491–
495.

[17] D. Sullivan, ‘Quasiconformal homeomorphisms and dynamics: Structural stability implies
hyperbolicity for Kleinian groups’, Acta Math. 155(3) (1985), 243–260.

[18] X. Wang, ‘Dense subgroups of n-dimensional Möbius groups’, Math. Z. 243(4) (2003), 643–651.
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