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Asymptotic predictions on the velocity gradient
statistics in low-Reynolds-number random flows:
onset of skewness, intermittency and alignments
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Stirring a fluid through a Gaussian forcing at a vanishingly small Reynolds number
produces a Gaussian random field, while flows at higher Reynolds numbers exhibit
non-Gaussianity, cascades, anomalous scaling and preferential alignments. Recent
works (Yakhot & Donzis, Phys. Rev. Lett., vol. 119, 2017, 044501; Khurshid et al.,
Phys. Rev. E, vol. 107, 2023, 045102) investigated the onset of these turbulent hallmarks
in low-Reynolds-number flows by focusing on the scaling of the velocity gradients and
velocity increments. They showed that the onset of power-law scalings in the velocity
gradient statistics occurs at low Reynolds numbers, with the scaling exponents being
surprisingly similar to those in the inertial range of fully developed turbulence. In this
work we address the onset of turbulent signatures in low-Reynolds-number flows from
the viewpoint of the velocity gradient dynamics, giving insights into its rich statistical
geometry. We combine a perturbation theory of the full Navier—Stokes equations with
velocity gradient modelling. This procedure results in a stochastic model for the velocity
gradient in which the model coefficients follow directly from the Navier—Stokes equations
and statistical homogeneity constraints. The Fokker—Planck equation associated with our
stochastic model admits an analytic solution that shows the onset of turbulent hallmarks at
low Reynolds numbers: skewness, intermittency and preferential alignments arise in the
velocity gradient statistics through a smooth transition as the Reynolds number increases.
The model predictions are in excellent agreement with direct numerical simulations of
low-Reynolds-number flows.
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1. Introduction

The Reynolds number characterizes the range of active scales involved in the flow of a
Newtonian fluid, determining the transition from a laminar motion to a disordered and
turbulent state (Reynolds 1883). At a vanishingly small Reynolds number, the flow obeys
linear equations, and stirring the fluid through a Gaussian random forcing produces a
Gaussian random velocity field. On the other hand, flows at higher Reynolds numbers
undergo a nonlinear evolution and exhibit highly non-Gaussian turbulent features. These
distinguishing marks of the turbulent dynamics include cascades (e.g. Alexakis & Biferale
2018; Ballouz & Ouellette 2020; Vela-Martin & Jiménez 2021), anomalous scaling of the
velocity increments (e.g. Benzi et al. 1995; Chen et al. 2005), extreme intermittency and
preferential alignments of the velocity gradients (e.g. Ashurst et al. 1987; Lund & Rogers
1994; Buaria et al. 2019; Buaria & Pumir 2022). Recent works (Yakhot & Donzis 2017;
Sreenivasan & Yakhot 2021; Gotoh & Yang 2022; Khurshid, Donzis & Sreenivasan 2023)
characterized the onset of these turbulent features and highlighted a striking similarity
between the scalings in low-Reynolds-number flows and fully developed turbulence, which
motivates further investigations of low-Reynolds-number random flows.

One approach to address the onset of turbulent motion consists of considering the
three-dimensional, incompressible Navier—Stokes equations for a statistically isotropic
flow without boundaries, driven by a large-scale Gaussian forcing. This set-up excludes
the effect of any boundary condition and partially overcomes the lack of universality
of low-Reynolds-number flows (Gotoh & Yang 2022). Such idealized flows can be
investigated analytically at a small Reynolds number by formulating a perturbation theory
of the Navier-Stokes equations (Wyld 1961). This direct approach provides complete
insight into the full velocity field at low Reynolds numbers but involves several technical
complications. For example, the terms in the series expansion soon become excessively
complicated and violations of Galilean invariance occur (Yakhot & Donzis 2018).

A recent insightful approach focused on the scaling of the velocity gradient moments
and structure functions at a low Reynolds number (Yakhot & Donzis 2017; Sreenivasan
& Yakhot 2021) starting from the Hopf equation for the characteristic functional
of the velocity field (Hopf 1952). This scaling analysis showed that, surprisingly,
low-Reynolds-number flows without an inertial range, not detected even with the aid of the
extended self-similarity (Benzi et al. 1993), have qualitatively the same scalings as fully
developed turbulence (Schumacher, Sreenivasan & Yakhot 2007). In particular, the scaling
exponents of the structure functions, with the Reynolds number and spatial separation,
observed in low-Reynolds-number flows match well the scaling exponents predicted by a
theory relying on very-high-Reynolds-number hypotheses (Yakhot & Sreenivasan 2004).
Those scalings are observed at spatial separations r £, 7, where 7 is the Kolmogorov length
scale, and at a Reynolds number based on the Taylor microscale Re, % 9, whereas any
anomalous scaling is negligible at Rey < 3 (Yakhot & Donzis 2017). While this scaling
analysis fully characterizes the velocity increment statistics across the scales, it does not
shed light on the rich statistical geometry of the flow. For example, the alignments and
interplay between the strain rate and the vorticity cannot be inferred.

Here, we address the onset of non-Gaussianity in flows driven by a random forcing from
the viewpoint of the velocity gradients. The velocity gradient encodes many distinguishing
features of the turbulent state (Meneveau 2011), and it comprehensively characterizes the
geometry of the vorticity and strain rate. As the Reynolds number increases, the velocity
gradient transitions from a Gaussian random matrix state (Livan, Novaes & Vivo 2018)
to a turbulent state, featuring skewness of the longitudinal components, associated with
the cascade of kinetic energy (Eyink 2006; Carbone & Bragg 2020; Johnson 2020), and
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preferential configurations of the strain-rate eigenvalues (Betchov 1956; Lund & Rogers
1994; Davidson 2015), as well as intermittency and preferential alignments between the
vorticity and the strain-rate eigenvectors (Ashurst et al. 1987; Buaria, Bodenschatz &
Pumir 2020).

To analytically capture the onset of non-Gaussianity, we construct a model for the
velocity gradients that is directly derived from the randomly forced Navier—Stokes
equations at low Reynolds numbers. The main challenge in formulating such a model
for the gradient dynamics stems from the non-locality of turbulence. The drastic reduction
of degrees of freedom in going from the full Navier—Stokes equations to a small system
of ordinary differential equations governing the gradient dynamics comes at the cost
of introducing unclosed terms (Meneveau 2011). Those unclosed terms consist of the
traceless/anisotropic pressure Hessian and the viscous Laplacian of the velocity gradient,
which require modelling. Recent phenomenological models for the velocity gradient have
proven effective in reproducing the small-scale turbulence statistics at moderately large
Reynolds numbers (e.g. Girimaji & Pope 1990; Chertkov, Pumir & Shraiman 1999;
Chevillard & Meneveau 2006; Wilczek & Meneveau 2014; Johnson & Meneveau 2016;
Pereira, Moriconi & Chevillard 2018; Leppin & Wilczek 2020).

In contrast to phenomenological models at high Reynolds numbers, our low-Reynolds-
number model for the velocity gradients can be derived directly from the Navier—Stokes
equations. This direct derivation reduces the number of modelling hypotheses and
free parameters. Indeed, at order zero in the Reynolds number, the velocity field is
Gaussian, allowing for the exact computation of the non-local/unclosed terms in the
equations governing the velocity gradient (Wilczek & Meneveau 2014). We use those exact
expressions of the unclosed terms at zero Reynolds number to construct an expansion in
the Reynolds number of the velocity gradient dynamics. Then, we close the model by
using the asymptotic weak-coupling expansion of the full Navier—Stokes equations at small
Reynolds number (Wyld 1961), combined with the two statistical homogeneity constraints
on the incompressible velocity gradient (Betchov 1956; Carbone & Wilczek 2022). The
resulting model for the single-time statistics of the velocity gradient does not feature
adjustable parameters and does not require any input from simulations or experiments.
Furthermore, we extend the model to predict the full temporal dynamics by using two
adjustable model parameters fitted from direct numerical simulation (DNS) results. This
extended model captures both the velocity gradient single-time statistics and the time
correlations.

The presented model is associated with a Fokker—Planck equation (FPE) for the velocity
gradient probability density function (p.d.f.), in which the Reynolds number and forcing
parameters are in one-to-one correspondence with the same parameters featured in the
forced Navier—Stokes equations. This FPE admits asymptotic analytic solutions, thus
yielding an analytic approximation to the velocity gradient p.d.f. We also provide extensive
comparisons of the analytical results to DNS data. Since the analytical results are only
asymptotically valid, at a sufficiently small Reynolds number, the DNS results help to
determine up to which Reynolds number our analytical results hold. We also included
some DNS results at higher Reynolds numbers to illustrate which low-Reynolds-number
features persist in turbulent flows.

Attempts to analytically predict the high-dimensional velocity gradient p.d.f. so far
built upon phenomenological models for the small-scale turbulent dynamics (Chertkov
et al. 1999; Moriconi, Pereira & Grigorio 2014; Apolindrio, Moriconi & Pereira 2019).
In general, the analytical expression for the p.d.f. follows from field-theoretical methods
employed to solve the nonlinear Langevin equation governing the flow dynamics (Martin,
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Siggia & Rose 1973), consisting of the renormalized action method with a one-loop
correction (Kleinert & Schulte-Frohlinde 2001; Cavagna et al. 2021). The resulting
form of the p.d.f. of the gradient is typically not integrable analytically, thus preventing
the direct computation of marginal distributions and moments, computed instead via
Monte-Carlo sampling (Moriconi et al. 2014). Differently, our prediction of the p.d.f.
of the velocity gradient is analytically integrable and it allows us to derive expressions
for the marginal distributions and the moments of the velocity gradients. Those analytic
expressions explicitly relate the quantities of interest, e.g. skewness, kurtosis and
preferential alignments of the gradients, to the Reynolds number and forcing parameters,
thus rationalizing the onset of non-Gaussianity in low-Reynolds-number random flows.

The paper is organized as follows. Section 2 presents the derivation of a FPE for the
velocity gradient p.d.f. from the Navier—Stokes equations. Section 3 specializes the FPE
for low-Reynolds-number flows, while § 4 presents its analytic solution. The comparison
between the model/analytic predictions and low-Reynolds-number DNS is presented in
§§ 5 and 6, while the conclusions and outlook are discussed in § 7. Appendices A and B
describe the set-up of the numerical simulations and the low-Reynolds-number expansion
of the Navier—Stokes equations used to determine the model coefficients.

2. Fokker-Planck equation for the velocity gradient probability density in
statistically isotropic flows

In this section we obtain the general FPE governing the single-time/single-point statistics
of the velocity gradient. We then specialize it for flows at low Reynolds numbers.

2.1. Governing equations and reference scales
We begin with the three-dimensional incompressible Navier—Stokes equations, driven by
an external Gaussian stochastic forcing F,
V.-u=0, 2.1a)
du+ Rey [(u+V)u+ VP] =V>u+oF, (2.1b)

where u(x, 1) is the velocity field, P(x, 1) is the pressure field and Re, is the Reynolds
number. The equation governing the velocity gradient dynamics is obtained by taking the
gradient of (2.1),

Tr(A) = 0, (2.2a)
%A+ Reyu-VA=—Re, (AA+ H) + V?’A+ o VF, (2.2b)

where A;; = Vju; is the velocity gradient, H; = V;V;P is the pressure Hessian and
standard matrix product is implied. The Gaussian tensorial noise VF in (2.2) has zero
mean, is statistically isotropic and white in time. Its single-point statistics are fully
specified by its single-point correlation, which in Cartesian component notation reads

(ViFi(x, )V 4Fp(x, 1)) = 8(t — 1') (48ipSig — 8igip — 8ijdpq) - (2.3)

where §;; denotes the Kronecker delta. The two-point correlation of the stochastic forcing
is detailed in Appendix A.

Equations (2.1) and (2.2) are written in non-dimensional variables suited for the
upcoming low-Reynolds-number expansion. We employ non-dimensional variables
throughout the paper, and denote the corresponding dimensional variables with a bar
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when needed. To construct reference scales for a suitable non-dimensionalization of the
variables, we introduce a reference length yy, related to the damping role of the viscous
Laplacian at very low Reynolds numbers. When the velocity field is multipoint Gaussian,
the conditional Laplacian of the velocity gradient reduces to a linear damping (Wilczek &
Meneveau 2014), and the corresponding damping length scale is (in dimensional variables)
AiA;
——_< ’12”_) . 2.4
(A;V2A4)
The length scale 9 depends on the spatial correlation of the forcing, and we determine
it in Appendix B. Using 3y, together with the kinematic viscosity of the fluid v and the

Kolmogorov time scale 7, = 1/+/ (] A]|?) (angle brackets indicating ensemble average), we
define the non-dimensional variables employed in (2.1) as

Y0 =

t=0/7) x=%/70, u=(E/f)a, o’ =T, /05" (2.5a-d)
Based on these quantities, we can define a Reynolds number according to
7
Re, = 0 (2.6)
VT,

which expresses the ratio between the velocity gradient magnitude 7, !"and the viscous
damping v/ )702. The Reynolds number (2.6) weighs the nonlinearities in (2.1), thus
allowing us to take the small-Reynolds-number limit properly. The zeroth-order solution of
the non-dimensional Navier—Stokes equation (2.1) consists of a Gaussian random velocity
field resulting from a stochastically driven diffusion equation. By gradually increasing the
Reynolds number, the nonlinear terms come into play leading to non-Gaussian statistics.

In the following, we analyse this ‘onset of non-Gaussianity’ at low Reynolds numbers
as Re,, increases. In previous works (e.g. Yakhot & Donzis 2017; Khurshid ez al. 2023) the
onset of non-Gaussianity has been investigated by means of the more common Reynolds
number based on the Taylor microscale, Re,. In Appendix B we show that at low Reynolds
numbers, Re, and Re,, are proportional, namely

Rej >~ 1.5Re,,, 2.7

with the proportionality factor being weakly dependent on the correlation of the stochastic
forcing (the reported value refers to our simulation set-up). The moderate dependence
of the proportionality factor in (2.7) on the forcing correlation gives some robustness to
characterizing the onset of non-Gaussianity by means of either Re, and Re), and we will
see that our estimate for the critical Re, is consistent with that of Yakhot & Donzis (2017).

2.2. Fokker—Planck equation for the velocity gradient invariants

Equation (2.2) is associated with a FPE for the p.d.f. of the velocity gradient f(A; 1).
In Cartesian components, the FPE for an ensemble of fluid particles sharing the same
instantaneous configuration of the velocity gradient A reads (Wilczek & Meneveau 2014),

i) i)
al =— |:Rey (AsAy + (Hy(x, 0| A) f — (VA (x, ) |A)f
t BAl-j
L ,(, o o
T30 (43Aij N aAﬁ>] ! 29

where (-|A) denotes the ensemble average conditional on the velocity gradient
configuration A. The conditional averages in (2.8), namely the anisotropic part of the
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conditional pressure Hessian and the viscous Laplacian of the gradient, are unclosed terms
that cannot be computed based only on the gradient at a single point (Meneveau 2011).
Thus, the simplifications of going from the equation for the whole velocity gradient (2.2)
(encoding the full space—time complexity of the velocity gradient field realizations) to an
equation for the single-time/single-point statistics of the gradients (2.8), come with the
cost of introducing unclosed terms.

In statistically isotropic flows, the velocity gradient p.d.f. f is rotationally invariant,
namely a function of only the five independent velocity gradient invariants (Itskov 2015).
Statistical isotropy then allows us to employ tensor function representation theory (e.g.
Rivlin & Ericksen 1955; Itskov 2015) to express the unclosed conditional averages in (2.8)
as isotropic tensor functions of the velocity gradient (e.g. Pope 1975; Novikov 1993). The
conditional averages are represented as combinations of basis tensors B" with coefficients
v, that depend upon the velocity gradient invariants Z;. More specifically, the basis
tensors are formed through the strain-rate tensor S = (A + AT) /2 and rotation-rate tensor
W = (A— AT)/2, and they read

—

Bl—s B=85 B =SWwW+Ws, B7=S/V\VW+WV\V/S,} 00
BB=w, B*=sw-ws, B°=Www, B®=SSW+ WSS,

where the tilde indicates the traceless/anisotropic part of the tensor, and the standard
matrix product is implied. It would be necessary to include two additional basis tensors in
(2.9) to fix a possible degeneracy of the basis (Pennisi & Trovato 1987), but we ignore those
zero-measure configurations. The independent invariants Z; formed through the velocity
gradient read

Ti =Tr(SS), I3 =Tr(SSS), Zs=Tr(SSWW) } 2.10)

T =Tr(WW), Ts=Tr(SWW).

A sixth invariant would be necessary to fix the handedness of the strain-rate eigenvector
basis with respect to the vorticity. However, this sixth invariant is uniquely determined in
terms of the other five only up to a sign (Lund & Novikov 1992) and we do not consider it
as an independent variable.

With the above definitions of the basis tensors (2.9) and invariants (2.10), the drift term
in the FPE (2.8) can be compactly written as

8
Re, (AA+ (H(x, D|A)) — (V*A(x, )| A) = Z v (Z)B". (2.11)
n=1

The number of basis tensors (2.9) that are necessary to form a basis and to represent the
most general drift (2.11), depends on the functional form of the polynomial coefficients
vn(Z). If the coefficients are polynomials of the invariants, sixteen basis tensors are
necessary to form a basis (Tian, Livescu & Chertkov 2021; Buaria & Sreenivasan 2023).
However, if we relax the constraints on the coefficients, thus allowing them to be generic
functions of the velocity gradient invariants (2.10), then we need just ten basis tensors to
form a complete basis to represent any traceless tensor function (Pennisi & Trovato 1987).
Furthermore, two of those ten basis tensors are linear combinations of the others, except
when the strain-rate eigenvalues coincide and/or the vorticity is an eigenvector of the
strain rate. Those configurations occur with zero probability, since during the dynamical
evolution of the velocity gradients two of the eigenvalues may be very close at a certain
time, but they will be pushed far apart by the dynamics at some later time. Equivalently, if
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we draw our random matrix A from a realistic turbulent distribution, the probability of
realizations featuring coincident strain-rate eigenvalues and/or vorticity parallel to some
of the strain-rate eigenvectors is zero. We finally have the eight basis tensors (2.9), the
same in number as the independent Cartesian components of a traceless matrix.

The general expression (2.11) allows us to formulate the FPE (2.8) in terms of the
invariants by carrying out the contractions using symbolic calculus (Meurer et al. 2017).
For notation simplicity, we denote the p.d.f. of the velocity gradient with f regardless of
its argument, f(Z(A)) = f(A) since f is a probability density with respect to the traceless
tensor A and the invariants 7 are employed only for a simpler (isotropic) parametrization.
Finally, the steady-state FPE (2.8) reduces to

3 (yuf) o2 f o? 3%f
ne g Mz Y9 (4 ”) T MM (4214 Z’14> 97
S + My 9T, 2 M ¢ =9 9T, 2 KMpa 0T0T,
(2.12)

with sum over repeated indices implied. The symmetric matrix Z in (2.12) is the metric

tensor Z"(7) = B!, BZ, which in matrix form reads

I 0 0 0 Iy 275 0

I3
0 -1, 0 0 27,4 0 0 —27;5
I3 0 A 0 0 : LiLe 24T 0
0 0 0 T,T, — 6Ts 0 0 0 0
zZ=1| 9 274 ) 0 —I,T, + 275 0 0 -7, - 25
74 0 ~LL 41 0 0 z I L. 0
275 0 LiZs 4 20Ty 0 0 4L, Y5 B O 21 0
0 275 0 0 —ni7y- DL 0 0 L 3175+ 55
(2.13)

while Z/"" = Bl B” denotes a modified metric tensor. The symbols ¢"(Z) = oB" /BA,]
indicate the dlvergence of the basis tensors

10Z
¢=[5 30000 TZ 211] (2.14)

while the divergence of the transposed basis tensors is ¢ = BB” :/0A;;. The components of

the derivatives of the invariants are collected in the matrix My; = (0Z;/ BA,,)BU ol (w1th
z! denoting the inverse of the metric tensor (2.13)), which in matrix form reads
2 0 00 O OO0 O
0O -2 00 0 O0O0 O
M=(0 0 3 0 0 0 0O O0|. (2.15)
0O 0 00 -1 1 0 O
O 0 00 O O 1 -1

The quantities (2.13), (2.14), (2.15) characterizing the tensor basis (2.9) can all be derived
from the Christoffel symbols computed in Carbone & Wilczek (2022).

Equation (2.12) is a second-order partial differential equation for the function f(Z) of the
five variables Z;. The model coefficients y,(Z) determine the properties and complexity
of the FPE, and we will now compute the model coefficients y,, for low-Reynolds-number
flows.

3. Determining the model coefficients

We introduce the two hypotheses necessary to obtain the presented model: the coefficients
¥, in (2.11) are constant and the expansion (2.11) is truncated to basis tensors up to degree
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two in the velocity gradient. While these assumptions are exact for the conditional pressure
Hessian at first order in Reynolds number, they introduce modelling approximations for the
viscous stresses. We will test the validity of the assumptions a posteriori, by comparing
the model coefficients y, with the same coefficients computed directly from DNS of

low-Reynolds-number flows (see figure 7).

3.1. Zeroth-order conditional velocity gradient Laplacian

At order zero in Re,,, the equation governing the velocity gradient dynamics (2.2) is linear,
and the resulting flow has Gaussian statistics. For a multipoint Gaussian random field, the
conditional Laplacian reduces to a linear damping (Wilczek & Meneveau 2014), and in the
non-dimensional variables (2.5a—d) we have

(V2AGx, 0|4) = —4+ 0 (Rey) 3.1)

The conditional velocity gradient Laplacian for a Gaussian random field contributes to the
model coefficients (2.11) at order zero in Reynolds number, while the higher-order viscous
corrections require modelling.

3.2. Zeroth-order conditional anisotropic pressure Hessian

For a Gaussian random field, that is at order zero in Reynolds number, the conditional
traceless/anisotropic pressure Hessian takes the simple form (Wilczek & Meneveau 2014)

(Hx,1)|A) = —258 — 2WW + hy (SW — WS) + O(Re,,), (3.2)

while the local/isotropic part of the Hessian is specified by the incompressibility condition
Tr(H) = —Tr(AA). The conditional anisotropic pressure Hessian for a Gaussian random
field contributes to the model coefficients (2.11) at order one in Reynolds number.
Therefore, we know from Wilczek & Meneveau (2014) the exact first-order correction
to the gradient dynamics at small Re, due to the pressure Hessian.

The coefficient hs weighing B* = SW — WS in (3.2) depends on the structure of the
Gaussian flow through the correlation function (Wilczek & Meneveau 2014; Johnson
& Meneveau 2016), but previous works have shown that it does not contribute to the
single-point statistics of the velocity gradient. This can be seen geometrically since B*
rotates the strain-rate eigenframe while leaving unchanged the vorticity orientation with
respect to the eigenframe itself (Carbone, Iovieno & Bragg 2020). It can also be seen from
the FPE for the gradient p.d.f. (2.12) since B* contracts to zero with all the other basis
tensors (Leppin & Wilczek 2020), as from the fourth row/column of the metric tensor
(2.13). Therefore, we can ignore the contributions from B* as long as we are concerned
with single-time/single-point statistics.

3.3. Tensor representation of the conditional averages and resulting velocity gradient
model

We model the higher-order contributions from the unclosed terms by employing the
general expression (2.11), truncated at degree two in the velocity gradient. We consider
the basis tensors (2.9) from B! to B®, by keeping in mind that B* can be ignored as long
as we focus on single-point statistics. Also, we assume that the coefficients y;, in (2.11)
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are constant. These hypotheses, together with the exact expression of the zeroth-order
conditional averages (3.1), (3.2), yield the following representation of the drift term (2.11):

Re, (AA+ (H(x, 1)|A)) — <V2A(x, ) ‘A> — A— R[5S+ 5 W]

+Rey [(5-83) 88+ ya (SW — WS) + (1 — 55) (SW + WS) + (3 - &) W]
(3.3)

Here the constant coefficients §; are of order one and are to be determined. We include
second-order terms in Re,, to keep the variance of the gradients constant for all Reynolds
numbers, as is the case for the stochastically driven Navier—Stokes equations (2.1). The
powers in the Reynolds numbers in (3.3) have been chosen so that the model equations
remain unchanged under the transformation 7 — —7 and v — —v, as is the case for the
Navier—Stokes equations (2.1). We will test a posteriori the trend of the model coefficients
in terms of the Reynolds number against the DNS data (see figure 7).

The constant model parameters 81, 2, 83, 85, 8¢ remain to be determined. To do this,
we use the two Betchov homogeneity constraints (Betchov 1956), the perturbation theory
at a small Reynolds number for the full Navier—Stokes equations (Wyld 1961), together
with the constant dissipation rate imposed by the stochastic forcing (Novikov 1965). This
results in constraints on the average of the velocity gradient invariants

(T) =3 (Li+T) =0, (Z3+3L) =0, (3.4a)
(T3) = S3Re,, (Is) = —15 + XsRe3., (3.4b)

where S3 and X5 are constant parameters. The first relation in (3.4a) follows from the
constant variance of the gradients imposed by the stochastic forcing. It implies that the
Kolmogorov time scale t, = 1/+4/2 (Z;) is one in the non-dimensional variables (2.5a—d).
The other relations in (3.4a) are the two independent Betchov homogeneity constraints
that can be formulated using solely the velocity gradient (Carbone & Wilczek 2022).
The homogeneity relations (3.4a) have already been employed to reduce the number of
parameters in numerical simulations of velocity gradient models at high Reynolds numbers
(Girimaji & Pope 1990; Johnson & Meneveau 2016; Leppin & Wilczek 2020), and here
we can impose those constraints analytically, as we will see below. Relations (3.4b) follow
from a low-Reynolds-number expansion of the Navier—Stokes equations (Wyld 1961). The
quantities S3 and X5 represent, respectively, the rate of change of the third- and fourth-order
moments of the velocity gradient with the Reynolds number, starting from a Gaussian
zeroth-order configuration. These coefficients depend on the forcing correlation, and we
determine them in Appendix B.

In the constraints (3.4) the brackets indicate the ensemble average, that is, for a generic
function of the velocity gradient ¢(A),

(p(A) = /dAf(I(A); 8i) ¢(A), (3.5)

where f(Z; ;) is the p.d.f. of the velocity gradient governed by the FPE (2.12), with the
drift term (2.11). The FPE (2.12) admits perturbative analytic solutions at small Reynolds
numbers, as described in further detail in the next section. This analytic solution f(Z; §;)
depends parametrically on the model coefficients §;, and it allows us to compute the
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ensemble averages in (3.4) analytically. Therefore, the five constraints (3.4) constitute a
linear system of five equations for the five model parameters 81, 87, 83, 85, 8¢. The solution
of this linear system is

182452 144X; 9653 240X
81 = - - — ’ 82 - = + 4
35 7 7 7
5 1208
S3=2 4 —2 84 =y4— ha, (3.6)
7 7
7285 180X 3 605 93683 216Xs
§s=1—1¢5— —= — L Sg=o 2 08 .
7 783 5 5 35 783

Additionally, the noise variance 0> = 1/15 is fixed by the constraint 7, = latRe, =0 (at
which the FPE (2.12) with the drift (3.3) is an Ornstein—Uhlenbeck process). We assume
that the noise variance o2 is independent of the Reynolds number.

We have now determined all the single-time/single-point model coefficients, §; and o.
The model features the exact first-order contribution in Re,, from the pressure Hessian,
while the modelling hypotheses concern the representation of the higher-order corrections.
The resulting model for the velocity gradient single-time statistics does not feature any
free parameter, not requiring any parameter scan to match the DNS results. Still, there are
two free gauge parameters, namely y4 and ¢s, which do not affect single-time statistics,
but only multi-time correlations. This gauge stems from the fact that the Gaussian and
isotropic p.d.f. with unity Kolmogorov time scale (e.g. Wilczek & Meneveau 2014)

2255
fo=——3—exp [~ (48ndjg + 8igdjp) ApApq] 3.7

solves the nonlinear steady-state FPE

9 6 1L [ 3f
A: LR B 4+ —R® R B —([4——-—)[=0 (338
dA; [( it ey“( it5 U)+ fria U)f°+3o< 0A;  0A; B8

for all 4 and ¢5. A particular case of this gauge for the zeroth-order Gaussian solution has
been observed by Leppin & Wilczek (2020). We will determine the gauge parameters y4
and ¢5 in § 6, where we focus on multi-time statistics, with the aid of DNS data.

4. Analytic approximation of the velocity gradient p.d.f. at small Reynolds numbers

The FPE (2.12) with the drift term specified by (3.3) admits perturbative solutions in the
Reynolds number. The solution is expanded up to second order,

F@) ~ foD) + Reyfi(D) + R (D), (4.1)

and we solve for f; at all orders, in the form of a polynomial of the invariants times the
zeroth-order Gaussian solution. In particular, plugging the expansion (4.1) into the FPE
(2.12), comparing terms of the same order in Reynolds number, and imposing the average
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constraints (3.4) yields the following asymptotic solution of the FPE at small Re,,:

2255

fo = exp(—5Z1 + 31»), (4.2a)
3600+/583 (2573 — 217,
f = V5 3;n = %) exp(—ST, +3T0), (4.2b)
7204/5
h= 49;/4_ (—16320837, 7, — 6860537, — 13448375 — 140837, + 50 0008575
+ 84000537574 + 352808577 + 422408375 + 224085 — 22950X57,Z, — 1575X5T;
+1890XsZ5 — 1575XsT> + 59400XsZs) exp(—5T; + 31»). (4.2¢)

We remark that while the solution (4.1) is only asymptotic in Re,,, the terms f; in (4.2)
solve exactly, for all 7, the expanded partial differential equation (2.12) at each order
in the Reynolds number. Therefore, while we deal with an asymptotic expansion at
small Reynolds number, there is no explicit assumption on the magnitude of the velocity
gradients. To assess the asymptotic solution (4.2) by symbolic computation, we rewrote the
terms in (4.2) as functions of the Cartesian components of the velocity gradient, inserted
the resulting expression into the Cartesian FPE (2.8), and checked that the remainder is
zero up to second order in Reynolds number.

The main advantage of the simple expansion (4.2) is that it gives full analytic access
to the relevant moments of the p.d.f. This allows us to investigate analytically the onset
of non-Gaussianity at small Reynolds number. A shortcoming of this expansion is that
the approximate p.d.f. (4.2) may not be positive for all Z; and Re, . The approximation
to the velocity gradient p.d.f. (4.2) changes sign when the polynomial prefactor (which
multiplies the Gaussian exponential part) vanishes. Setting the polynomial prefactor to
zero is equivalent to solving a quadratic equation for Re,. The roots of that algebraic
equation, as functions of the velocity gradient invariants, show that the p.d.f. can become
negative at low Re), only for large values of the invariants. At those large values of the
velocity gradient invariants the Gaussian exponential part exp(—5Z; + 3Z,) has already
strongly decayed. The comparison with the numerical results in § 5 will show that this
positivity issue is indeed negligible in the explored range of Reynolds numbers.

An alternative way to obtain an asymptotic solution of the FPE (2.12) consists of
the effective action method, proposed in Martin et al. (1973) for stochastic differential
equations. This method yields solutions of the form exp(—S(Z)), where S is the effective
action, featuring higher-order polynomials in Z; and Re,. Such a p.d.f. does not give
analytic access to the moments, which are usually computed numerically via Monte-Carlo
sampling (Moriconi et al. 2014). The effective action involves renormalized noise variance
and model coefficients (Apolindrio et al. 2019) aiming to improve the accuracy and range
of validity of the analytic predictions. Our model targets Re,, very small, and the equations
themselves are only valid for low Reynolds numbers. Therefore, in this set-up, the simple
expansion yielding the solution (4.2) seems appropriate, and we leave more advanced
approaches for future work.

4.1. Volume elements and the moments of the velocity gradient

The solution (4.2) allows us to compute ensemble averages analytically. The ensemble
average (3.5) is conveniently computed in the strain-rate eigenframe. We express all the
invariants 7 in terms of the strain-rate eigenvalues A; and vorticity principal components
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w; = v; + ®, where v; are the strain-rate eigenvectors. Additionally, we use coordinates in
the strain-rate eigenframe based on the vorticity magnitude w = ||@|| and the alignments
between the vorticity vector and strain-rate eigenvectors, @; = w;/w. This procedure
transforms the integral (3.5) into

(@) = [ a8 [ don dondon fD0(D), 43)
with the integrations in the strain-rate eigenframe specified by
00 +00 0 +00
/ds:/ d/lzf day Js() +/ dﬂz/ da; Js(), (4.4a)
0 A —00 -2
+00 1 1
/ do; dw, doz = f dw? / da? / dd3 Jo(w, &), (4.4b)
0 0 0

and where the invariants are also expressed as functions of the strain-rate variables,

2 w
h=2 4 B=-7
' (4.5)
3 w? ~2 w? 2 (2
=) & Li==) Al IS=TZAi(wi—1).
i i i

Due to the statistical isotropy, rotations of the strain-rate eigenframe can be integrated
out. This reduces the dimensionality of the ensemble average integral from eight (i.e. the
independent components of the traceless A in (3.5)) to five (i.e. the independent strain-rate
eigenvalues and the vorticity principal components in (4.4)). However, integrating out
rotations also comes at the cost of introducing volume elements (Livan et al. 2018), namely
Js and J,, in (4.4a). The volume element Js associated with the transformation from a
standard Cartesian reference frame to the strain-rate eigenframe consists of the Wigner
repulsion term (Wigner 1955)

Js =212 [(41 — ) (2 — 1) (A1 — A3)| = 212/ T3 — 672, (4.6)

The absolute value in (4.6) drops when employing the ordered strain-rate eigenvalues
A1 > A > A3 as integration variables. Due to incompressibility, 41 + A2 + A3 = 0, and
we have two possible configurations, 41 > A > 0 or 41 > —24 > 0, which specify the
integration bounds in (4.4a). Finally, going from Cartesian coordinates to the vorticity
magnitude/orientation in the strain-rate eigenframe introduces the volume element

J, = B 4.7)

where c?)% =1-o7— (I)%, and we can consider only positive values of the vorticity
principal components @; since the invariants Zj (4.5) are even functions of the vorticity.

5. Comparison of single-point/single-time statistics

We compare the single-time/single-point velocity gradient statistics resulting from our
model and from DNS at low Reynolds numbers. We point out several qualitative changes
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Figure 1. Onset of skewness, intermittency and alignments at low Reynolds number, in terms of the expansion
parameter Re,, . (a) Normalized moments of the longitudinal velocity gradient component Aj;. Note that we plot
((—A11)") since the odd-order moments are negative. (b) Alignments between the vorticity and the strain-rate
eigenvectors. Solid coloured lines are from DNS, while black dashed lines are the analytic predictions from our
low-Reynolds-number model. The inset shows the deviation of the alignments from the Gaussian configuration,
|3 (&)?) — 1], as a function of Re,, in a log-log scale.

in the dynamics and statistical geometry of the gradient as the Reynolds number increases
until a transition to turbulence. The DNS set-up is detailed in Appendix A, while all the
theoretical predictions follow by integrating out variables from the asymptotic solution
(4.1), making use of the expressions for the ensemble average (4.4). The DNS and model
parameters are in one-to-one correspondence. In particular, the zeroth-order conditional
viscous damping and the correlations of the forcing are the same in the model and in the
DNS, as described in Appendices A and B.

5.1. Moments of the velocity gradient invariants

Increasing the Reynolds number starting from zero leads to the onset of the skewness,
intermittency and preferential alignments in the gradient statistics. We analyse these three
features separately by looking at the strain-rate and vorticity statistics from the strain-rate
eigenframe viewpoint (Dresselhaus & Tabor 1992; Tom, Carbone & Bragg 2021).

Figure 1(a) shows the normalized moments of the strain-rate longitudinal components
as a function of the Reynolds number Re, . The moments of the invariants are related to
the moment of the longitudinal strain-rate component through (Betchov 1956; Davidson
2015)

(ah)=3a@. ()= @, (ah)=s(7). (5.1a-c)

The skewness of the strain rate is quantified via the third-order moment of the strain
rate (Z3), while the even and higher-order moments, e.g. (Ilz) quantify the intermittency.
After the rapid initial increase, the skewness of the longitudinal strain-rate component
approaches its typical high-Reynolds-number value of —0.5/ — 0.6. At large Reynolds
number, this skewness is predicted to be constant by a renormalization approach (Yakhot
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& Orszag 1986), while it weakly increases with the Reynolds number with an exponent
of order 0.1 in numerical simulations (Ishihara, Gotoh & Kaneda 2009). At Re,, = O(1),
the strain-rate statistics already display a remarkable skewness, while the intermittency
is negligible. This is because the third-order moments, e.g. (Z3), grow linearly with the
Reynolds number, while even-order moments, e.g. (Ilz) grow quadratically. From this we
infer that the skewness is a dominant feature in low-Reynolds-number flows, while the
intermittency is negligible.

Figure 1(b) shows a striking qualitative change in the statistical geometry of the velocity
gradient at low Reynolds numbers: the switching in the preferential alignments between
the strain rate and the vorticity. The alignments are characterized through the normalized
vorticity components in the strain-rate eigenframe @; = v; - ®/||@|| (where v; are the
strain-rate eigenvectors), ordered based on the corresponding strain-rate eigenvalue A;,
with A1 > 1> > A3. The vorticity aligns with the most extensional strain-rate eigenvector
at low Reynolds number, and only at Re, £ 5 it aligns with the intermediate eigenvector.
At Re, < 5, the alignments are as if the vorticity was a material line in the fluid flow
subject to a persistent strain. Then, at Re,, > 5, the transition to turbulence begins: the
somewhat counter-intuitive alignment between the intermediate strain-rate eigenvector
and the vorticity establishes, as in fully developed turbulence (Ashurst et al. 1987). The
onset of this peculiar alignment at a higher Reynolds number is consistent with the local
nonlinearities in the velocity gradient dynamics becoming more relevant. For example,
the restricted Euler model (Vieillefosse 1982), in which the gradient is driven only by the
local/anisotropic part of the nonlinear term, also displays alignment between the vorticity
and the intermediate strain-rate eigenvector while approaching a finite-time singularity
(Novikov 1990; Cantwell 1992).

By integrating out the strain-rate eigenvalues and vorticity magnitude from the
asymptotic solution of the FPE (4.1), with the ensemble average expressed in the form
of (4.4), we can get an analytic approximation of the vorticity principal components as a
function of the Reynolds number

o\ 1 6J30S3Re, 4224S5Re;  1188XsRe;
9)-4- L
=3 257 1225 245
2p,2 2
<d)2> _ 1 844855Re)  2376XsRe) 52)

2173 1225 245

<A2> _1, 67/30S3Re,  4224S3Re’ N 1188XsRe?,

@3 = 257 1225 5

Both <c?)%> and (c?)%) start from a random uniform value (c?)lz) = 1/3 at zero Reynolds number.

Then (c?)%) grows linearly with Re, while (d)%) grows only quadratically. The preferential
alignments are closely related to the onset of the strain-rate skewness. Indeed, the fact
that S3 < O (analytically derived through the Wyld expansion in Appendix B) not only
implies an average direct energy cascade, but it also implies that the vorticity preferentially
aligns with the most extensional direction at low Reynolds number, as seen from (5.2).
However, (c?)%) has a strong negative second-order contribution in Re,, and eventually, (c?)%)
which has a positive growth rate, takes over. The analytic approximation (5.2) suggests

that the growth of <c?)%> with Re,, can only take place if X5 is negative, and its magnitude

is large enough compared with S%. Furthermore, it is known that the vorticity avoids

the compressional direction in turbulence (Ashurst ef al. 1987). This lack of alignment
establishes already at very low Reynolds numbers, and it strongly depends on the fact
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that S3 and X5 are both negative. Our model captures this lack of alignment since (cb%) in

(5.2) has negative first- and second-order contributions, so it quickly decreases with the
Reynolds number.

The comparison between the DNS and model predictions for the strain-rate moments
and strain rate—vorticity alignments in figure 1 shows that our low-Reynolds-number
model is quantitatively accurate up to Re, > 1, in qualitative agreement with the DNS
until Re, >~ 5 and then breaks down, as expected for a perturbative weak-coupling
approach. Interestingly, the model can predict the switching of the strain rate—vorticity
alignments, that is essentially encoded in the first- and second-order corrections in Re, to
the statistical alignments. However, the analytically predicted Reynolds number at which
the flipping of the preferential alignments takes place is slightly lower than the actual
one. This is because the perturbation parameter is already relatively large in the transition
regime, Re,, >~ 5.

The results highlight many qualitative changes as the Reynolds number increases,
consistent with the observations in recent works (Yakhot & Donzis 2017; Gotoh & Yang
2022; Khurshid et al. 2023). These works have identified a transition to turbulence based
on the sudden growth of the even velocity gradient moments and the onset of a power law
as their growth begins, around Re; =~ 9. The transition is usually identified by means of the
Reynolds number based on the Taylor microscale Re,, while we localize the transition in
terms of Re,, that is the expansion parameter in our analysis. The two Reynolds numbers
are proportional close to the Gaussian state, Re; ~ 1.5Re,, with moderate dependence
on the forcing details (see Appendix B), while they are non-trivially related at higher
Reynolds numbers, their relation depending on the spatial correlations of the forcing.
According to the estimate (2.7), the transition Reynolds number Re, >~ 5 corresponds
to Rey >~ 7.5, that is consistent with the transition Reynolds number estimated via the
analysis of the velocity gradient scaling exponents (Yakhot & Donzis 2017). Summarizing,
when Re), = O(10) (more quantitatively Re, between 5 and 10), the scaling exponents of
the velocity gradient moments as functions of the Reynolds number change and, as an
independent indicator, the alignments between the strain rate and vorticity flip towards a
turbulence-like configuration.

The transition from a Gaussian state to a turbulence-like configuration is smooth, as
shown by our model and DNS results. This is in agreement with the results in the
literature (e.g. Khurshid et al. 2023), which do not show sharp changes of the velocity
gradient scaling exponents in the vicinity of the critical Reynolds number. Analogously,
by taking the strain rate—vorticity alignments as an indicator of the velocity gradient state,
we observe the flipping of the preferential alignments at a critical Re,,, but the transition
towards a turbulent configuration is smooth and smeared in the vicinity of that critical
Reynolds number. Based on our results, we interpret the transition to turbulence reported
in the literature (e.g. Yakhot & Donzis 2017), not as a sharp change in the scaling exponents
of the velocity gradient moments in terms of Re,, but rather as an approximation to a
smooth transition between two power-law trends with different exponents.

5.2. Cartesian velocity gradient components

The changes in the moments of the velocity gradient invariants reflect into the onset
of non-Gaussianity in the statistics of the velocity gradient Cartesian components. In
particular, the onset of skewed strain-rate statistics already at a very low Reynolds number
results in the non-Gaussianity of the velocity gradient longitudinal component p.d.f.,
shown in figure 2(a—c). As the Reynolds number increases, the left tail develops, while
the right tail becomes slightly sub-Gaussian near the p.d.f. core. Our model captures
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Figure 2. The p.d.f. of the longitudinal (¢—d) and transverse (e—h) components of the velocity gradient at
various Reynolds numbers. The solid lines are from DNS, while the dashed black lines indicate the analytic
prediction from our low-Reynolds-number model. The thinner dashed line indicates the zeroth-order Gaussian
p-d.f.

the slight increase of the left tail up to Re,, = O(1), even though the non-Gaussianity
at such low Reynolds numbers is very mild compared with the non-Gaussianity in
high-Reynolds-number turbulence (figure 2d). The model can capture the p.d.f. for
approximately six decades for Re,, < 1, but the quantitative agreement deteriorates with
increasing Re,, and we can approximate the p.d.f. of Aj; for only three decades at
Re, = 2.5 due to the onset of an unphysical right tail. While the skewness of the
velocity gradient statistics is evident already at low Re,,, the signatures of intermittency
show up only at larger Reynolds numbers. This reflects in slight changes of the velocity
gradient off-diagonal component p.d.f., as shown in figure 2(e—g). Some intermittency is
noticeable only at Re,, > 1, and again very mild compared with the intermittency levels
of high-Reynolds-number turbulence (figure 2/). Our analytic prediction can capture the
slight increase of the tails of the p.d.f. and respects the symmetry (lack of skewness) of
the transverse component statistics.

5.3. Strain-rate statistics

In order to better understand the origin of the strain-rate skewness and to get insight into
the preferential configuration of the strain-rate eigenvalues observed in fully developed
turbulence (Betchov 1956), we analyse the p.d.f. of the strain-rate tensor using elements of
the theory of random matrices (Livan et al. 2018). At zero Reynolds number, the velocity
field is multipoint Gaussian, and the strain rate is an orthogonal Gaussian random matrix.
Gaussian random matrices are well-established tools in many research areas (Wigner 1955;
Dyson 1962), but less frequently employed in fluid dynamics. For example, the distribution
of the dissipation rate corresponding to a Gaussian strain rate (i.e. the p.d.f. of the norm
of a Gaussian symmetric matrix Wigner 1955) has been more recently derived in this field
(Shtilman, Spector & Tsinober 1993; Gotoh & Yang 2022).

Due to incompressiblity and statistical isotropy, the strain-rate p.d.f. is parameterized
through two quantities, namely the two independent (unordered) strain-rate eigenvalues 4
and Ay, or the two principal invariants 7| = 2(/1% + /l% + A1) and I3 = 341 A2(41 + Ap).
Therefore, changing coordinates from the standard Cartesian basis to the strain-rate

986 A25-16


https://doi.org/10.1017/jfm.2024.165

https://doi.org/10.1017/jfm.2024.165 Published online by Cambridge University Press

Velocity gradients in low-Reynolds-number random flows

eigenframe brings a remarkable dimensionality reduction. This change of coordinates
implies that the p.d.f. of the strain-rate p.d.f. fs(A(S)) is related to the p.d.f. of its
eigenvalues p,(4) through (Livan et al. 2018)

pa(A)
) =——, 53

Js() Ts(D) (5.3)
where Jg is the volume eclement of the Stiefel manifold (James 1977), defined in
(4.6). Since the volume element Jg has a convoluted form, the p.d.f. of the strain rate
parameterized through the eigenvalues, fs(1), is visually much simpler than the p.d.f. of the
eigenvalues themselves p(1). We will therefore plot and discuss f5(4), shown in figure 3
for various Reynolds numbers. Furthermore, we employ the rescaled sum and difference of
the eigenvalues, so that the contours of the strain-rate p.d.f. at vanishingly small Reynolds
number are circles. The contours of the p.d.f. in figure 3 are logarithmically equispaced,
the coloured solid lines are from DNS and the black dashed lines represent the analytic
prediction obtained by integrating out the vorticity from (4.1) in the fashion of (4.4)

50430 600003053 5 200004/ 305%
Js() = (W —Rey—— 55— Ml (I + L) + Rey — o7

X ( 1800442 + 360033 + 18004243 — 4243 — 42210, — 4243 + 7) )

x exp(—1027 — 10212, — 1043). (5.4)

The analytic prediction (5.4) captures the strain-rate p.d.f. up to Re, = O(1).
Discrepancies appear in the zero-measure regions in which two of the strain-rate
eigenvalues coincide. This could be due to the choice of the basis tensors (2.9), which
are not linearly independent when the strain rate is in a degenerate configuration.

As the Reynolds number increases, the contours of the strain-rate p.d.f. in figure 3
transition from a circular to a triangular shape. The contours elongate towards large and
positive A1 + Aa, that is, large and negative A3, while shrinking along 11 — A3, especially
when A3 is large. This shape indicates a preferential state with a negative and large
eigenvalue, with the other two being smaller, positive and close to each other. This
configuration has been observed by Betchov (1956) from a phenomenological analysis
of the strain-rate dynamics in high-Reynolds-number turbulence, and (5.4) analytically
shows the onset of this preferential configuration. The skewness in the p.d.f. (5.4) is due
to the first-order contribution in Re,, which amplifies the probability of regions in which
the product S3.11 4243 is positive. This corresponds to a preferentially positive intermediate
strain-rate eigenvalue Ay (Lund & Novikov 1992).

Figure 3 also shows that the shape of the strain-rate p.d.f.s at low and moderate
Reynolds numbers qualitatively differ. The edges displayed by the strain-rate p.d.f. at
moderately large Reynolds numbers are not present at lower Reynolds numbers and
constitute a high-Reynolds-number feature. The symmetry of the p.d.f. with respect to
the axes 11 = A2, 41 = —A2/2 and A, = —A;/2 remains at all Reynolds numbers, simply
because the eigenvalues can be arbitrarily interchanged. Even at large Reynolds numbers
however, the contours of the strain-rate p.d.f. look surprisingly simple. In fact, they can be
parameterized through a combination of the principal invariants, namely

a1 ()T} +aa (fs) L + a3 (f) T3 = 1, (5.5)
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Figure 3. The p.d.f. of the strain rate fs(1) parameterized through its unordered and rescaled eigenvalues A;, at
various Reynolds numbers. The colourmap and coloured solid contours are from DNS, while the dashed black
lines indicate the corresponding analytic prediction from our low-Reynolds-number model. The thin dashed
lines in the high-Reynolds-number plot indicate the empirical parameterization (5.5). The colourmap is log,
scale, and the contours are equispaced in log; scale with unit increments.

where the quantities «; depend on the contour level fs itself. This parameterization is
shown in figure 3 for the large-Reynolds-number strain-rate p.d.f.

5.4. Vorticity statistics

We now analyse the distribution of the vorticity components in the strain-rate eigenframe
and explore the non-monotonic trend of the strain rate—vorticity preferential alignments
with increasing Reynolds number observed in figure 1(b). As done for the strain rate in
the previous section, we compensate the kinematic effects due to the volume element
Jo» (4.7) that arises from employing magnitude/orientation coordinates in the strain-rate
eigenframe. More specifically, we integrate out the strain rate and the vorticity magnitude
from the velocity gradient p.d.f., according to (4.4), to obtain the marginal p.d.f. of the
normalized vorticity principal components

po(@%) = / dw J, f dSf(Z (S, w)), (5.6)
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o

Figure 4. The p.d.f. of the squared normalized vorticity principal components weighted by the volume
element, as in (5.7), at various Reynolds numbers. Here @; and @, are the normalized vorticity components
along the most extensional and intermediate strain-rate eigendirections, respectively. The colourmap and
coloured solid contours refer to the DNS results, while the black dashed lines refer to the corresponding analytic
prediction (5.8). The numbers on the contours indicate the value of the p.d.f. on that contour level.

where the integration with respect to the strain rate is defined in (4.4a). We then weigh
the p.d.f. of the alignments p; by the denominator of the volume element J,, (4.7), which
does not depend on the vorticity magnitude and can be pulled out of the integral in (5.6),
thus yielding

[2(@%) = N 070303 00, (5.7)

where A is a normalization factor such that [ dc?)% dc?)% fo» = 1. The advantage of such
reweighting of the p.d.f. is that it compensates for the complicated features of the volume
element J,,, resulting in visually simple trends of the alignment p.d.f., as shown in figure 4.

In figure 4 we compare the reweighted p.d.f. of the alignments f; from DNS
(coloured lines) with our low-Reynolds-number model prediction (black dashed lines).
The asymptotic prediction of f; follows from integrating out the strain rate and vorticity

986 A25-19


https://doi.org/10.1017/jfm.2024.165

https://doi.org/10.1017/jfm.2024.165 Published online by Cambridge University Press

M. Carbone and M. Wilczek

magnitude from the asymptotic solution (4.1) and it reads

18+/3053
N

+ 2288307 + 668305

59856855 | 2191255 10692X505 | 3564Xs
+ - + :
245 245 49 49
(5.8)

where, the vorticity components are ordered according to the corresponding strain-rate
eigenvalue, with 4; > A > A3, and two of the normalized vorticity principal components
suffice to parameterize the alignment p.d.f. since ) _; c?)lz = 1.

At very small Re,, the alignment distribution in figure 4 is close to random uniform,
corresponding to an almost constant f; and to the lack of preferential alignments. At
low Reynolds numbers, the probability density reweighted by the volume element, f;,
displays almost straight contours, which have a slope such that the p.d.f. takes larger
values where c?)% is large. The analytic solution (5.8) shows that the contours at first
order in the Reynolds number consist indeed of straight lines with slope —2 in the
d)%—&)% plane. This results in the preferential alignment between the vorticity and the most
extensional strain-rate eigendirection, as previously observed in figure 1. Moreover, the
first-order correction enhances the probability of regions in which c?)% + c?)% is large since
S3 < 0. This shows a connection between the negative skewness of the strain-rate statistics
and the lack of alignment between the vorticity and the most compressional strain-rate
direction. As the Reynolds number increases, the contours of the alignment p.d.f. 4 tilt
toward preferentially large cb%, that is a slope larger than —1 in the c?)%—c?)% plane. The
contours remain approximately straight at low Reynolds numbers, with mild variations of
the reweighted p.d.f. magnitude on its support. The analytic solution (5.8) quantitatively
captures the p.d.f. and the tilting of the contours with increasing Re,, the tilting stemming
from second-order terms in Re,, . At large Reynolds numbers, the p.d.f. varies more rapidly
on its support, and its contours visually deviate from straight lines. However, the low- and
high-Reynolds-number reweighted p.d.f. of the alignments still look remarkably similar,
up to a tilting of the contours.

The tilting of the contours of the normalized vorticity principal components p.d.f.
toward preferentially large c?)% reflects in changes of the marginal p.d.f.s of the cosines
@; = |v; - ®|, where v; are the ordered strain-rate eigenvectors. In this case, we could not
compute the analytic approximation to the marginal p.d.f. of the alignments due to the
technical difficulty introduced by the volume element 1/|®w,@3| featured in the integrals
(4.4). Instead, we compute the p.d.f. of the alignments by numerically solving the Langevin
equation associated with the FPE (2.8) for an ensemble of velocity gradients

dA

5 ~
= [(1 —Re)z,Sl) S+ (1 . Rei(sz) W+ Re, (5 - 53> 85+ Re, ys (SW — WS)

3 __
+Re, (1 —85) (SW + WS) + Re,, <§ - 56> WW] +oT, (5.9)

where I' is a white-in-time tensorial noise that has the same (single-point/single-time)
statistics of the forcing VF (2.3).

Figure 5 shows the p.d.f. of the normalized vorticity principal components @;, obtained
from DNS and from numerical integration of our low-Reynolds-number model (5.9).
At very small Re,, there are no preferential alignments, and the distribution of the
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Figure 5. Vorticity-strain rate alignments quantified by the p.d.f. of the ordered vorticity principal components
at various Reynolds numbers. The solid coloured lines refer to the DNS, while the black dashed lines are from
the numerical solution of our low-Reynolds-number model (5.9).

normalized principal components is random uniform. As Re, increases, the vorticity
preferentially aligns first with the most extensional strain-rate principal direction while
avoiding alignment with the compressional direction. Since the spinning of the fluid
element causes compression along the vorticity direction (Carbone et al. 2020), the lack
of alignment between vorticity and the contracting direction hinders the growth of the
most compressional velocity gradients. The transient alignment between the vorticity
and the extensional strain-rate eigenvector lasts up to Re, >~ 5, and then the well-known
preferential alignment with the intermediate eigenvector settles (Ashurst et al. 1987).

5.5. Velocity gradient principal invariants
Finally, we focus on the joint p.d.f. of the velocity gradient principal invariants, namely

Q=-3TCi+D)., R=-3T+3L), (5.10a,b)

that is a hallmark in the study of the turbulent velocity gradient dynamics (Meneveau
2011). The volume element characterizing the R—Q space prevented us from analytic
integration of the full p.d.f. (4.1) to obtain the marginal p.d.f. of the principal invariants.
As for the strain rate—vorticity alignments presented above, we obtain the marginal R-Q
p.d.f. by numerically solving the Langevin equation (5.9).

The R-Q p.d.f. entangles all the information on the strain rate and vorticity in a
somewhat complicated way. Indeed, integrating out the eigenvectors of A, in order to
get the marginal R-Q p.d.f., does not immediately relate to integrating out rotations of
the reference frame, as it does instead for the strain rate. Also, the R-Q p.d.f. features
two kinematically different regions, one below the Vieillefosse line (Vieillefosse 1982)
corresponding to real velocity gradient eigenvalues and one above it corresponding to
complex eigenvalues. This topological difference causes edges in the p.d.f. of the principal
invariants, even though the gradient statistics are smooth.

Nonetheless, the R-Q p.d.f. displays a distinguishing mark of the velocity gradient
statistics: the classical teardrop shape, elongated towards the right Vieillefosse tail
(Vieillefosse 1982), as shown in figure 6. At zero Reynolds number, the p.d.f. takes the
well-known Gaussian shape, symmetric along the R axis due to invariance of (2.2) under
the sign flipping A — —A. As Re,, increases, the characteristic teardrop shape arises. Our
model quantitatively captures the onset of the skewness along the right Vieillefosse tail,
which persists at higher Reynolds numbers. However, the similarity between the low-
and high-Reynolds-number p.d.f.s is only qualitative, the large-Reynolds-number p.d.f.
displaying significantly more elongated tails. This is also because the principal invariants
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Figure 6. Probability density of the velocity gradient principal invariants (5.10a,b) in log;, scale. The
colourmap and coloured solid contours refer to the DNS, while the black dashed lines are from the numerical
solution of our low-Reynolds-number model (5.9).

are powers of the velocity gradient of degrees two and three, and tiny tails in the strain-rate
eigenvalues and vorticity components distributions result in pronounced tails of the R-Q
p.d.f.

6. Comparison of multi-time statistics and velocity gradient dynamics

In the previous section we showed how the asymptotic solution (4.1) quantitatively
captures the single-time/single-point velocity gradient statistics obtained from DNS up
to Re, >~ 1, with a qualitative agreement up to Re,, >~ 5. Now, we investigate whether
our model can also reproduce the full Lagrangian dynamics of the velocity gradients, as
characterized by velocity gradient sample realizations and time correlations.

6.1. Model coefficients from the DNS

To compare the velocity gradient time series generated by the DNS with our
low-Reynolds-number model predictions, we first need to fully specify all the model
coefficients (3.6). Indeed, in §2 we have identified two gauge coefficients, y4 and s,
which only affect multi-time statistics while leaving the single-time p.d.f.s unchanged.
We compute the model coefficients (3.6) directly from the DNS and compare them with
their analytic predictions. This allows us to fit the two gauge coefficients, y4 and ¢s, from
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DNS data, thus enabling our low-Reynolds-number model to capture the velocity gradient
temporal dynamics.

From the DNS of low-Reynolds-number random flows, we have access to space—time
realizations of the pressure Hessian and viscous Laplacian, i.e. the unclosed terms in
our single-time/single-point modelling approach. Therefore, we can compute from DNS
the averages of the unclosed terms conditional on the local velocity gradient via tensor
function representation theory (Leppin & Wilczek 2020; Carbone & Wilczek 2021)

(Hx,1)|A) = Z hyB", (6.1a)

8
(V2Ax, 0[a) + 4= Re2 Z 8.B8" +Re, > 5,8". (6.1b)
n=1 n=3

Here B" are the basis tensors (2.9), h, in (6.1a) are the conditional pressure Hessian
components and §, in (6.1b) are the components of the viscous corrections. To be
consistent with our low-Reynolds-number model formulation, here we use the same
representation of the pressure Hessian and viscous Laplacian that we employed to derive
the model coefficients (3.6). From the viscous Laplacian (6.10), we subtract the linear
damping part, —A, and then we introduce second-order corrections in the Reynolds
number proportional to the first two coefficients 1 and §,, and first-order corrections
proportional to the other basis tensors. To extract the coefficients /4, and §; from the DNS
data, we use the following property of any conditional average (we illustrate this only for
the anisotropic pressure Hessian):

<<F1ij(x, t)|A> T,-j(A)> - <ﬁ,-j(x, DT (A(x, t))> . 6.2)

Here T(A) is a tensor function of the gradient only. At most, the model coefficients depend
on all the five invariants (2.10), while our main modelling hypothesis is that we limit
ourselves to constant coefficients. This hypothesis is exact for the conditional pressure
Hessian and the zeroth-order viscous Laplacian at very low Reynolds number, while it
constitutes an approximation for higher-order corrections.

Thanks to the property (6.2), we obtain a linear system for the constant model
coefficients by taking the double contraction between the tensor representations (6.1) and
the basis tensors (2.9) and then averaging

8

> (2 o = (v, 0By (ACx, 1) (6.3a)

n=1

2 8
ReL D (Z™) 8+ Rey D (27) 60 = ((V2A5x, 0 + A, 1) By (Ax. 1)), (6.3b)
n=1 n=3

where Z"" is the metric tensor (2.13). Solving the linear system (6.3) yields the coefficients
hy, and 6, plotted in figure 7 as functions of the Reynolds number Re,, .

Figure 7(a) shows that the pressure Hessian coefficients h3 and he (relative to the
basis tensors SS and WW, respectively) constitute the dominant contribution at low
Reynolds numbers, with h3 — —2/7 and hg — —2/5 at vanishingly small Re, (Wilczek
& Meneveau 2014). The coefficient /7 is largely compensated by the viscous part, which
is beneficial for modelling since we hypothesized that the third-order basis tensors do
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Figure 7. Components of the conditional anisotropic pressure Hessian £, (a,b) components of the conditional
viscous Laplacian §, (see (6.1) for their definition), as functions of the Reynolds number Re,, . The coloured
points indicate the coefficients computed from DNS using (6.3), with the point types differentiating the order
of the corresponding basis tensor (2.9). The grey transparent lines are from the analytic prediction (3.6), after
fitting the gauge parameters y4 and ¢5. The model coefficients §7 and 8g are set to zero and not shown here.

not contribute to the gradient dynamics. At Re,, >~ 5, the coefficient i3, which mitigates
the strain-rate self-amplification, becomes larger in magnitude than the coefficient &7,
which instead hinders the centrifugal forces due to the rotation of the fluid element. At
the same Reynolds threshold, the conditional pressure Hessian component along B! = §
starts increasing.

Figure 7(b) shows that the corrections to the viscous linear damping encoded in &1
and §, are moderate, and the model qualitatively captures the growth in magnitude of
81 and &5, which slowly become more negative as the Reynolds number increases. The
fact that the coefficients Re,d; and Re,d, remain small at small Reynolds numbers
justifies the assumption of quadratic (or, at least, higher order than linear) corrections
to the viscous damping. As for the pressure Hessian, also for the viscous stress, the

dominant contributions come from the second-order basis tensors, B3 to B®. The cubic
terms are subleading at small Reynolds number and become relevant only at Re, 2 1.
While the contributions to the symmetric part B’ from the pressure Hessian and viscous
stress compensate each other, the viscous anti-symmetric part proportional to B® becomes
relevant when Re,, < 1. This indicates that velocity gradient models at higher Reynolds
numbers would need to take into account those third-order basis tensors.

Remarkably, the coefficient 83, relative to B> = SS, is uniquely determined by the
skewness growth rate at a small Reynolds number S3, as shown by the asymptotic
prediction (3.6). The strong relationship between the onset of skewness in the gradient
statistics and the coefficient of B> has been noticed before in the numerical experiments
of Leppin & Wilczek (2020), and here it is shown analytically. Furthermore, both S3 and
83 simultaneously match their DNS values (cf. figures 1(a) and 7(b)), which have been
obtained in two independent ways (S3 by looking at (Z3) as a function of Re,,, and &3
by computing the conditional viscous Laplacian). This supports the consistency of our
modelling approach.
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Finally, the analytic expressions of the coefficients 84, §5 and ¢ in (3.6) feature the
gauge terms y4 and 5. While the single-time statistics are independent of those two terms,
the time correlations are affected. We fit the values of these gauge terms from DNS data,
and with

ys ~ —0.022, &5~ 0.013, (6.4a,b)

the analytic prediction (3.6) matches well the coefficients §, independently computed from
DNS, as in figure 7(b).

6.2. Lagrangian trajectories

Now that we have fully determined the model coefficients, we analyse the velocity
gradient along fluid—particle trajectories generated by our model and by DNS. The model
coefficients necessary to reproduce the single-time velocity gradient statistics have been
determined analytically. However, fitting DNS data is necessary to set the gauge terms in
(3.6), affecting the velocity gradient time correlations. The Langevin equation (5.9) and
the associated FPE (2.8) are designed to match single-time/single-point statistics, and the
results can be interpreted in either an Eulerian or Lagrangian sense. In the following, we
assume a Lagrangian viewpoint.

Figure 8 shows a longitudinal component of the velocity gradient tensor along
fluid—particle trajectories at various Reynolds numbers, from the model and from DNS.
For a vanishingly small Reynolds number, the noise dominates and the realizations follow
a tensorial Ornstein—Uhlenbeck process (Chevillard et al. 2011). As the Reynolds number
increases, the effect of the random forcing weakens, time correlations establish and larger
negative gradients persist. The symmetry about Aj; = O breaks as the Reynolds number
increases, with large negative gradients being more likely, as evident especially at a large
Reynolds number. The larger-Reynolds-number trajectories observed on the time scale
of a few Kolmogorov times appear smooth, indicating that the details of the stochastic
forcing are concealed by the rich small-scale turbulent structure of the flow. The velocity
gradient realizations from our low-Reynolds-number model are visually similar to the
realizations from DNS up to Re,, = O(1), and we are now going to quantify this similarity
by comparing their time correlations.

6.3. Time correlations from DNS and from the low-Reynolds-number model

In figure 9 we compare the normalized time correlations of the strain and rotation rates

(S5(0S5(0) (Wi (0 W;(0))
Cs(t) = "L Cy(t) = 21 6.5a,b
s(®) (5,05, 0)] w (1) (W, ()W, (0) (6.5a,b)

as obtained from the DNS and from our low-Reynolds-number model (5.9). At very small
Re,,, the velocity gradient follows a linear Langevin equation so that the correlations
decay exponentially in time, with characteristic time scale )702 /v. Therefore, in the
non-dimensional time ¢ (2.5a—d), the correlations collapse at small Reynolds numbers,
as evident from the insets in figure 9. However, as the Reynolds number increases, the
correlations decay with a time scale shorter than )702 /v, indicating that the nonlinearities
reduce the normalized time correlations expressed in the non-dimensional variables
(2.5a-d).

Furthermore, the strain rate is correlated over shorter time scales, as in figure 9(a),
and the bulk of the correlations already establishes at Re,, = O(10), that is, just after the
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Figure 8. Time evolution of the longitudinal velocity gradient component at low Reynolds number, from
DNS (a,c) and from our low-Reynolds-number model (2.2) (b,d). The bottom panel (¢) shows trajectories
at a moderately large Reynolds number. Curves at different transparency refer to various samples in the same
simulation. The plots share the same horizontal axis, with the dimensional time normalized by the Kolmogorov
time scale, 7/T, = Rey, 1.

— Re,=0.1 0.6 1.6 == 40 == Re;=100
— 03 1.0 25 =101
(@) (b)

1.0

0.8

0.6

G (@
Cy (0

0.4

0.2

0 SAAAAR A A AAA A0 A A AAA A

Figure 9. Normalized time correlations of the strain rate (a) and rotation rate (), for various Reynolds
numbers, as functions of the time lag normalized by the Kolmogorov time scale, 7/ T = Re,t. Solid lines are
from DNS, while the symbols refer to our low-Reynolds-number model (2.2). The insets show the correlations
in a semi-logarithmic scale, as a function of the non-dimensional time lag, t = (v/ )702)i. The black dashed lines
in the insets indicate the expected zero-Reynolds-number correlation, C4 = exp(—1).
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transition to turbulent configuration begins. Instead, the vorticity correlates over longer
time scales and those long-lasting correlations only establish at relatively large Reynolds
numbers. The extreme vorticity intermittency and long-lasting correlations then constitute
the main missing ingredients in low-Reynolds-number random flows, as compared with
turbulent flows. This is consistent with recent observations (e.g. Ghira, Elsinga & da Silva
2022) that the most intense vortical structures fully develop only at very large Reynolds
numbers.

Our model can quantitatively predict the velocity gradient time correlations up to
Re, = O(1), and to this end, the gauge terms discussed in the previous sections are
crucial. Moreover, the model performs better on the vorticity time correlations than on
the strain-rate correlations. The difficulty in predicting the strain-rate time correlations
has been recently observed also in reduced-order models for the velocity gradient at high
Reynolds number (Leppin & Wilczek 2020).

7. Conclusions

We have derived a model for the velocity gradient in low-Reynolds-number flows governed
by the stochastically forced Navier—Stokes equations. The model parameters follow from
the homogeneity constraints on the velocity gradient moments and a weak-coupling
expansion of the Navier—Stokes equations. The expansion parameter is the Reynolds
number Re, (2.6), comparing the magnitudes of the velocity gradient fluctuations
and the viscous damping. The model features the exact first-order corrections to the
velocity gradient dynamics due to the pressure Hessian at small Reynolds numbers.
The Betchov homogeneity constraints (Z1 + Z5) = (Z3 + 3Z4) = 0, the growth of the
strain-rate skewness, (Z3) = S3Re,, and fourth-order moment, (Zs) = —1/12 + X5Re}2,,
are also imposed exactly (see (2.10) for the definitions of the invariants Z;). Modelling
is necessary to devise a closure for the viscous Laplacian contributions and second-order
pressure Hessian contributions such that the trend of the average invariants at small Re,,
hold and the Betchov homogeneity constraints are fulfilled. The resulting model can
quantitatively predict the onset of non-Gaussianity in random low-Reynolds-number flows
up to Reynolds numbers of order one, and qualitative agreement persists until a transition
to the velocity gradient configuration reminiscent of turbulence. Beyond this transition,
the model predictions break down, as expected for a perturbative weak-coupling approach.

The asymptotic solution to the FPE associated with our stochastic model is integrable
analytically, thus granting access to the moments of the velocity gradients at low Reynolds
numbers through closed asymptotic expressions. This allowed us to quantify the onset
of hallmark turbulent features, like the alignments between the vorticity and the strain
rate, the preferential configuration of the strain-rate eigenvalues and the characteristic
teardrop shape of the velocity gradient principal invariants p.d.f. We summarize the main
observations below.

At low Reynolds numbers, the results highlight a direct link between a forward
energy cascade and preferential alignment between the vorticity and the most extensional
direction, both because S3 < 0. At higher Reynolds numbers, corrections to the
fourth-order velocity gradient moments, related to intermittency, lead to the preferential
alignment between the vorticity and the intermediate strain-rate direction. The model also
shows how the skewness growth rate S3 < 0 affects the shape of the strain-rate p.d.f.,
breaking the symmetry of the Gaussian configuration and producing a preferentially large
and negative strain-rate eigenvalue. This skewness is also associated with the onset of
the teardrop shape of the velocity gradient principal invariants p.d.f. While the first-order
corrections to the skewness of the velocity gradient statistics are evident already at
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Re, < 1, the onset of the intermittency is slower, quadratic in Re), and evident only
at Re,, > 1. The model for the single-time statistics is closed, not requiring any input
from the DNS. On the other hand, fitting two gauge parameters from the DNS data is
necessary to capture the multi-time statistics of the velocity gradient. After that fitting, our
model can produce velocity gradient time series visually and statistically similar to those
from DNS at low Reynolds numbers, and we can explore the evolution of the velocity
gradient time correlations in terms of Re,. The results show that the strain-rate time
correlations approach those at high Reynolds numbers already at small Reynolds numbers
Re, = 0O(10). Larger differences between low and high Reynolds numbers are observed
for the time correlations of vorticity, showing that the long-lasting time correlations of the
vorticity constitute a high-Reynolds-number feature.

At moderate Reynolds numbers, Re, ~ 5, we observe the flipping of the strain
rate—vorticity alignments towards a configuration reminiscent of turbulence, in which
the vorticity preferentially aligns with the intermediate strain-rate eigenvector. Around
the same critical Re, intermittency becomes relevant. The transition value Re, >~
5 corresponds to a Reynolds number based on the Taylor microscale Rej >~ 7.5,
consistent with the critical Reynolds number identified via the analysis of the velocity
increments/gradients scaling exponents (Yakhot & Donzis 2017; Gotoh & Yang 2022;
Khurshid er al. 2023). At very low Reynolds numbers, we have Re, >~ 1.5Re,, with
the proportionality coefficient moderately dependent on the forcing correlations, thus
justifying the characterization of the onset of non-Gaussianity via either of the Reynolds
numbers Re,, or Re,.

Finally, both the model and the DNS results show that the transition from a Gaussian
state to a turbulence-like configuration is smooth, smeared around a critical Reynolds
number. This finding is consistent with previous results (Yakhot & Donzis 2017; Gotoh
& Yang 2022; Khurshid et al. 2023) that do not show sharp changes of the velocity
gradient statistics in the vicinity of the critical Reynolds number. Based on this underlying
smoothness, we interpret the transition to turbulence, as quantified by the change in the
scaling exponents of the velocity gradient moments in terms of the Reynolds number (e.g.
Yakhot & Donzis 2017), as an approximation to a smooth transition between two power-law
trends with different exponents.

As an outlook, the methodology developed here may also be applicable to model the
p.d.f. of the velocity gradient starting from the Navier—Stokes equations at higher Reynolds
numbers, for example, by employing renormalization techniques (Yakhot & Orszag 1986;
Apolindrio et al. 2019; Verma 2023).
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Appendix A. Details on the DNS

In this appendix we summarize the set-up of the DNS. We employ dimensional variables,
denoted by a bar, the unit of measure being (arbitrary) code units. For our numerical
simulations set-up, we will determine in Appendix B the reference length yp, such that
the relation for the non-dimensional conditional Laplacian (3.1) holds. Once we have
yo and the dimensional dissipation rate € of turbulent kinetic energy, we can rescale all
the dimensional variables (2.5a—d) to write down the low-Reynolds-number model in its
non-dimensional form (2.8), (5.9).

We perform DNS of incompressible flows governed by the Navier—Stokes equations
stirred through a Gaussian random forcing by means of a standard Fourier pseudo-spectral
method, described in e.g. Carbone, Bragg & Iovieno (2019). The code solves the
incompressible Navier—Stokes equations on a tri-periodic cubic domain in the form

kit =0, (37 + 0kt + iPykiF [wiin)] = Vvéok® Fi, (Ala,b)

where & = 1 regulates the spatial correlation of the forcing, F indicates the spatial Fourier
transform, P;(k) = 8;; — kik;/ k? is the projection tensor on the plane orthogonal to the
wavevector k, k = ||k|| is the wavevector norm, i is the imaginary unit and & is the
transformed velocity field,

uk, 1) = % / dx u(x,7) exp(—ik - X). (A2)

The domain length is L = 27 in code units, and the integer wavevectors components range
in the interval —N/2 < k; < N/2, where N is the number of resolved Fourier modes in
each direction (Canuto et al. 2006). The grid spacing in Fourier space in each direction
is Ak = 2n/L (and Ak = 1 in code units). The low-Reynolds-number simulations resolve
643 Fourier modes, with spatial resolutions ranging from l_cmaxﬁ ~ 40 to l_cmaxr_] ~ 5 with
increasing Reynolds number Re, . Here n = (12 /&)/* is the Kolmogorov length scale.

The numerical simulation at larger Reynolds number resolves 512° Fourier modes with
kmaxn) =~ 3 and Taylor Reynolds number Re; =~ 100. The aliasing error introduced by the
nonlinear convective term is removed through a 3/2 rule (Canuto et al. 2006), and the time
stepping consists of a second-order stochastic Runge—Kutta algorithm (Honeycutt 1992).
In all the simulations, the complex Gaussian random forcing in (Ala,b) is limited to low

wavenumbers, and it has the form

Fytk, 1y = (AW? Y Pykp [ (@ +i8) 8 (k — Jer) + (a] — iBf) 8 (ke + ki) |, (A3)
l

where a! and b’ are real, vectorial, white-in-time Gaussian random processes with zero
mean and unitary variance, (?15(?)[1]’71(7 )) = 8im8;i8(f — ). The sum in (A3) is extended

to the forced wavenumbers k;, 1 < ||k;|| < K, with K = +/7 (in code units). The noise
amplitude in (Ala,b) is proportional to the wavenumber, so that the kinetic energy
spectrum Ej is proportional to k|| at low wavenumbers. For Re, — 0, (Ala,b) tends
to an Ornstein—Uhlenbeck process in which the Fourier modes of the velocity evolve
independently from each other and have variance ||&||> o 602, independent of the viscosity
and the wavevector. Therefore, the three-dimensional velocity spectrum scales as Ey ~
agkz, compatible with thermal equilibrium of the lowest Fourier modes.

By employing the prefactor (Ak)? in the definition (A3), & has the physical units of
inverse time and it determines the Kolmogorov time scale of the flow, independently of
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Low-Reynolds Moderate-Reynolds

number simulations number simulation
Resolved Fourier modes 643 5123
Reynolds number Re, ~0.2 x 10%/10 Re,) >~ 100
Viscosity (D) 10—/10 0.002
Kolmogorov time scale () 1 0.09
Forcing amplitude (69) 0.027 0.3
Maximum forced wavenumber (K) NG V7

Table 1. Simulation parameters in code units, for the DNS at low and moderate Reynolds numbers. In the
low-Reynolds number simulations, 7 is an integer between —3 and 20, that regulates the viscosity and thus Re,, .

the domain size L. Furthermore, the forcing (A3) is in good approximation statistically
isotropic, and the correlations of its gradients approximate the isotropic correlation of the
forcing (2.3) employed in our low-Reynolds-number model. By substituting the definition
(A3) into (2.3), it follows that the dimensional forcing amplitude 6¢ used in the DNS, and

the non-dimensional amplitude o = 1/4/15 employed in the FPE (2.8), are related through

-2-2

2 YT 8 T4- -2 16 52755

o~ —= = kivol | ~ ————v7K't , A4
300 (Ak)ZXI:l 0) = Josags 0% %0 (A9

where 7y is the characteristic scale of the damping (3.1) and K is the maximum forced
wavenumber. We compute the DNS parameter o that gives a unitary Kolmogorov time
scale in the following Appendix B. The simulation parameters are summarized in table 1.

To get an idea of the parameter range and flow configuration, we report in figure 10
the velocity spectra together with a few characteristic Reynolds numbers and scale ratios.
Figure 10(a) shows the kinetic energy spectra from the simulations at various Reynolds
numbers. As the Reynolds number increases, energy cascades towards the small scales
and the high-wavenumber modes become more energetic, while low-wavenumber modes
lose energy. The characteristic inertial range trend k>3 is noticeable only at the largest
Reynolds number. Indeed, such an inertial range slope requires a well-defined scale
separation, which is absent in low-Reynolds-number flows.

Figure 10(b) shows a comparison between the various Reynolds numbers and the
corresponding scale separation. The integral-scale Reynolds number Re; = u'¢/v (where

W' = /2 [dkEg/3 is the root-mean-square velocity and ¢ = 7 [ dk Ex/(2ku’) is the
integral scale) is proportional to Re,, at low Reynolds numbers, while it starts following a
different power law at Re,, >~ 5, when the transition to turbulence takes place. The Taylor
Reynolds number Rey = u/A/v (where A = /154 7, is the Taylor microscale) is always
smaller than Rey, it is linear in Re, at low Reynolds numbers while it grows slower
starting at Re,, ~ 5. We quantify the scale separation through £/n and 1/n = V154 Uy,
where u;,) = n/t, is the Kolmogorov velocity scale. While the £ and A are larger than the
Kolmogorov scale already at very small Re,,, they grow only as ,/Re,, at small Reynolds
numbers, resulting in a very moderate scale separation at Re, < 1. At such Reynolds
numbers however, the skewness and preferential alignments in the velocity gradient
statistics are already non-negligible, while signatures of intermittency start appearing.
This is consistent with the observation that non-Gaussianity can be pronounced even in
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Figure 10. (a) Kinetic energy spectra from DNS at various Reynolds numbers, with Re,, ranging from 0.1
to 10 (same colour scheme as figure 9). (b) Integral-scale Reynolds number Rey and Taylor Reynolds number
Re,, together with the scale separations /5 and A/1, as functions of the low-Reynolds-number perturbation
parameter Re,, . The black dashed line indicates the analytic estimation (2.7).

flows that do not feature any scale separation (Schumacher et al. 2007; Yakhot & Donzis
2018).

Appendix B. Determining the model parameters through the Wyld expansion

In this appendix we compute the low-Reynolds-number model parameters, namely the
reference length yp, the forcing amplitude oy, together with the growth rates of the strain
self-amplification (Z3) and of the fourth-order moment (Zs),

(T 192 (Z:
=25y 18 (Bla,b)
aReV Rey:O 2 aRey Rey=0

We derive those quantities from the Navier—Stokes equations by using the weak-coupling
expansion proposed by Wyld (1961) for a generic forcing. Although divergent, this power
series in the perturbation parameter Re,, is useful to derive the moments of the velocity
gradient at very small Reynolds numbers, that is, the range we are interested in. We
specialize this weak-coupling expansion for a Gaussian, white-in-time forcing, and with
the aid of symbolic calculus (Meurer et al. 2017), we get the velocity gradient moments
up to second order in Re, . The computation quickly becomes very involved as the order
of the expansion in the Reynolds number increases, and we illustrate the procedure for the
coefficient S3, encoding a first-order correction in Re,, .

B.1. Set-up for the Wyld expansion
We consider the space—time Fourier transform of the velocity field u(x, 1),

ui(q) = / dt dx u;(x, 1) exp(iwt — ik - x), (B2)

L3
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where ¢ = (w, k) is the position vector in the frequency—wavevector space, and 7 and L
are the periods of the velocity field in time and space, respectively. Following Wyld (1961),
we formally expand the velocity field in powers of the Reynolds number

ii(q) =Y i (q)Re), (B3)
N

with integer N > 0. The coefficients #™) are the Fourier transform of the physical-space
velocity u™) at various orders in Rey, and they are related through the Navier—Stokes
equations (Ala,b) in non-dimensional form

(—ieo+K2) @ + iRe, Pk (i i) = o0kF; (B4)
where the non-dimensional parameter o relates to the corresponding dimensional (DNS)
parameter in (Ala,b), og = 7,00, and the symbol * denotes convolution,

3

)t / dq' uj(qHiu(q — q'). (B5)

(i %] (@) =

Inserting the series expansion of the velocity field (B3) into the Navier—Stokes equations

(B4) gives the following relations for the series coefficients ™.
i (g) = o0kG(q)F;, (B6a)
i =G Y @ i) @. (B6b)
L+M=N

Here L, M, N are non-negative integers and the propagators read

Gg) = — Gii(@) = —5G(@) (Puk; + Py) . (B7a.b)

iw+ k2’

The external Gaussian forcing is delta correlated in time, with zero mean and correlation

I T / (27[)5 /
(Fi@Fa)) = 25575 2 Pythkn) (6 — k) + 0+ k) 8(g +4).  (BY)
)

where k = ok, the wavevectors k have integer components and the forced wavevectors
belong to the interval {1 < kil < 7} (cf. DNS set-up in Appendix A). The discrete
forcing (B8) is the Fourier transform with respect to time of the forcing employed in the
DNS (A3), in which the wavevectors are discrete by construction. This discrete forcing
F is only approximately isotropic, and the spatial correlation of the forcing employed
in the Wyld expansion and in the DNS (B8) corresponds only approximately to the
isotropic form (2.3) used in our low-Reynolds-number model. However, for the chosen
forced wavenumbers range, the discrepancies between the actual forcing correlation and
its isotropic limit are tiny.

B.2. Moments of the velocity gradient at order zero in the Reynolds number

We are interested in the velocity gradient moments resulting from the expanded equations
(B6), which can be derived from the Fourier-space velocity field as follows. The Fourier
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transform of the strain rate is a linear operator on the velocity field, and at any order in the
Reynolds number we have

SV =™, Sy= 5 _ (Puk; + Puk;) . (B9a,b)

The zeroth-order strain-rate magnitude follows from (B6a) combined with the definition
of the forcing correlation (B8),

Vv ~ ~
@) =(ss) =5 [ dakk (1" @i o) = 68403, @10

where V = TL3/(2m)* is the convolution normalization factor. The result (B10) is valid
not only at order zero, but for all Reynolds numbers since the random forcing F produces
a constant variance of the gradients (Furutsu 1963; Donsker 1964; Novikov 1965),
independent of the weight of the nonlinearities in (2.1). Setting the Kolmogorov time scale
to unity, (Z1) = 1/2, yields
o0 >~ 0.027, (B11)
that is, the parameter employed in our DNS (cf. table 1).
Finally, we need to compute the damping parameter y; from the dimensional velocity
gradient field since it constitutes the reference length in our low-Reynolds-number model.

The length 7 (2.4) is defined at zero Reynolds number, that is, for the Gaussian field 2.
By evaluating the averages in (2.4) using Fourier-space variables we get

72 [~ ~(0
A
o e S ~020,  (BI2)
(Vv Vvu®) [ agi (1" @i o)

where the wavevector norm k and the coefficient yo are dimensional (in code units).
The expansion parameter occurring in the asymptotic solution of the FPE (4.2) Re,, is

proportional to )702, as in (2.6). The relation between Re,, and the Reynolds number based
on the Taylor microscale Re,, that is usually employed in the literature to investigate the
onset of non-Gaussianity (Yakhot & Donzis 2017; Gotoh & Yang 2022), depends on the
details of the forcing. To investigate this dependence, we compute the kinetic energy and
Taylor microscale at order zero in Re,,,

<||u||2> ~ <u§°)u§°>> - / dgq (a]f°>(q)ﬁ§°>(—q)> ~ 0.69, (B13a)
() ) f dg (i @i (~q))

Wku]@@ku]@) B /dql_c2<ft;0)(q)ﬁ;0)(—q)>

where the reported numerical values refer to our DNS set-up. Using the averages (B10),
(B12), (B13) we can estimate the ratio Re,/Re,, at very low Reynolds numbers:

|u|| )35%, (1 )M§°)><@WW}OWW!“§®>
5 =~ 1.49. (B14)
v (V0 90a”)

For a fixed forcing scheme, the ratio between the two Reynolds numbers depends on the
width of the shell of forced wavenumbers, K, due to finite-resolution effects. By varying
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K from 1 to 20 (in our DNS units) we observe very moderate changes in Re; /Re,,, the
ratio ranging between 1.29 and 1.53 (that is, its asymptotic value). Even for a different
forcing correlation Re, /Re, does not change significantly. For example, by setting & = 2 in
(Ala,b), yielding a kinetic energy spectrum Ej proportional to ||k||* at low wavenumbers,
results in a ratio Re,/Re, >~ 1.4. The fact that Re,/Re, does not depend drastically on
the forcing correlation supports the quantification of the onset of non-Gaussianity at low
Reynolds numbers in terms of either Re, or Re,, .

B.3. Moments of the velocity gradient at first and second order in Reynolds number

We are now left with determining the growth rates of the gradient moments, S3 and X;
(Bla,b), from the Wyld expansion of the Navier—Stokes equations (Wyld 1961; Lvov &
L’vov 2023). For the third-order moment of the strain rate at first order in Re,,, we have

1 0 0 o o1 o
S5 = 3<s( ) ¢(0) )> =3V? / dg, dq; Siji1, (91)Sj1jok (G2 — 41)S)jrin 15 (—4q2)

i1~j12" 20

x <ftfll)(ql)ﬁff (g, — ql)ﬁg’)(—qz))- (B15)

The moment splits into a deterministic part and a stochastic part, on which the ensemble
average acts. We aim to have only Gaussian variables inside that ensemble average, and to
this end, we iteratively substitute ﬁEN) in terms of lower-order velocities, up to ZLEO), using

the Navier—Stokes equations (B6). At first order, this substitution yields

S3 = 33 / dgs; dg, dq, §i11115 (ql)G151114(q1)E1j212 (g2 — ql)’gjzilh (—q2)

0

-0 . -0 (0
< (@ (@) — 4 (@il (@ - 4D (~a). (B16)

Substitution of higher-order velocities in terms of the Gaussian random field #©®
introduces additional convolutions, and for higher-order moments, this iterative
substitution leads to rapid proliferation of terms (Monin & Yaglom 1975; Lvov & L’vov
2023), requiring handling the symbolic/numeric computation of several Wyld—Dyson
integrals.

Since ¥ is Gaussian, the average in (B16) splits into pairs (Isserlis 1918; Wick 1950)

S3 =3V / dqs dgs dqy Sijy15 Gistii (91) Siviabs (@2 — 1) Siir 13 (—42)
< ([ @ - a2 @) (i @ — a0 (~a))
+ <’21(?) (g1 — ‘13)741(;)) (g2 — ‘I1)> <5t;f) (q3)ﬁ;30)(—q2)>
+ (i @) — 4 (—a ) (@) @) @ — av)) - B17)
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Moreover, for delta-correlated noise, the average acts just as combinations of contractions
on the deterministic part, namely

S3 = 3V3 / dq3 d(h §i1j115 (O)Glsllll (O)S:j]jzlz (qZ):S\;jzillz (_qZ)R(q3)R(q2)
+3V3 / dg, dq; Siyjuis (@ — 41 Gist (@2 — 4181721 @1 Siirts (—42)R(q)R(q2)

+3v3 / dg; dg, §1'11‘115 (g2 + 93)Gisiy1, (g2 + q3):§j1j212 (l]3)§j2i111 (—42)R(q2)R(q3),
(B18)

where for notation convenience R = 0'02k2|G|2 <I~7 ,-(q)F ,-(—q)> is the auto-correlation of

#© . At higher order, the number of independent contractions, stemming from the
factorization of the higher-order Gaussian moments into products of correlations, rapidly
increases introducing an additional technical difficulty.

We tackle the frequency—wavenumber integrals (B18) by means of a combination of
symbolic calculus and discrete integration. The integration with respect to the frequency is
carried out analytically by using the residue theorem (Kleinert & Schulte-Frohlinde 2001).
On the other hand, the integration over the wavevectors reduces to a discrete summation
over the discrete forced wavevectors, due to the form of the forcing correlation (B8),
consisting of a superposition of Dirac delta functions. Evaluating the integral (B18), and
the corresponding one for Xs, we finally get

S3 ~ —0.027, X5 =~ —0.0010, (B19a,b)

matching well the trend of the moments from our DNS at low Re,, (cf. figure 1).

For the parameters X5, the procedure is the same as sketched for S3, but the expansion
goes up to second order in the Reynolds number and there is one additional integration
variable. Also, the average of the sixth-order moments of i#(’) now splits into fifteen pairs
by the Wick theorem (differently from (B17), in which we got just three pairs). Therefore,
the direct computation of integrals like (B18) presented here is computationally expensive,
and the (equivalent) numerical integration of the expanded Navier—Stokes equations (B4)
is preferable. This integration yields the fields #") (B3), from which one can compute the
moments of the gradient in physical space through fast Fourier transform (the fast Fourier

transform requiring just 133 grid points for these low-order moments and the forcing (B8)).

The systematic study of expressions like (B18), aiming at an efficient symbolic/numeric
evaluation of these integrals, is the subject of ongoing work.
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