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1. Introduction. Several writers (4), (6), (7), (9) have used orthogonal expansions in
discussing properties of Fourier transformations, and Kober (3) has used such expansions to
derive fractional Fourier and Hankel transformations. In 1950 Barrucand (1) noted a
reciprocity holding between the coefficients in the expansions in Laguerre polynomials of
pairs of functions which are transforms with respect to the kernel J0(2xl).

In the present paper I extend Barrucand's result to kernels Jx(2xi), i?(a)> - 1 , and to
Fourier sine and cosine kernels. I also discuss the relationship between fractional powers of
unit matrices and fractional transformations, and I show how this method gives an alternative
approach to the fractional Hankel transformations of Kober.

2. Formalities. Let us suppose that the sets of functions

{*»(*)}, tf,W} (» = 0,1,2, . . . ) ,

are normalised and biorthogonal over (0, oo), that f(x) and g(x) are transforms with respect
to a Fourier kernel K(x), and that

/(.r)~ 3 a,tUx), (1)
n-0

oo
and 9(x)~ £ bn<j>n{x)

n=0
in the sense that* the coefficients an and bn are given by

a»= f(x)<l>n(x)dx, bn=\ g(x)>jjn(x)dx.
Jo Jo

Further, suppose that Wn (x) is the transform of </rn (x) with respect to the kernel K (x)
and that it can be expanded in terms of the functions ^n{x). That is

0 m=0

say. By the Parseval theorem for these transforms we have, formally,

«„= Ff(xWn(x)dx~ rgJo Jo

= g(x)\ E knm<}>m{
J 0 (.m-0

oo /*oo

m-0 J 0

= £ K>mbm (2)
m-»0

* Tho sign ~ is used with this meaning throughout the paper.
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00

m-0
.(3)

If K, A, B denote the infinite matrix and the column vectors

I— k k I
" • 0 0 " " O l " " 0 2 •••

" 2 0 ""2

i a0 -
«i

a 2

3 ~ bo ' 1
h

respectively, then (2) and (3) become B=KA and A =KB. Hence K2A =A for all column
vectors A arising from the series (1), and thus K2 = I, where / is the unit infinite matrix.
Thus the Fourier kernel K (x) may be regarded as corresponding to the square root K of / .

In the same way other fractional powers of the unit infinite matrix / correspond to

formal transformations which are fractional powers of the transformation with respect to the
Fourier kernel K(x). In particular, the fractional transformations of Kober correspond to
the diagonal matrix

- 1 0 0 ...
0 e2«* 0 ...
0 0 einik ..

(4)

3. Powers of Unit Matrices

D E F I N I T I O N 1. / / / „ is the unit nxn matrix and I(x) is an n x n matrix whose elements
are functions of a parameter x defined for all real x, then I (x) is said to be an evaluation of 1%,
the xth power of /„, if

(i) / (a;) . / (y) =l(x+y) for all real x and y,

(ii) / (0)=/ ( l )=/ n .

With this terminology we have :
THEOREM 1. If cvc2, ..., cn_x is any set of n - 1 constants and 1 (x) is the lower semi-matrix

defined by

7 lv\ _P a n n
I \X) —I ( J . n « 1 2 . . . U l n

in l an2... a n n j

where ari = 0 if r<s, and

.(5)

if r^ss, then I(x) is an evaluation of /Jj.
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Proof. By the multiplication rule for matrices the element in the rth row and «th column
of the product / (x) . I (y) is

r e2iria:(p-l)+2iTt!/(s-l)

1 (*~l

_ ) JJ c
(r-a)l U = , "'

r / r - i \£ I \ n _e2tri

-V-P/

(6)

if r^s and is zero if r<s. That is, condition (i) is satisfied. Condition (ii) follows immediately
on substituting x=0 and ,t; = l in (5).

The result of Theorem 1 extends immediately to infinite lower semi-matrices, since the
product of two lower semi-matrices is a lower semi-matrix and the elements of the rth row
of the product depend only on the elements of the first r rows of the two factor matrices.

In particular, if we put cm = J (<x+m), x = i, then it follows that the infinite lower semi-
matrix

( o ) o o

ft1) "Co') •

is a square root of the unit infinite matrix / .
Hence if a0, a^, a2,... is any sequence of numbers and

then*

*>„= E (-1)™
in—0

n

a n = E ( -

{n-m)a«» •(7)

U-, •(7)

4. Application to Hankel transforms. Suppose that/(x) and g(x) are transforms with
respect to the kernelf Ja(2xt), i ? ( a ) > - l , and that they have formal developments in
Laguerre polynomials of the form

That is (see (5))

n = 0

n=0
(8)

n\ f°°
+ a + 1) J o "

(" e~^'L<i(x)g(x)dx (9)
I Jo

bn

* The case a = 0 gives the "reciprocal sequences" of Barrucand (1), corresponding to the Euler
semi-matrix (2).

t in this case x^f(^xz) and x^gikx1) are transforms with respect to the usual Hankel kernel x'J,(x).
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Now the functions nl e-xxi"L^(x), e-"xn+l* are transforms ((5), 5-4-1) with respect to the
kernel Ja(2x*). Hence, by the Parseval theorem for these transforms, (9) becomes

Further ((5), 5-1-6)

i£(x)= i (-i)m(n+*)-r
m=o \n -in/ ml

Hence, by the reciprocity (7),

Substituting (11) in (10), we obtain

n\ » ,

\n-mj ml

(-1)"
m=0

Now it is not necessary for this argument that the series (8) should converge ; the integrals
(9) converge and the use of the Parseval theorem is justified if f(x) belongs to L2{0, oo).
Thus we have :

THEOREM 2. If f{x) belongs to L2{0, oo) and g{x) is its transform with respect to the kernel
Ju(2xt), R(a)> - 1 , and an and bn are defined by (9), then

bn= E ( - l ) m ( )am (12)
m=o \mj

and oB= E l - W * W
m=o \m/

5. The cases of Fourier transforms. The particular cases a = ± 1 of Theorem 2 are
equivalent to the cases of Fourier sine and cosine transforms, respectively, and the Laguerre
polynomials can then be expressed in terms of Hermite polynomials ((5), 5-6-1). If we put

Theorem 2 becomes :

THEOREM 3. / / F(x) belongs to L2(0, oo), and either (i) G(x) is its cosine transform and
k — 0, or (ii) G (x) is its sine transform and k = l, and F (x) and G (x) have the formal expansions

F(x)~S AnHSn+k(xlJ2), G{x)~£
n=0 n=0

in the sense that

K =

Bn =
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= (-!)» 2
OT=o (n-m)\

Bm.

6. An example. If we put an = (.] + ia)n in (8), then ((5) 5-1-9)

f(x)=xl' 2 (},+),a)nL£>(x)
n=0

^ ^ (13)

for - 3 < a < l . Further, (12) gives

bn= 2 ( -
7 ) 1 " 0

j .Hence y («) = a.4" (.1 + ott)"""1 exp ( - a;

ebe

= J

Also, it follows from an extension of Weber's integral (8) that

in accordance with Theorem 2.

7. Fractional transforms. Kober (3) has discussed a class of transformations which can
be regarded as fractional powers of the ordinary Hankel transformation. If we re-arrange
some of Kober"s results so that they pertain to the kernel Ja (2x1) instead of the usual Hankel
kernel a;* Ja (x) then we obtain :

THEOREM 4. If f(x) belongs to L2(0, oo), a and k are real, a > - 1 , and

n=0
in the sense that

n\
an =

then there exists a family of transformations Tk with the following properties :

(i) Tkf(x)~e-Xxl« E ane
i"inkL^

»=o

(ii) TkTJ{x) = Tk+lf(x), Tk+1f(x) =

then

(iii) TJ(x) =l.i.m. f(t)Ja(2xiti) dt,
T-+n J 0

(iv) / / k is not an integer and

ck — | cosec nk | exp m (1 + a) ( | - k + [k]),

j-T

Tkf(x)=ckl.i.m. f(t)Jx(2xkl | cosec nk \
T-*ao J 0
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In the present scheme these fractional transforms correspond to the evaluation Ik of the kth
power of the unit infinite matrix which is given by the diagonal matrix (4).

Now the fractional transformation of the sequence {«„} corresponding by Theorem 1 to
the kth power of the transformation (12) is

b'n= E e2"imk(i-Ui"ik)n-m(n)am (15)
m=0 \mJ

Hence we can derive a transformation T'j. which is also a fcth power of the transformation
with respect to the kernel Jx(2xl) if we replace the bn in Theorem 2 by the b'n given by (15).
In particular, if f(x) is the function (13) considered in § 6, then (15) gives

Hence, in this case,

b'n= £ { l l ) (
m-0 \ m

T'kf(x)=xi* E
n=0

( 1 +ae?nik\
~X\-ae2"*k)

Thus as k varies (16) gives functions which are A;th power transforms of the function (13)
with respect to the kernel Ja (2a;i). We can use this family of fractional transforms to obtain
fractional transforms of more general functions by the following device.

DEFINITION 2. Iff(x) and g(x) belong to L2(0, oo), and Fa(x), Ga(x) are sets of functions
belonging to L2(0, oo) and defined for some set of values of a, then we say that f(x) is related to
g (x) as the Fa (x) are related to the Ga (x) if

J
= g(x)Fa(x)dx

o ' Jo

for all a of the set.

With this terminology we can prove :

THEOREM 5. If f(x) is related to g(x) as the functions (16) are related to the functions (13)
for | a | < 1 , and

f(x)~xi" E anL
M(x)

n=0

and g{x)~xi* E b'nL^(x),

then the sequences {an} and {b'n} satisfy (15).

Proof. By the assumption of the theorem we have

f(x)xi*exp( -x*™ ,)dx

/•o

j ^ x , (17)

for|a|<l.
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Now for I 2a/(l +a) | <1 the right-hand side is equal, by the expansion (5), 5*l-9, to
/*oo /• w / o« \n^

)—i g (x)c-*xi° i 2 2>>(z) ( ̂ - ) \dx
J o U=o \i+a/ J

oo / Ofl \ n r°°
-1 S (, ) g(x)e-xxi"L(l)(x)dx

n=0\i+«/ Jo

" <>•>

The term by term integration of the series is justified by absolute convergence since

n g (x)xl*e-xL($ (x) dx
J o

Hence the series (18) converges absolutely for | 2a/(1 +a) \<1.
Similarly the left-hand side of (17) is equal to

a+«-*)— i / 2 ^ y r ( w + a + i )
If we now put

&;= f e2"«"1*(A-ie2»'*)n-'»('WW (20)

then (18) becomes

n=o\l+«/ «! m=o " "
oo « ' /O/jo2ut*\m to Iti A.n\ In — np""ik\«—

^ (^—) i; tt+") " , a e )

Equating this to (19) we have

for all relevant a. Hence a'n=an and (20) becomes the required result (15).

8. Identity tvith Kober's transforms. The identity of the fractional transforms of
Theorems 4 and 5 is proved if we show that Tkf(x)=T'kf(x) for the function (13). In this
case we have in Theorem 4

(in — ~—,.,_,. r-. (i> — ott) I 6 x* ij w \*JX\X* e x p ( — x — I dx
2"+ i (re + a + l ) J o » v /

 J-V j —a/

(1 - a)-""1 r x"L^ (x) exp ( - j ^ -
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on evaluating this integral ((5), p. 370, problem 19). Hence (i) of Theorem 4 gives

S (ae2"ik)nL($(2x)
00

s
n=0

as required.

(
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